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ABSTRACT

Protein-DNA and protein-RNA interactions are part of
many diverse and essential cellular functions and yet
most of them remain to be discovered and character-
ized. Recent research shows that sequence-based
predictors of DNA-binding residues accurately find
these residues but also cross-predict many RNA-
binding residues as DNA-binding, and vice versa.
Most of these methods are also relatively slow, pro-
hibiting applications on the whole-genome scale.
We describe a novel sequence-based method, DR-
NApred, which accurately and in high-throughput
predicts and discriminates between DNA- and RNA-
binding residues. DRNApred was designed using a
new dataset with both DNA- and RNA-binding pro-
teins, regression that penalizes cross-predictions,
and a novel two-layered architecture. DRNApred out-
performs state-of-the-art predictors of DNA- or RNA-
binding residues on a benchmark test dataset by
substantially reducing the cross predictions and
predicting arguably higher quality false positives
that are located nearby the native binding residues.
Moreover, it also more accurately predicts the DNA-
and RNA-binding proteins. Application on the hu-
man proteome confirms that DRNApred reduces the
cross predictions among the native nucleic acid
binders. Also, novel putative DNA/RNA-binding pro-
teins that it predicts share similar subcellular loca-
tions and residue charge profiles with the known
native binding proteins. Webserver of DRNApred is
freely available at http://biomine.cs.vcu.edu/servers/
DRNApred/.

INTRODUCTION

Interplay of proteins and the two types of nucleic acids,
DNA and RNA, defines and regulates many cellular func-

tions, such as DNA transcription, replication and repair
(1,2), protein synthesis, regulation of gene expression, post-
transcriptional modifications and posttranscriptional regu-
lation (3–5). The protein–nucleic acids interactions are stud-
ied primarily using experimentally derived structures of the
corresponding complexes. Unfortunately, use of the exper-
imental methods is technically challenging and relatively
expensive and thus only ∼6000 protein–nucleic acids com-
plexes were characterized so far (source: Protein Data Bank
(PDB) database (6) as of December 2016). However, the
number of DNA-binding proteins is relatively substantial
and was estimated to be on average close to 3% in eukary-
otic organisms and 5% in animals (2). Similarly, the fraction
of RNA-binding proteins was estimated to range between
2% and 8% of proteins in eukaryotic organisms (5). Simple
math reveals that assuming the most conservative estimates
we should know 2% of 43 million of known eukaryotic pro-
teins (source: the NCBI’s RefSeq database as of December
2016) = 860 thousand proteins that bind RNA and 3% of
43 million = 1.29 million proteins that bind DNA. The an-
notated DNA and RNA binding proteins can be obtained
from several databases and datasets: RBPDB database (7),
animalTFDB database (8,9), UniProt (10) database that in-
cludes annotations of nucleic acids binding via the gene on-
tology (GO) terms, and in datasets collected in recent stud-
ies (11,12). Using human proteome as an example, these
databases collectively annotate 4.9% and 2.7% of the human
proteins as DNA-binding and RNA-binding, respectively.
These numbers are low given that the fraction of human
transcription factors alone was approximated to be 7.9% (9)
and the number of RNA-binding proteins was recently es-
timated to be at least 7.5% (13).

The substantial and growing gap between the number
of known and the number of yet to be learned DNA and
RNA binding proteins motivates the need to increase the
pace of the characterization of protein–DNA and protein–
RNA interactions. To this end, the experimental data are
utilized to develop a number of time- and cost-efficient com-
putational models for automated prediction of these in-
teractions for the millions of the uncharacterized proteins.
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These methods can be categorized into two types accord-
ing to the input information that they use: structure-based
versus sequence-based. The former methods predict the
binding based on known protein structures, while the lat-
ter make the predictions solely from the protein sequences.
The structure-based methods utilize information derived
from the structure, typically based on shape and biophys-
ical characteristics of the protein surface. However, struc-
tures are known for only ∼40 thousand distinct protein
sequences (source: PDB database as of December 2016),
limiting utility of the structure-based methods. Therefore,
it is necessary to develop reliable computational methods
to identify nucleic acids binding from the sequences. There
are two types of sequence-based methods: those that pre-
dict DNA- or RNA- binding proteins versus DNA- or
RNA-binding residues in protein sequences. The former
type concerns a simple two-state prediction of whether a
given protein sequence binds to DNA/RNA or not. The lat-
ter type goes much further by locating the binding residues
(residues in contact with DNA/RNA) in the input protein
sequences. Therefore, we focus on the computational pre-
diction of DNA- and RNA-binding residues from protein
chains. These methods can be used to find putative bind-
ing proteins in the vast sequence databases and to indi-
cate putative sites of these interactions. A couple dozen of
sequence-based methods that predict the DNA- or RNA-
binding residues have been already published. They include
DNA-binding predictors: DBS-Pred (14), DBS-PSSM (15),
BindN (16), DNABindR (17,18), DP-Bind (19,20), DI-
SIS (21), BindN+ (22), NAPS (23) and MetaDBSite (24);
RNA-binding predictors: BindN (16), RNABindR (25–27),
Pprint (28), RNAProB (29), PiRaNhA (30,31), BindN+
(22), NAPS (23), SPOT-seq (32) and Meta2 (33); and pre-
dictors of nucleic acid binding residues that do not dis-
criminate between RNA and DNA: RBscore (34,35). Al-
though the first two types of methods accurately predict
their own type of nucleic acid binding (36,37), a recent study
shows that they often fail to correctly recognize whether a
given interaction is with RNA or DNA (36). More specifi-
cally, methods for the prediction of DNA-binding residues
were found to cross-predict between 29% and 49% of RNA-
binding residues as DNA-binding. Similarly, methods for
the prediction of RNA-binding residues mispredict between
48% and 64% DNA-binding residues as RNA-binding. This
observation was confirmed by another study that demon-
strated that the current methods have AUC <0.5 (equiva-
lent to a random prediction) for discriminating DNA- ver-
sus RNA-binding residues (37). A likely reason for this is
that these methods were developed and tested using proteins
that bind one type of nucleic acids (predictors of DNA bind-
ing were built using exclusively DNA-binding proteins) and
thus they could not learn to discriminate between DNA and
RNA. This is an important shortcoming because DNA and
RNA binding residues carry out different cellular functions.
Consequently, new methods that can accurately discrimi-
nate between the two nucleic acids are needed. Moreover,
most of the existing methods require a substantial amount
of runtime, which makes it very difficult to apply them on a
large scale, say to analyze whole proteomes.

We describe a new method, DRNApred, that accu-
rately and in high-throughput predicts protein–RNA and

protein–DNA binding residues from protein sequences. Its
ability to differentiate between these two types of nucleic
acids stems from several novel design ideas that are empir-
ically shown to boost predictive performance. Besides tests
on a benchmark dataset, we also apply our runtime efficient
method to predict the DNA- and RNA-binding proteins
and residues in the human proteome to further validate pre-
dictive performance and annotate novel putative DNA- and
RNA-binding proteins.

MATERIALS AND METHODS

Datasets

We expand a benchmark dataset of the DNA- and RNA-
binding proteins from a recent comparative review in (36)
with new data. These data are used to design datasets to
empirically build and comparatively assess our method.
The main advantage of the source dataset is the inclu-
sion of a more complete annotations of nucleic acids bind-
ing residues when compared to the other, older datasets
(15,22,24,25,27). This was accomplished by transferring an-
notations of binding residues between the same or virtu-
ally identical proteins in multiple complexes where they
bind to potentially different fragments of DNA or RNA.
As shown in (36), this increases the number of annotated
binding residues by 14% and 10% for the DNA and RNA-
binding residues, respectively. Previous datasets would only
use annotations from one complex or use each complex
independently. The annotation of binding residues follows
standards in this field (36). A given residue is defined as
binding if at least one of its atoms is closer than a cutoff
distance from an atom of the DNA/RNA molecule. We use
the 3.5 Å cutoff distance which was also the most often used
in prior comparative studies (24,36,38,39) and when build-
ing prior predictors (36).

The original dataset was expanded by collecting 564
protein–DNA, 72 protein–RNA and 16 protein–DNA–
RNA high resolution (better than 2.5Å) complexes that
were released in PDB (6) after the original dataset was
collected. The corresponding 892 DNA-binding and 145
RNA-binding chains were combined with the previous
dataset to obtain total of 2827 DNA-binding and 1125
RNA-binding chains. Next, following the protocol in (36),
we transferred binding annotations between proteins that
share similar sequence and structure. We clustered proteins
that share ≥80% sequence similarity and ≥0.5 TM scores
and moved annotations between proteins in the same clus-
ter. However, unlike in (36) where clustering was done sepa-
rately for the DNA and RNA binding proteins, we clustered
them together to further improve accuracy of annotations.
We transferred DNA and RNA binding residues from all
chains in the same cluster into a representative chain that
has the largest number of binding residues. We also updated
the deposition date of the representative chain to the most
recent time among all chains in the same cluster. Follow-
ing (37), we ensured that the proteins used to test and com-
pare predictors are independent with the training proteins
that are utilized to design the predictive model. This means
that the test proteins are dissimilar in the sequence and de-
posited at a later time compared with the training proteins.
This is also why we did not use test datasets from prior
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studies that would inevitably share similarity to our training
dataset. The datasets used by the predictors of DNA- and
RNA-binding residues that are included in the compara-
tive assessment were collected before November 2010. Cor-
respondingly, the binding proteins released before Novem-
ber 2010 are assigned into the training dataset, and the re-
maining proteins are assigned into the test dataset. More-
over, we reduced the sequence similarity between training
and test datasets. We filtered the test proteins by remov-
ing every sequence that shares >30% sequence similarity
with any training sequence based on pairwise sequence sim-
ilarity computed with the bl2seq program (40). Some of
the existing predictors of DNA and RNA binding residues
that we compare with could not complete predictions for
proteins that are over 1000 residues long. Thus, we re-
moved five and three such long proteins from the train-
ing and test datasets, respectively. Moreover, we also de-
veloped a version of the test dataset without the transfer
of annotations of binding residues. The number of pro-
teins and annotations of RNA and DNA binding residues
in these datasets are summarized in Table 1. The differ-
ences in the number of binding residues between the two
versions of the test datasets show that the transfer of an-
notations resulted in the enrichment by 17% in the DNA
binding residues and by 18% in the RNA binding residues.
Residues with missing coordinates in the training and test
datasets (disordered residues for which we cannot anno-
tate binding) are excluded from the evaluation. We bal-
anced the training dataset by under-sampling the nonbind-
ing residues since there are substantially more nonbinding
residues than binding residues. Some of the non-binding
residues bind to the other type of nucleic acid, i.e. DNA
binding residues when predicting RNA binding and vice
versa. These residues are important to study whether pre-
dictions discriminate between DNA and RNA binding.
Thus, we keep all non-binding residues and under-sample
25% (15%) of the remaining nonbinding residues that do
not bind to either DNA or RNA molecule. This way the
number of the non-binding residues in the training dataset
is about twice larger than the number of the DNA-binding
(RNA-binding) residues.

We extracted the complete human proteome (69 178 hu-
man proteins) from the UniProt database to apply and
evaluate our method on the proteome scale. We anno-
tated a comprehensive set of the native RNA and DNA
binding proteins in this proteome using the databases uti-
lized in (41): UniProt (10), RBPDB (7), animalTFDB (8,9)
and two recently curated datasets (11,12). By combining
information from these five resources we annotated 3360
DNA-binding proteins (4.9% of human proteome) and
1855 RNA-binding proteins (2.7% of the human proteome).
These two datasets are available at http://biomine.cs.vcu.
edu/servers/DRNApred/.

We also collected a set of proteins that are unlikely to
bind either DNA or RNA. These proteins are used to in-
vestigate whether the considered methods predict binding
residues in these proteins. We applied protocol from (36)
to collect such human proteins based on their subcellular
localization, names, functional annotations and keywords
using reviewed entries in UniProt. This dataset includes 82
dissimilar (<30% pairwise similarity) non-binding proteins

to match the size of the test dataset. Details are given in the
Supporting Materials.

Evaluation criteria

Evaluation of predictive quality is performed for the two
types of predictions: binary prediction (binding versus non-
binding residues) and real-valued propensities. The real-
valued propensities quantify the propensity that a given
residue binds a given type of nucleic acid. We exclude
residues with missing atomic coordinates in the source
structure files (i.e. disordered residues) since their an-
notations of binding could not be computed. The bi-
nary predictions were assessed using sensitivity, speci-
ficity and Matthews correlation coefficient (MCC). These
three measures were used in similar works that ad-
dressed prediction of DNA or RNA binding residues
(17,22,24,27,33,38,42,43); definitions are provided in the
Supporting Materials.

The predicted propensities are evaluated using the re-
ceiver operating curves (ROCs). ROC is a plot of false-
positive rate against the true-positive rate computed by bi-
narizing the propensities using thresholds. FPR = 1 – speci-
ficity and quantifies fraction of non-binding residues in-
correctly predicted as binding (false positives). TPR is the
same as sensitivity and quantifies fraction of correctly pre-
dicted binding residues (true positives). We report the area
under the ROC curve (AUC), the same as in a number
of related studies (22,27,33,44). The fraction of the DNA-
(RNA-) binding residues is 8.2% (4.8%) in our training
dataset. Thus, even a small FPR = 0.2 corresponds to the
prediction where the binding residues are over-predicted by
2.5 (4) times compared to their native number. Therefore,
we focus our assessment of the predictive performance on
the part of the ROC where number of FPs is no bigger than
the number of actual positives (native binding residues).
This corresponds to the lower (left side) part of ROC where
FPR ≤8.2% (5.4%) for DNA and ≤4.8% (4.5%) for RNA
on the training (test) dataset. Consequently, we also report
the area under this lower part of curve (AULC). We could
not compute the measures introduced in (37), which include
weighted arithmetic mean of AUC and mean of AUC. These
are computed as average of per protein scores that are im-
possible to compute for half of our test dataset. This is be-
cause we include both RNA and DNA binding proteins and
our point is to test all predictors on the complete test dataset
with both types of proteins. This way when testing RNA
binding predictors half of the test proteins does not include
RNA binding residues and thus computation of these types
of AUC values is not possible; the same is true for the DNA
binding predictors.

We evaluate the extent to which different methods cross-
predict between the two types of nucleic acid binding
residues using the ratio measure and the ratio curve that
were introduced in (36). Ratio is defined as the fraction of
native DNA-binding residues that are predicted as RNA-
binding and the fraction of native RNA-binding residues
that are predicted as DNA-binding. The ratio curve is a plot
of ratio against the TPR, which is calculated by binarizing
the propensities using thresholds. We report the area under
the ratio curve (AURC). Given the low numbers of binding
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Table 1. Summary of datasets

Dataset name Number of proteins
Number and fraction of DNA
binding residues

Number and fraction of RNA
binding residues

Training 488 7823 (7.6%) 4699 (4.6%)
Test with transferred annotations 82 968 (5.1%) 808 (4.2%)
Test without transferred
annotations

82 827 (4.3%) 682 (3.6%)

Figure 1. Architecture of DRNApred predictor.

residues we also quantify the area under the lower part of
the curve where TPR ≤0.5 (AULRC). The larger values of
TPR are less interesting because such predictions result in
prohibitively high FPRs.

Similar to (36,41), we evaluate significance of the dif-
ferences in predictive quality between the best-performing
prediction method and each of the other considered meth-
ods on the test dataset. The underlying goal is to investi-
gate if the results on the test dataset are not biased by a
subset of test proteins by measuring whether the predictive
quality is consistent over different subsets of proteins. We
randomly select 70% of test proteins to calculate the corre-
sponding MCC and AUC values. This is repeated 10 times
and we compare the corresponding 10 paired results. If the
measurements are normal, as tested using the Anderson–
Darling test (45) with 0.05 significance, then we apply the
paired t-test to investigate significance. Otherwise, we uti-
lize the Wilcoxon rank sum test. The difference between a
given pair of predictors is assumed statistically significant if
P-value <0.05.

Architecture of the DRNApred predictor

DRNApred predicts DNA- and RNA-binding residue us-
ing a two-layer design, see Figure 1. The first predictive layer
includes three steps. In the first step, a variety of physic-
ochemical and biochemical properties together with hid-
den Markov model (HMM) based evolutionary profile and
putative intrinsic disorder, secondary structure and solvent
accessibility are calculated and predicted from the input

protein sequence. We considered 15 and 8 physicochemical
and biochemical properties for the prediction of DNA and
RNA binding, respectively. In the second step, these inputs
are processed using a sliding window to generate a set of
empirically selected 71 (for DNA binding) and 61 (for RNA
binding) features. In the third step, these feature sets are in-
put into logistic regression models that generate predictions
of the DNA- and RNA-binding residues. Use of the logistic
regression is motivated by several factors: (i) this model has
been used in a related study (41); (ii) simplicity of this linear
model reduces likelihood of overfitting the training dataset
compared to models that use a larger number of parame-
ters; (iii) this model is fast to generate on the training dataset
which is important given a relatively large size of our dataset
and (iv) Predictions with this model are also fast, which is
crucial for a runtime efficient (high-throughput) predictor.

The second predictive layer uses the predictions gener-
ated in the first layer as the input, see Figure 1. It aims to im-
prove over the predictions from the first layer by considering
information about the putative propensities for RNA and
DNA binding for the residues that are adjacent in the se-
quence. The corresponding neighborhoods in the sequence
are defined using sliding windows (Figure 1). Intuitively,
amino acids surrounded by a large number of residues that
have high putative propensities for DNA binding are more
likely to bind DNA compared to amino acids surrounded
primarily by residues that have lower predicted propensi-
ties for DNA binding. Moreover, amino acids neighbor-
ing many residues that have high propensities for both
types of binding are likely to bind both RNA and DNA.
However, amino acids surrounded by many residues with
high propensities for DNA binding and a few residues that
have modest propensities for RNA binding are more likely
to bind only DNA. We use the predictions of the DNA-
binding and RNA-binding residues generated in the first
layer to compute two sets of three empirically selected nu-
merical features that discern such patterns. One set of fea-
tures is for the prediction of DNA binding and the other set
for the prediction of RNA binding. These feature sets are
fed into two corresponding logistic regression models that
re-predict the DNA-binding and RNA-binding residues.

DRNApred is designed to accurately, specifically, and in
high-throughput fashion predict DNA-binding and RNA-
binding residues from the protein sequence. In particular,
we focused on reducing the cross predictions between DNA
and RNA binding residues. We have utilized three novel
strategies to address this aim. First, our model is designed
on a new training dataset with both DNA-binding and
RNA-binding proteins compared to the prior methods used
either DNA or RNA binding proteins. Second, we explicitly
penalize the cross predictions in the regression model in the
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first layer. Third, the second layer is designed to further re-
duce the cross predictions.

Design of the first predictive layer

We applied a shotgun approach by generating a large variety
of structural and physicochemical properties of the input
sequence and encoding them into a large number of numer-
ical features. Moreover, we computed these features utiliz-
ing sliding windows of different sizes. Next, we empirically
selected a smaller subset of predictive and non-redundant
features is from this large set of considered features.

In the first step of the first predictive layer (Figure 1),
we consider a comprehensive set of properties of the in-
put sequence including amino acid (AA) type, information
derived from putative intrinsic disorder, secondary struc-
ture (SS) and solvent accessibility (SA), AA indices that
quantify physicochemical properties of residues in the in-
put protein sequence, and evolutionary profile of that se-
quence. These properties have already been used in previ-
ous studies that focused on the prediction of DNA or RNA
binding (36). We predicted intrinsic disorder with IUPred
(46) and Espritz (47) methods. SS was predicted with the
fast version of PSIPRED that does not use sequence align-
ment (48) and SA was predicted with PROFphd (49), NE-
TASA (50) and RVP-net (51) methods. These predictions
were performed using runtime-efficient predictors to ensure
that DRNApred is computationally efficient. We collected
AA indices from the AAindex database (52). We considered
164 (DNA) and 105 (RNA) non-redundant and relevant to
our prediction indices that we empirically selected from the
original list of over 500 indices; details are given in the Sup-
porting Materials. The evolutionary profiles were generated
using HHblits (53) with the default parameter settings and
the nr database. The profiles are in the form of N ∗ 30 ma-
trix, where N is the length of the input protein sequence. For
each position ni in the input sequence, i = 1,2,. . .N, these
profiles consist of 30 scores. These scores include 20 val-
ues that represent observed frequencies of the 20 AA types
in homologous proteins, seven transition frequency scores
that quantify probabilities to observe a match, insertion or
deletion after this position and the three local diversity val-
ues that quantify the diversity of the aligned sequences in a
region around the position ni.

We process the abovementioned properties in the second
step of the first predictive layer using sliding windows to
generate a large set of numerical features (Figure 1). Sliding
windows are centered on the predicted residue ai to accom-
modate for information carried by the adjacent residues.
For each property, we consider two types of features:

• Per residue features that are computed for each residue
in the window. We apply a sliding window of size
3 to include the information about ai and its two
immediate neighbors. The corresponding features are
[Vi−1, Vi , Vi+1], where V is a feature vector that includes
the AA type and predicted disorder, SS and SA. We use
default values for the neighbors of residues at the either
termini of the sequence that are missing.

• Aggregate feature that are computed by combining in-
formation coming from multiple residues in the window.

This information includes AA types, values of selected
AA indices, and predicted disorder, SS and SA. We com-
bine these values over the whole sliding window. More-
over, we also filter the positions in the window using the
SA predictions to combine values only for the solvent ex-
posed residues in the window. This is motivated by the
fact that binding residues are typically located on the pro-
tein surface. We vary the window size from 9 to 21 with
a step of 2. We also compute the same aggregated values
for the entire protein chain. These aggregate features are
inspired by recent works (41,54–56).

Detailed description of the features is given in Support-
ing Table S1. In total, we considered 4580 features for the
prediction of the DNA-binding residues, and 3990 features
for the prediction of the RNA-binding residues.

Next, we empirically selected a subset of non-redundant
and predictive features that can discriminate between DNA-
binding, RNA-binding and non-binding residues. We in-
troduced weights for the residues in the training dataset to
improve discrimination between DNA and RNA binding
residues. We set weights to values >1 for resides that could
be cross-predicted (RNA-binding residues in the dataset to
develop DNA-binding prediction method and vice versa)
and to 1 for the remaining residues. These weights are
passed into the regression model to amplify the errors as-
sociated with the cross-predictions. We used the training
dataset to optimize the values of the weights and to per-
form feature selection. We implemented feature selection
with a wrapper-based approach and the best first search.
We performed the selection for each of considered 16 values
of weights (between 1 and 4 with step of 0.2). We selected
weight values and features that leads to the best predictive
performance measured with AULC (to choose features) and
AULRC (to select the weight) based on five-fold cross val-
idation on the training dataset. Consequently, we selected
the weights = 1.8 and 3.6 with the corresponding sets of 71
and 61 features for the prediction of the DNA-binding and
RNA-binding residues, respectively. Detailed description of
the feature selection and selection of the weights is given in
the Supporting Materials and Supporting Figures S1 and
S2.

Design of the second predictive layer

We used the predictions of the DNA and RNA binding
residues generated by the two models from the first pre-
dictive later to more accurately re-predict propensities for
DNA and RNA binding. The design of the second layer in-
cludes two steps. In the first step, we generated a set of per
residue features and aggregate features from the two predic-
tions using a sliding window. For the per residue features,
we set the window size to 3 to include the predictions of
the DNA-binding and RNA-binding for the two immedi-
ate neighbors of the predicted residue. The aggregate fea-
tures include the content of predicted DNA-binding and
RNA-binding residues and averages and standard devia-
tions of the predicted propensities for DNA-binding and
RNA-binding in the windows. We used ten window sizes
between 3 and 21 with a step of 2. We also calculated the
same aggregate values for the whole sequence. This totals
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to 122 features. In the second step, we empirically selected a
subset of predictive and non-redundant features using the
same feature selection procedure and cross-validation on
the training dataset that we used in the first predictive layer.
Consequently, we selected two sets of three features, one for
the prediction of DNA-binding residues and the other for
the prediction of the RNA-binding residue. More details on
the feature selection are given in the Supporting Materials.
Each feature set is input into the corresponding logistic re-
gression model to generate the final predictions.

RESULTS AND DISCUSSION

Improvement in predictive performance due to the use of novel
design strategies

We used three novel design ideas to reduce the cross-
predictions between the two types of nucleic acid bind-
ing residues: training dataset that includes DNA-binding
and RNA-binding proteins; weights to compute regression
models in the first predictive layer; and the second predictive
layer. We compared the results obtained by a complete pre-
dictive model with the results obtained when designing the
model without the use of these strategies to quantify their
impact on the predictive performance. We considered and
compared the following four scenarios:

1) The predictor developed on the training dataset with just
one target type of nucleic acid binding proteins (referred
to as only DNA (RNA) binding data).

2) The predictor trained on the combined training dataset
of both DNA-binding and RNA-binding proteins (re-
ferred to as combined data).

3) The predictor designed on the combined training dataset
and using the weights to minimize the cross predictions
(referred to as combined data with penalty).

4) The complete predictor implemented using two predic-
tive layers based on the combined training dataset and
weights (referred to as second layer).

We evaluated the predictive performance for these four
scenarios on the test dataset, see Figure 2. For the DNA-
binding models, the predictive quality measured by AUC
and AULC is very similar across the four scenarios. How-
ever, the amount of cross predictions quantified by AURC
and AULRC decrease dramatically as we improve our de-
sign by adding additional strategies. We reduced the cross
prediction measured with AURC (AULRC) by 10% (25%),
while maintaining similar overall predictive quality mea-
sured with AUC and AULC when comparing the ‘only
DNA-binding data’ and ‘combined data’ scenarios. The
model based on the ‘combined data with penalty’ scenario
that uses weights further decreases AURC and AULRC by
12% and 20%, respectively, while maintaining equivalent
values of AUC and AULC. The last ‘second layer’ scenario
provides the best predictive performance by again decreas-
ing the amount of cross predictions. This is evidenced by
lower values of AURC and AULRC and similar values of
AUC and AULC when compared to the ‘combined data
with penalty’ scenario. The same observations are true for
the models that predict RNA-binding residues. The model
based on the ‘second layer’ scenario maintains the over-

Figure 2. Comparison of predictive performance on the test dataset using
different designs of the models for the prediction of DNA-binding (RNA-
binding) residues. Bars for the AUC and AURC are quantified with the
y-axis on the left side while lines for the AULC and AULRC are quan-
tified with the scale on the y-axis on the right. The ‘only DNA-binding
data’ (‘only RNA-binding data’) scenario is the model for the prediction
of DNA-binding (RNA-binding) residues designed on the training dataset
with just DNA-binding (RNA-binding) proteins; the ‘combined data’ sce-
nario is for the model built on the combined training dataset with both
DNA-binding and RNA-binding proteins; the ‘combine data with penalty’
scenario is for the model that uses combined training dataset and weights
that are used to penalize the cross predictions; the ‘second layer’ scenario
considers model that extends the ‘combine data with penalty’ scenario with
the second layer.

all predictive quality measured with AUC and AULC and
substantially reduces the cross prediction measured with
AURC and AULRC when compared to the other three sce-
narios. Consequently, we applied the two models that use
all four strategies in the DRNApred method.

Comparative assessment of predictive performance for the
prediction of the DNA binding residues and RNA binding
residues

We assessed DRNApred for the prediction of DNA-binding
residues and the prediction of RNA-binding residues on
the test dataset with the complete (transferred) annota-
tions of binding. We compared these results with the results
generated by existing methods that predict DNA or RNA
binding residues. We included five predictors of DNA-
binding residues and three methods that predict RNA-
binding residues that were selected for empirical assessment
in a recent comparative review (36). The criteria used to se-
lect these methods in that article were availability of web-
servers and short runtime. More specifically, the selected
methods predict an average size protein sequence with 200
residues in under 10 min.

DRNApred that was evaluated for the prediction of
DNA binding residues secures similar overall predictive
quality quantified with AUC and AULC values when com-
pared to the representative predictors of DNA binding
residues. These results are summarized in the top portion of
the Supporting Table S2. AULC is the area under the ROC
curve where FPR < 5.4%. Since there are 5.4% of native
DNA binding residues in the test dataset the corresponding
part of the ROC curve covers predictions where the num-
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ber of non-binding residues incorrectly predicted as binding
(false positives) is smaller than the number of native bind-
ing residues (positives). In other words, this is where the pre-
dictor does not overpredict the binding residues. Although
DRNApred’s AUC is lower than that of the best method
BindN+ and comparable to the other considered meth-
ods, DRNApred’s AULC is the highest and significantly
better than the AULC values of all other methods. The
corresponding ROC curves are shown in Supporting Fig-
ure S3A (complete curve) and S3B (curve used to compute
AULC) in the Supporting Materials. The curves of BindN+
and DBS-PSSM are better than the DRNApred’s curve
when FPR values are high and worse for the arguably more
practical range with the lower values of FPR<5.4% (Sup-
porting Figure S3B in the Supporting Materials). Impor-
tantly, the fraction of correctly predicted binding residues
(TPR) of DRNApred is about six times higher than its
FPR at FPR = 5.4%. Close to 30% of the native DNA-
binding residues can be found at this low FPR. This means
that DRNApred correctly locates a large fraction of na-
tive binding residues when mis-predicting a relatively low
fraction of the native non-binding residues. We binarize the
propensities generated by the considered methods to clas-
sify each residue as binding (propensity > threshold) and
non-binding (propensity ≤ threshold). The threshold is de-
termined to ensure that the number of predicted binding
residues equals to the number of native binding residues
in the test dataset. These binarized predictions are assessed
with sensitivity and MCC; specificity is virtually identical
for different methods given how the threshold was selected.
DRNApred offers slightly higher sensitivity and compara-
ble MCC when compared to the other considered predic-
tors of DNA binding residues (see the top portion of the
Supporting Table S2). Although DRNApred’s overall pre-
dictive performance for the prediction of the DNA binding
residues is similar to the other methods, our predictor sig-
nificantly reduces the cross predictions between DNA and
RNA binding residues. This is measured with AURC (area
under the ratio curve) and AULRC (area under the lower
range of the ratio curve where TPR<0.5). DRNApred ob-
tains the lowest AURC and AULRC values which are lower
by (0.35 – 0.26)/0.35 = 26% and (0.069 – 0.039)/0.069 =
43%, respectively, compared to the second best BindN+ pre-
dictor. Figure 3A which plots of the values of ratio against
TPR, further validates this conclusion. It shows that DR-
NApred is substantially better than the other methods be-
cause it achieves the lowest ratio over the entire range of
TPR values. For instance, at TPR = 0.5 DRNApred’s ra-
tio = 0.21, which means that when correctly predicting 50%
of the DNA binding residues 21% of the RNA binding
residues were also predicted as DNA binding. To compare,
the other methods obtain much higher ratios = 0.41, 0.36
and 0.30 for DP-Bind, DBS-PSSM and BindN+, respec-
tively, at the same TPR = 0.5. Comparison of the ratio
when the number of predicted binding residues equals to
the number of native binding residues in the test dataset (see
the top portion of the Supporting Table S2) similarly shows
that our method significantly reduces the cross predictions.
DRNApred obtains the lowest ratio value which is lower
by (0.13 – 0.06)/0.13 = 54% compared to the second best
BindN+.

We observed similar results for the prediction of RNA-
binding residues (Figure 3B and the top portion of the
Supporting Table S2 in the Supporting Materials). DR-
NApred offers equivalent predictive quality measured with
AUC, AULC values when compared with the other predic-
tors. Most importantly, our method produces significantly
lower amounts of cross predictions that are quantified with
AURC and AULRC values. The DRNApred’s AURC and
AULRC are substantially lower by (0.51 – 0.25)/0.51 =
51% and (0.121 – 0.029)/0.121 = 76%, respectively, com-
pared to the second best Pprint methods. ROC curves show
that RNABindR is better than other predictors when FPR
is relatively high (Supporting Figure S3C in the Support-
ing Materials), but it is outperformed by DRNApred when
FPR<4.5% (Supporting Figure S3D in the Supporting Ma-
terials), i.e. when the number of non-binding residues incor-
rectly predicted as binding (false positives) is lower than the
number of native RNA binding residues. Ratio curve in Fig-
ure 3B further confirms the conclusion that our method sig-
nificantly reduces the cross-predictions. This is true over the
whole range of the TPR values. For example, at the TPR =
0.5 the ratios equal 0.20, 0.52, 0.54 and 0.72 for DRNApred,
RNABindR, Pprint and BindN+, respectively. Compari-
son when setting all methods to generate the number of
predicted binding residues equal to the number of native
binding residues reveals that DRNApred provides slightly
higher sensitivity and MCC and a much smaller ratio (see
the top portion of the Supporting Table S2). The ratio of
our predictor is lower by (0.1 – 0.02)/0.1 = 80% when com-
pared to the second best Pprint method.

We also tested all predictors on the test dataset that does
not include the transferred annotations. In other words,
each protein is annotated using a single protein-DNA or
protein-RNA complex. The results from DRNApred are
slightly worse on this dataset compared with the dataset
with the transferred annotations. This can be observed by
comparing the corresponding top and bottom portions of
the Supporting Table S2. The AULCs are 0.010 (dataset
with transferred annotations) versus 0.008 (dataset without
transferred annotations) for DNA binding and 0.005 ver-
sus 0.003 for RNA binding. Similarly, AULRCs are 0.039
versus 0.040 for DNA binding and 0.029 versus 0.032 for
RNA binding; we note that higher value of AULRC indi-
cates more cross-predictions. The assessment of binary pre-
dictions is also consistent with MCCs of 0.21 versus 0.20
and sensitivity of 0.25 versus 0.23 for DNA binding and
MCCs of 0.12 versus 0.11 and sensitivity of 0.16 versus 0.14
for RNA binding. However, the same is true for the other
predictors. For instance, we noted a slight but consistent
across all predictors reduction in sensitivity and AULC val-
ues when using the dataset without the transfer of annota-
tions. The decrease in sensitivity suggests that these meth-
ods successfully predict the transferred DNA and RNA
binding residues. These predictions are at the rates that are
the same or slightly higher than for the binding residues in
the dataset without the transfer. This supports a hypothe-
sis that transferred annotations share similar characteristics
with the annotations in the dataset without the transfer. Im-
portantly, DRNApred maintains significantly lower cross-
prediction rates measured with ratio, AURC and AULRC
values when compared to the other predictors on both types
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Figure 3. Comparison of the ratio curves for DRNApred and the considered predictors of the DNA and RNA binding residues on the test dataset. The
ratio curve is the plot of Ratio against TPR values (fractions of correctly predicted binding residues). The curve that is closer to the x-axis for the same
TPR corresponds to better predictions, i.e. lower amount of cross-predictions between RNA and DNA binding residues. Panel A is for the prediction of
DNA-binding residues, and Panel B for the prediction of RNA-binding residues.

of nucleic acids binding on this test dataset (see the bottom
portion of the Supporting Table S2). Its overall predictive
performance measured with MCC, AUC and AULC is on
par with the other predictors which is consistent with the
results on the test dataset with the transferred annotations.

To sum up the results on both versions of the test
dataset, DRNApred substantially reduces the cross pre-
dictions between DNA-binding and RNA-binding residues
while maintaining similar overall predictive quality when
compared to the existing methods. We analyzed this further
in the next section. Moreover, our predictor correctly pre-
dicts the largest number of DNA-binding or RNA-binding
residues when the number of predicted binding residues is
reasonably low and not larger than the number of native
binding residues.

We assessed the considered methods on the dataset com-
posed on proteins that are unlikely to bind nucleic acids.
We quantified the predictive quality with the FPR (fraction
of non-binding residues predicted as binding) because there
are no binding residues in this dataset. The results reveal
that all methods obtain comparable and low FPR values
that range between 2% and 5% (2–4%) for the prediction
of DNA (RNA)-binding residues. Among the predictors of
the DNA-binding residues, BindN+, DP-Bind(svm), DP-
Bind(klr) and DBS-PSSM secure FPR = 3%, DP-Bind(plr)
has FPR = 4%, and DRNApred obtains FPR = 5%. Con-
sidering the predictors of the RNA-binding residues, DR-
NApred and BindN+ generate predictions characterized by
FPR = 2% while Pprint has FPR = 4%.

Finally, we assessed whether our predictive model and
other predictors would stay current in a near future. We
tested all methods using progressively newer depositions.
Our test dataset includes proteins that were released be-
tween 2010 and 2015. We divided them into three simi-
larly sized subsets with proteins deposited before 2012 (22
chains), in 2012 (31 chains) and after 2012 (29 chains). Sup-
porting Figure S4 shows that none of the methods shows
either decreasing or increasing trend of their predictive per-

formance in correlation with the release dates. This ob-
servation applies to both the evaluation of the predictive
accuracy with AULC (Supporting Figure S4A) and ratio
of cross-predictions (Supporting Figure S4B). This suggest
that DRNApred and other predictors should maintain sim-
ilar levels of predictive performance in the near future.

Comparative assessment of predictive performance for the
prediction of proteins that bind different types of RNAs

A few studies have shown that predictive performance for
the prediction of RNA binding residues varies across differ-
ent types of RNAs (57,58). Moreover, some of these RNAs
are more similar to DNA, for instance in terms of the elec-
trostatics of their interactions with proteins (57). This could
affect the amount of their cross-predictions with the DNA
binding residues. To study this, we evaluated predictions
on the test dataset with the transferred annotations that
includes only proteins that interact with a specific type of
RNAs and the DNA binding proteins. We considered four
categories of RNAs that had sufficient number of binding
residues in the test dataset: mRNAs, dsRNAs, tRNAs and
rRNAs. We found 8, 5, 4 and 2 proteins and 162, 91, 138, 66
residues that bind mRNAs, double stranded RNAs, tRNAs
and rRNAs. Supporting Figure S5A shows the rate of cross
predictions of the predictors of DNA binding residues for
the four considered types of RNAs and compares it with
the overall rate over all RNA-binding residues in our test
dataset. We found that DRNApred offers the lowest ra-
tio of the cross-predictions across the four types of RNAs.
In other words, it predicts fewest RNA binding residues
as DNA binding. Moreover, the ratios for the three ver-
sions of DP-Bind are consistently higher for the rRNAs
and dsRNAs when compared to mRNAs and tRNAs. This
observation agrees with the results in (57) where proteins
that bind rRNAs and DNA were shown to have a more
similar charge profile when compared to the similarity be-
tween DNA, tRNA and mRNA binding proteins. Support-
ing Figure S5B compares predictive quality measured with
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AULC for the four predictors of RNA binding residues.
DRNApred, RNABindR and BindN+ have similar AULC
values for mRNAs, tRNAs and dsRNAs. Pprint provides
higher predictive quality for tRNAs and dsRNAs while
DRNApred is substantially better for rRNAs. The high-
est AULC values across most methods are for prediction
of rRNAs and the lowest for mRNAs. This is in agreement
with (57) where prediction of rRNA binding and mRNA
binding from protein structures was shown to have highest
and lowest quality, respectively. Supporting Figure S5C fo-
cuses on the AULRC values that quantify how the ratio of
cross-predictions changes across different rates of correct
predictions of RNA binding residues (TPR values). Given
that lower AULRC values indicate lower cross-prediction
rates, DRNApred is shown to predict the fewest DNA bind-
ing residues as RNA binding when predicting each of the
corresponding types of RNAs. In the nutshell, this analysis
shows that overall predictive performance of DRNApred is
on par with the other predictors of RNA binding residues
across the four types of RNAs while it provides a substan-
tial reduction in the rate of cross-predictions.

Comparative assessment of predictive performance for the
prediction of proteins that bind both DNA and RNA, and
RNA/DNA hybrids

We tested whether the reduced amount of cross-predictions
affects DRNApred’s ability to predict residues that bind
both RNA and DNA, and binding residues in proteins that
interact with RNA/DNA hybrids. We compared the predic-
tions from DRNApred with the predictions generated by
combining the current predictors of DNA and RNA bind-
ing residues. We selected DP-bind(svm) for the prediction
of DNA binding residues and Pprint for the prediction of
RNA binding residues because these two methods have se-
cured the highest AULC values (Supporting Table S2).

To evaluate prediction of residues that bind both RNA
and DNA, we developed a dataset of proteins that bind
RNA and DNA by following the same protocol as we used
for the test dataset. We collected 90 proteins chains from
PDB that are in complex with both types of nucleic acids.
Next, we transferred annotations of DNA and RNA bind-
ing residues between the proteins that are in the same clus-
ters defined by high sequence similarity (≥80%) and high
structure similarity (≥0.5 TM scores). Each of the eight
resulting clusters was represented by a chain that has the
largest number of binding residues. Next, we eliminated
proteins that are over 1000 residues long that could not
be predicted with DP-bind and proteins that do not have
residues that bind both RNA and DNA. Supporting Ta-
ble S3 summarizes assessment of the predictions of residues
that bind RNA and DNA for the remaining four proteins
(PDB IDs: 1ZBI, 1MSW, 2QKB, 4H8K). The results reveal
that DRNApred secures stronger predictive performance
than the current methods. It has significantly higher AULC
values which means that is correctly predicts more residues
that bind RNA and DNA at low values of FPR when com-
pared with the DP-bind(svm)+Pprint method. DRNApred
also has significantly lower value of the area under the ratio
curve, AULRC. This reveals that our predictor makes fewer
incorrect predictions such that the native residues that bind

either DNA or RNA are predicted as residues that bind
both RNA and DNA. We also assessed binary predictions,
i.e. a given residue binds RNA and RNA versus it does not
bind RNA and DNA. The same as on the main test dataset,
the threshold to obtain binary predictions from the putative
propensities is set to ensure that the number of predicted
DNA and RNA binding residues equals to the number of
native DNA and RNA binding residues. The DRNApred’s
sensitivity = 12% and its ratio which measures the fraction
of residues that bind either RNA or DNA that were pre-
dicted as binding both RNA and DNA is 5%. These val-
ues are better than the sensitivity = 4% and ratio = 6% ob-
tained with the DP-bind(svm)+Pprint approach (Support-
ing Table S3). Overall, the empirical results demonstrate
that DRNApred relatively accurately predicts residues that
bind both types of nucleic acids.

To assess predictions for proteins that interact with
RNA/DNA hybrids, we collected 21 proteins chains from
17 complex with the hybrids that were available in PDB.
Next, we clustered them into groups of chains that share
high sequence similarity (≥80%) and high structure similar-
ity (≥0.5 TM scores) to remove redundancy and to transfer
annotations of DNA and RNA binding residues. Among
the eight resulting clusters, six did not have DNA/RNA
binding residues based on our definition of binding. The re-
maining two proteins (PDB IDs: 2HVR and 2Q2T) include
11 RNA-binding and 52 DNA-binding residues, which we
annotated based on the corresponding base. Supporting
Table S4 compares the results from DRNApred and two
methods that secured the highest AULC values on the test
dataset: DP-bind(svm) for the prediction of DNA-binding
residues and Pprint for the prediction of RNA-binding
residues. The results demonstrate that DRNApred obtains
lower values of AURC and AULRC for the predictions of
both RNA and DNA binding residues. This means that it
cross-predicts fewer residues than the other methods. DR-
NApred and the other methods have comparable values of
AULC and AUC. We emphasize similarity in the AULC val-
ues which quantify ability to correctly identify RNA and
DNA binding residues for low values of FPR. We also eval-
uated binary predictions that were defined in the same way
as on the main test dataset. Namely, we set the cut-offs to
define binary predictions from the putative propensities to
ensure that the number of predicted DNA (RNA) binding
residues equals to the number of native DNA (RNA) bind-
ing residues. For the prediction of DNA binding residues,
the DRNApred’s sensitivity and MCC are slightly lower
than DP-bind(svm)’s values, but the ratio of our predictor
is better (Supporting Table S4). For the prediction of RNA
binding residues, DRNApred boasts better values of sensi-
tivity, MCC and ratio when compared with Pprint.

To sum up, the results obtained for proteins that bind
both RNA and DNA and for proteins that interact with
DNA/RNA hybrids agree with the evaluation on the test
dataset. Altogether they suggest that DRNApred accurately
predicts DNA binding residues and RNA binding residues
while reducing cross-predictions between these two nucleic
acids.
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Analysis of the predicted binding residues

We observed that the native RNA and DNA binding
residues tend to cluster together in the protein sequences.
This is because close proximity in the sequence usually im-
plies proximity in the corresponding structure. This in turn
is relevant since regions on the protein surface that inter-
act with the nucleic acids tend to be relatively large due to
the large size of the RNA and DNA molecules. Moreover,
the annotations of the binding residues suffer inaccuracies
given how they are defined. The use of a distance between
atoms in protein and nucleic acids results in a somehow ar-
bitrary inclusion or exclusion of binding residues that are
close to the cut-off value that is used to define binding. This
means that some of the non-binding residues adjacent to
the annotated binding residues could be in fact involved in
binding. Altogether, these observation points to a conjec-
ture that residues that are in close proximity in the sequence
to the annotated binding residues are more likely to in fact
bind DNA/RNA compared to residues that are far away.
In other words, false positives localized close to the native
binding residues are more desirable (more likely to be true
positives) compared to the false positives that are farther
away from the binding residues.

We investigated binding residues predicted by different
methods to compare how close they are from the native
binding residues. We quantified the distance either as a
number of positions in the sequences or the Euclidian dis-
tance measured between alpha-carbon atoms of the cor-
responding residues in the protein structures. For each
method, we counted the number of correctly predicted bind-
ing residues, i.e. the residues with distance = 0 from the
native binding residues. We also counted the incorrectly
predicted binding residues that are a specific number of
residues or a specific distance in structure measured in Å
away from the nearest native binding residue. The corre-
sponding fractions of these predicted binding residues out
of the total number of the predicted binding residues are
plotted in Figure 4. We argue that DRNApred predicts
higher quality false positives compared to the other con-
sidered methods since its predictions are located closer to
the native binding residues. This is true for the prediction
of both DNA and RNA binding residues irrespective of
how the distance is measured. Our empirical results reveal
that 46% (Figure 4A) and 51% (Figure 4C) of residues pre-
dicted by DRNApred as RNA and DNA binding, respec-
tively, are just up to five positions in the sequence away from
the nearest native binding residues. To compare, the second
best method generates 33% (Figure 4A) and 44% (Figure
4C) of its predicted RNA and DNA binding residues at that
distance from the nearest native binding residues. Similarly,
41% (Figure 4B) and 48% (Figure 4D) of residues predicted
by DRNApred to bind DNA and RNA, respectively, are
no farther than 8 Å from a native binding residue. The cor-
responding fractions for the second best method are sub-
stantially lower and equal 32% (Figure 4B) and 41% (Figure
4D).

The observation that DRNApred correctly predicts more
binding residues at the corresponding distance is consis-
tent with its higher MCC and sensitivity values (Support-
ing Table S2). Moreover, as the distance increases the DR-

NApred’s curve saturates faster and reaches a much higher
value compared to the curves from the other methods. This
means that our model cross predicts much fewer residues
than the other methods. The fraction of the putative bind-
ing residues predicted in the incorrect type of binding pro-
teins can be read from the gap between the value of 1 and
the value of the fraction at the far end of a given curve.
Specifically, DRNApred mis-predicts 20% of DNA-binding
residues in the RNA-binding proteins (Figure 4C and D)
and 18% RNA-binding residues in the DNA-binding pro-
teins (Figure 4A and B). To compare, the corresponding val-
ues are 35% (Figure 4C and D) and 44% Figure 4A and B)
for the second best BindN+ and Pprint methods, respec-
tively. Overall, DRNApred correctly finds more binding
residues and captures more putative binding residues that
are likely to bind to DNA (RNA) although they lack such
annotation in the test dataset. Importantly, our model gen-
erates substantially fewer strong mis-predictions that are
defined as the putative RNA binding residues identified in
the DNA binding proteins and the putative DNA binding
residues found in the RNA binding proteins.

We also evaluated how predictive quality measured with
MCC and TPR would change if the predicted binding
residues which are 0, ≤1, ≤2 and ≤3 residues away in the
sequence from the nearest native binding residue would be
considered as correctly predicted (Supporting Figure S6).
We have done this analysis using the distance in the se-
quence because these predictions are performed in the se-
quence without the knowledge of the protein structure. We
argue that the corresponding false positives that we re-
consider as true positives could be in fact interacting with
the nucleic acids or be useful to identify the nearby binding
residues. As expected, both MCC and TPR for all consid-
ered methods improve as we included additional true pos-
itives. Interestingly, inclusion of just the adjacent positions
(distance = 1 on the x-axis) results in a substantial increase
in DRNApred’s TPR by ∼8% for both DNA binding (from
25% to 33%) and RNA binding (from 16% to 24%) com-
pared to when only the native binding residues are consid-
ered. DRNApred’s MCC also registers a large increase from
0.21 to 0.31 for the DNA binding and from 0.12 to 0.22 for
RNA binding. At distance = 3, our method achieves the
TPR = 0.38 (0.31) and MCC = 0.39 (0.31) for the predic-
tion of the DNA (RNA)-binding residues. Moreover, DR-
NApred secures the largest increases in both MCC and TPR
when compared to the other methods. This again demon-
strates that our predictor is better at finding desirable, high
quality false positives that could be in fact relevant to the
nucleic acid binding.

Comparative assessment of predictive performance for the
prediction of the DNA/RNA-binding proteins

We tested performance of DRNApred and the other pre-
dictors of the DNA and RNA-binding residues for the pre-
dictions of the DNA and RNA-binding proteins on the
test dataset. A protein is annotated as binding to DNA
(RNA) if at least one residue in this protein is annotated
as binding to DNA (RNA). A protein is assumed to be pre-
dicted as binding to DNA (RNA) if the number of predicted
DNA (RNA)-binding residues in this protein is larger than
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Figure 4. Summary of the distance between the predicted binding residues and the nearest native binding residues. The distance is measures either as the
number of positions in the sequence (panels A and C) or the Euclidian distance between alpha-carbon atoms of the two residues in the protein structure
(panels B and D). Panels A and B summarizes results for the prediction of the DNA-binding residues and panels C and D for the prediction of the RNA-
binding residues. The summary is quantified with fractions of putative binding residues that are ≤ distance shown on the x-axis away from the nearest
native binding residue. The fraction is defined as the count of residues up to a given distance away divided by the total number of the putative binding
residues. The curves do not reach the fraction of 1 because the remaining residues are predicted in proteins that do not have the corresponding native
binding residues (the distance to the nearest native binding residue is undefined). These are putative RNA binding residues that are predicted in the DNA
binding proteins and vice versa.

a small threshold. This is to accommodate for the predicted
false positives. The threshold is set so the FPR of a given
method on the test set equals 5%. DRNApred outperforms
the other methods by a wide margin (Supporting Table S5).
DRNApred’s MCC is statistically significantly better than
MCCs of the other methods. The TPR of our predictor
is 5 and 6 times higher than the corresponding FPR for
the DNA and RNA binding, respectively, and is also much
higher than the TPR values of the other predictors.

Besides evaluating predictions at the low FPR, we varied
the thresholds (the minimal number of the predicted bind-
ing residues that corresponds to prediction of a binding pro-
tein) using the complete range. We plotted relation between
the corresponding TPR and FPR values (ROC curve) in
Figure 5. The plot shows that DRNApred improves over the
other methods for small and modest values of FPR. Predic-
tions when TPR values are high are arguably less interesting
since they would lead to a substantial overprediction of the
DNA or RNA binding proteins. By tuning the threshold,
DRNApred achieves maximal MCC = 0.31 and 0.36 for the
prediction of the DNA and RNA-binding proteins, respec-
tively, compared to the second best method DP-Bind(svm)
with MCC = 0.23 and RNABindR with MCC = 0.28. The

main reason why the other methods offer lower predictive
quality is that they cross-predict between DNA and RNA
binding residues. In other words, their correct predictions of
DNA binding proteins are coupled with the incorrect pre-
dictions of RNA binding proteins as DNA binding, result-
ing in high FPRs and low AUC and MCC values.

Comparative evaluation of runtime

Runtime is a key factor that determines whether a given
predictor can be applied in a high-throughput manner to
annotate a large collection of proteins. The considered pre-
dictors, except for DRNApred, utilize evolutionary profile
derived with PSI-BLAST as one of their inputs. The calcu-
lation of the profile is the main computational cost of these
methods. We approximated a lower bound of their run-
time by the time to run PSI-BLAST. Based on the database
and the number of iterations that each of these methods
used to run PSI-BLAST, we divided them into two groups.
The first group includes DP-Bind, DBS-PSSM, Pprint and
RNABindR that use the nr database with at least three
iterations of PSI-BLAST (referred to as PSIBlast on nr).
The second group includes BindN+ that uses much smaller
UniProt database with three iterations of PSI-BLAST. Fig-
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Figure 5. Comparison of ROCs for DRNApred and the other predictors for the prediction of DNA and RNA-binding proteins on the test dataset. Panel A
is for the prediction of the DNA-binding proteins and Panel B is for the prediction of the RNA-binding proteins. The dotted black diagonal line represents
a random prediction.

ure 6 compares the runtime of DRNApred and the other
methods based on predictions on the test dataset using
the same hardware (i7-CPU and 23GB RAM). Although
the absolute value of the runtime depends on computer
hardware used, we focused on relative differences which
are hardware independent. DRNApred is at least 3 orders
of magnitude faster than the other methods that utilize
PSI BLAST against the nr database. DRNApred’s runtime
is comparable to the runtime of BindN+. Both methods pre-
dict an average size protein in ∼15 s using a modern desktop
computer.

We interpolated the measured runtime using second de-
gree polynomials that provide a relatively accurate fit (see
lines in Figure 6). We used these polynomials to estimate
and compare the total runtime to predict the complete
human proteome, the largest proteome with ∼70 thou-
sand proteins. DRNApred and BindN+ are estimated to
take about 48 and 21 days, respectively, using a single i7-
CPU. The other methods will take substantially more time,
1475 days that correspond to over 4 years. The actual DR-
NApred’s runtime on the human proteome was 55 days,
which is close to the estimate. However, we performed calcu-
lations using eight processors in parallel, each dedicated to
a different subset of proteins, which reduced the runtime to
7 days. These results suggest that DRNApred is sufficiently
fast to perform genome-wide predictions using a desktop
computer.

In the nutshell, the runtime of DRNApred is relatively
low and comparable to the fastest current method. Thus,
besides offering substantially better predictive performance
DRNApred can be used to perform large scale predictions.

Assessment of predictive performance on the known DNA and
RNA binding proteins in the human proteome

We applied DRNApred and BindN+ (the other runtime-
efficient method) to predict the RNA and DNA binding
residues and the RNA and DNA binding proteins in the
human proteome. We used the predicted DNA and RNA

binding residues generated by both methods to define puta-
tive DNA and RNA binding proteins, respectively. The pre-
dicted binding proteins have the number of the correspond-
ing predicted binding residues higher than a threshold =
5%. This cut-off corresponds to the FPR of the prediction
of the binding proteins on the test dataset. This is to accom-
modate for spurious predictions that are associated with the
false positive predictions inherent in the outputs of these
predictive models. We assessed the predictive performance
by measuring whether these methods specifically predict
only the target type of binding proteins/residues among
the known binding proteins in the human proteome. In
other words, we evaluated whether their predictions of the
DNA-binding residues target primarily the known DNA-
binding proteins and how many of these predictions are
for the known RNA-binding proteins, and vice versa. We
also assessed whether novel binding proteins predicted with
DRNApred are likely to be correctly predicted. These are
predicted binding proteins that not overlap with the native
binding proteins. Technical details of this assessment are ex-
plained in the Supporting Materials.

Assessment of predictive performance

We quantified the amount of cross predictions of the
DNA and RNA binding proteins among the known hu-
man DNA-binding and RNA-binding proteins. In partic-
ular, we calculated and compared the ratio of the fraction
of the correctly predicted known binding proteins to incor-
rectly cross predicted known binding proteins. The results
are shown using black bars in Supporting Figure S7. Both
DRNApred and BindN+ generate better than random re-
sults for the prediction of the DNA-binding proteins, i.e.
their ratio values > 1. BindN+ obtains ratio = 1.3, which
means that it predicts 1.3 times higher fraction of DNA-
binding proteins in the known DNA-binding proteins than
in the known RNA-binding proteins. DRNApred outper-
forms BindN+ by securing ratio = 1.9, which corresponds
to (1.9 – 1.3)/1.3 = 46% improvement. Moreover, BindN+
secures ratio ≈ 1 for the prediction of the RNA-binding
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Figure 6. Comparison of runtime in the function of protein length for DRNApred and the other predictors of the DNA and RNA binding residues on
the test dataset. The y-axis is the runtime in seconds shown using base 10 logarithmic scale. The x-axis is the protein length. We sorted proteins by their
sequence length and divided them into 10 equally sized sets that include proteins with increasing size. The plot reports the median runtime (markers) and
the 25th and 75th centiles (error bars) against the median protein length for each of the 10 protein sets. The measurements were made using a modern
desktop computer with i7-CPU and 23GB RAM. Lines show quadratic polynomial fit into the measured data.

proteins. This reveals that this method substantially cross-
predicts the DNA-binding proteins as RNA binding. The
predictions of the RNA-binding proteins by DRNApred
are substantially better, with the ratio = 3.1, an improve-
ment by 310%. This means that DRNApred predicts three
times more correct RNA binding proteins compared to the
incorrectly cross predicted DNA binding proteins. Overall,
these results demonstrate that DRNApred provides specific
predictions of the DNA binding and the RNA binding pro-
teins.

We also assessed the predictive quality of DRNApred
and BindN+ by comparing their cross predictions of the
predicted binding residues in the sets of known DNA-
binding and RNA-binding proteins. We calculated the ra-
tio of the fraction of the predicted binding residues among
the correct type of known binding proteins to the fraction
of the cross predicted putative binding residues in the other
type of known binding proteins. The results are shown us-
ing grey bars in Supporting Figure S7. DRNApred achieves
ratio of 2.1 for the prediction of the DNA-binding residues.
This means that it predicts over two times higher fraction
of DNA-binding residues in the known DNA-binding pro-
teins than in the known RNA-binding proteins. To com-
pare, BindN+ obtains ratio = 1.3, which suggests that it
cross predicts a more substantial number of DNA binding
residues. DRNApred also outperforms BindN+ when con-
sidering the prediction of RNA-binding residues. BindN+
obtains a ratio at ∼1 indicating that it predicts similar frac-
tion of RNA binding residues in both known DNA-binding
and RNA-binding proteins. DRNApred secures a high ra-
tio = 6.8. The observation that DRNApred accurately and
specifically predicts each type of the nucleic acid binding on
the human proteome is consistent with the conclusions that
we have reached on the test dataset.

Evaluation of novel putative RNA and DNA binding proteins

We investigated the degree of an overlap in subcellular lo-
cations between the putative novel binding proteins and the
known binding proteins. We annotated the locations based
on the gene ontology cellular component (GO-CC) terms.

We created a list of the GO-CC terms that are substan-
tially enriched in the known binding proteins, by at least
three folds, when compared to their abundance in the whole
proteome. These terms are significantly associated with the
DNA binding and the RNA binding proteins. Next, we cal-
culated the fraction of these terms that are substantially en-
riched, by at least 100%, in the novel binding proteins. A
high fraction indicates that both known and novel putative
RNA and DNA binding proteins share similar subcellular
locations. Results are shown in Figure 7. The x-axis shows
the minimal level of enrichments of the considered GO-CC
terms in the known binding proteins. The numbers of these
terms, which are shown above the bars, are fairly high in-
dicating that they can be used to pinpoint the subcellular
locations of the native binders. As the required enrichment
of the GO-CC in the known binders grows from at least 3-
to 9-fold so does the fraction of these terms that are also sig-
nificantly enriched in the novel putative binders. These frac-
tions start at 64% and 86% for the DNA and RNA binding
proteins, respectively, when considering the over 100 terms
that are enriched by at least 3-fold in the native binders.
Given that we use 42 and 95 terms that are enriched by at
least 9-fold in the DNA and RNA binding proteins, respec-
tively, 100% and 93% of them are also enriched in the novel
putative binders. This revels that virtually all of the subcel-
lular locations that are significantly associated with the na-
tive RNA and DNA binding proteins are also significantly
enriched in the novel RNA and DNA binding proteins that
were predicted by DRNApred. In other words, the locations
of the putative and native RNA and DNA proteins are in
agreement, suggesting that the novel binding proteins are
possibly predicted correctly.

We analyzed whether the predicted binding residues
in the novel binding proteins are similar to the binding
residues in the native binding proteins. Since one of the
hallmarks of the DNA and RNA binding is inclusion of
charged residues, we compared the fractions of the posi-
tively charged residues among the predicted binding and
nonbinding residues in these proteins with the fractions in
the known binding proteins and in the whole proteome.
Results are summarized in Figure 8. Overall, about 11%
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Figure 7. Fraction of the gene ontology cellular component (GO-CC) terms associated with the known binding proteins that are also enriched by at least
100% in novel putative binding proteins. The enrichment in the GO-CC terms is computed against their abundance in the proteome. The x-axis shows the
minimal level of enrichments of the GO-CC terms in the known binding proteins, the corresponding numbers of significantly enriched terms are shown
above the bars. Grey (black) bars summarize results for the RNA (DNA) binding proteins.

Figure 8. Fraction of the positively charged residues among the binding and nonbinding residues in the known and novel binding proteins and among the
residues in the entire human proteome. Grey (black) bars summarize results for the RNA (DNA) binding proteins. The hollow bar shows the results for
the human proteome.

of residues in the human proteome are positively charged.
There are 3.2 and 2.6 times (1.9 and 1.7 times) more posi-
tively charged residues among the predicted DNA-binding
residues (RNA-binding residues) in the known and novel
putative DNA-binding proteins (RNA-binding proteins),
respectively, when compared to the human proteome. While
this is expected for the native binders, the similar levels of
the enrichment in the putative novel binders suggest that
they are likely correctly identified by DRNApred. More-
over, the fraction of the positively charged residues among
the putative nonbinding residues in both known and puta-
tive DNA and RNA binding proteins is similar to the level
of the positively charged residues in the proteome. The dif-
ferences in the levels of the positively charged residues be-
tween the putative binding and nonbinding residues sup-
port our claim that the putative binding residues generated
by DRNApred are likely to bind the two nucleic acids. This
observation is consistent for both native and novel putative
DNA and RNA binding proteins.

CONCLUSIONS

Many methods for accurate prediction of the DNA- and
RNA-binding residues from the protein sequence have been
published. However, we and others have shown that these
methods cross-predict a substantial number of the nucleic
acid binding residues (DNA-binding residues are predicted
as RNA-binding as vice versa). Most of these methods also
require a relatively high amount of runtime. We introduced
a new predictor, DRNApred, which accurately discrimi-
nates between DNA-binding and RNA-binding residues
and proteins. DRNApred requires a low amount of runtime.
It predicts an average sized protein with 200 residues in 15 s
on a modern desktop computer, and thus it can be applied
on a whole proteome scale.

We designed DRNApred by considering a comprehen-
sive set of features extracted from a diverse set of sources of
sequence-derived information extracted from a dataset with
both DNA-binding and RNA-binding proteins. This infor-
mation includes amino acid types, physicochemical prop-
erties of amino acids, evolutionary profiles, and putative
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intrinsic disorder, secondary structure, solvent accessibil-
ity. We performed empirical selection of a subset of pre-
dictive and non-redundant features from this large set of
considered features. We also implemented a weight-based
mechanism and incorporated the second predictive layer to
reduce the cross-predictions. We empirically demonstrated
that these novel design strategies substantially reduce the
amount of cross predictions. Moreover, we comparatively
tested DRNApred on the test dataset for the prediction
of the DNA and RNA-binding residues and proteins. We
showed that DRNApred substantially reduces the cross pre-
dictions when compared to several existing methods. We
empirically demonstrated that in spite of the reduced cross-
prediction our predictive model relatively accurately finds
residues that bind both RNA and DNA as well as residues
that interact with the RNA/DNA hybrids. Our empirical
analysis also includes assessment of the predictive perfor-
mance on different types of RNAs. Importantly, our em-
pirical analysis revealed that our predictor finds arguably
higher quality false positives that are located nearby the na-
tive binding residues. It predicts substantially fewer DNA
binding residues in the RNA binding proteins and vice
versa when compared with the considered current predic-
tors. Furthermore, we compared predictive performance for
the prediction of the DNA-binding and RNA-binding pro-
teins. We showed that DRNApred secures the highest AUCs
and outperforms the other methods by correctly predicting
more DNA- and RNA-binding proteins at the same false
positive rate. Our empirical tests also demonstrated that
DRNApred is computationally efficient. It is at least 3 or-
ders of magnitude faster than majority of the other meth-
ods, excluding BindN+. We showed that DRNApred and
BindN+ have similar runtime profiles, which means that
these two methods can be used to perform genome-wide
predictions on a desktop computer. However, our tests in-
dicated that DRNApred provides better predictive perfor-
mance and the lowest levels of cross predictions.

A substantial number of the DNA and RNA binding pro-
teins are yet to be discovered in the human proteome. We
applied our runtime-efficient DRNApred method to per-
form large-scale prediction and assessment of the DNA
and RNA binding proteins and binding residues in the hu-
man proteome. We compared predictive quality between
DRNApred and BindN+, in particular focusing on the
cross prediction between RNA and DNA binding among
the known binders. We showed that DRNApred substan-
tially reduces the cross predictions at both residue and pro-
tein levels when compared to BindN+. We also analyzed
whether the putative novel binding proteins generated by
DRNApred possess certain hallmarks of the native binding
proteins. We showed that subcellular locations and content
of positively charged residues among their binding residues
are similar between novel and native binders. This provides
support to the claim that DRNApred can be used to dis-
cover novel DNA and RNA binding proteins in human.

The DRNApred’s webserver is freely available at http://
biomine.cs.vcu.edu/servers/DRNApred/. It accepts queries
that consists of up to 100 protein FASTA-formatted pro-
tein sequences and provides predictions of both RNA and
DNA binding residues. Results are stored in a parsable text
file that is archived on the server for at least 1 month. User

can download the file from URL address that is provided
in the browser window upon completion of the prediction.
Results are also send to a user-provided email address. The
webpage also includes Supporting Materials, training and
test datasets, and the datasets with the native DNA- and
RNA-binding proteins in human.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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