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Abstract: The mouse papillomavirus (MmuPV1) was first reported in 2011 and has since become
a powerful research tool. Through collective efforts from different groups, significant progress
has been made in the understanding of molecular, virological, and immunological mechanisms
of MmuPV1 infections in both immunocompromised and immunocompetent hosts. This mouse
papillomavirus provides, for the first time, the opportunity to study papillomavirus infections in
the context of a small common laboratory animal for which abundant reagents are available and for
which many strains exist. The model is a major step forward in the study of papillomavirus disease
and pathology. In this review, we summarize studies using MmuPV1 over the past six years and share
our perspectives on the value of this unique model system. Specifically, we discuss viral pathogenesis
in cutaneous and mucosal tissues as well as in different mouse strains, immune responses to the
virus, and local host-restricted factors that may be involved in MmuPV1 infections and associated
disease progression.
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1. Introduction

The papillomavirus research community has been searching for a mouse papillomavirus model
since the identification of the cottontail rabbit papillomavirus in 1933 [1]. Over the years, a number
of rodent papillomaviruses have been isolated, cloned and sequenced but none of them infected
laboratory mouse strains [2]. In 1989, Tilbrook et al., identified papillomavirus DNA in hairless mouse
tumors resulting from ultraviolet irradiation exposure [3]. They subsequently inoculated this mouse
with the cell-free extract of these skin tumors and observed increased tumor incidence and degree
of malignancy upon irradiation [4]. They demonstrated that the viral DNA shared homology with
Mastomys natalensis papillomavirus DNA as well as with HPV11, -13, -16 and -18 by hybridization.
The viral genome, however, was not isolated or sequenced [3,4]. In 2011, a mouse papillomavirus
(subsequently labeled MmuPV1) was identified in a colony of nude (NMRI-Foxn1nu/Foxn1nu) mice in
India [5]. The DNA sequence was reported in a subsequent publication [6]. A variant of MmuPV1 was
later identified in a house mouse [7]. In the few years since it was first reported, MmuPV1 has become
a valuable animal papillomavirus because it provides, for the first time, the opportunity to study
papillomavirus infections in the context of a small common laboratory animal for which abundant
reagents are available and for which many strains exist. Several groups, including our own, have
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established this mouse model system and have made significant progress in understanding molecular,
virological, and immunological mechanisms of MmuPV1 infections in both immunocompromised and
immunocompetent hosts [5–23]. In this review, we summarize studies using this mouse papillomavirus
model over the past six years and share our perspectives on the value of this unique model system.
Specifically, we discuss viral pathogenesis in cutaneous and mucosal tissues as well as in different
mouse strains, immune responses to the virus, and local host-restricted factors that may be involved in
MmuPV1 infections and associated disease progression.

2. Mouse Papillomavirus Exhibits both Cutaneous and Mucosal Tropism

First reports of MmuPV1 identified the virus as strictly cutaneous [5]. Indeed, the lesions first
observed were florid muzzle tumors [5]. Most laboratories have focused their work on cutaneous sites
including the tail, the muzzle, the back, and the ear [11,13–18]. When compared with muzzle and tail
sites, the back skin was the least susceptible site for the primary infections ([14]. Our recent work
has supported this observation and has shown significantly less encapsidated DNA in back skin vis
a vis in muzzle and tail sites (manuscript in press). Work in our laboratory showed, however, that
the vaginal, anal and oral mucosae of immunocompromised Hsd:NU Foxn1nu, NU/J-Foxn1nu, and
B6.Cg-Foxn1nu mice are also easily infected [20–23]. Figure 1 is representative of mucosal lesions in
Hsd:NU (Foxn1nu) nude mice.
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of viral DNA in lavage samples [21]. Cytology was also very useful to monitor infections in the lower 
genital tract [21,22]. These noninvasive methods have proved to be powerful tools in our laboratory 
as they allow not only for disease progression to be tracked longitudinally but also for maximal data 
to be obtained from a small number of animals. Histological analyses were also conducted following 
sacrifice of the animals. Using these tools, we have demonstrated that: 

(1) The single circumvallate papilla at the back of the mouse tongue is preferentially targeted by 
the virus [20]. This observation provides opportunities to study viral infections at the back of the 
tongue, the site of an increasing number of papillomavirus-associated human tumors [24]. 

(2) The vaginal and anal tracts are highly susceptible to virus infections [21,22]. This observation 
provides a novel in vivo model to study both anal and genital infections concurrently in the same 

Figure 1. Histology of infected mucosal sites in Hsd:NU Foxn1nu mice: the lower genital tract
(A,B, 20×); the tongue (C, 20×); and the anal tract (D, 10×). Viral DNA was detected at the
corresponding sites by in situ hybridization. Vaginal tract (E, 20×) and cervix (F, 20×) were positive
for viral DNA. The Circumvallate papilla was the primary target for tongue infection (G, 20×). The
transition zone of the anal tract was the most susceptible site for viral infection (H, 10×).

Vaginal infections were later confirmed by other groups [8,11]. We are able to readily establish
infections in these disparate mucosal tissues and follow the progress of disease by QPCR examination
of viral DNA in lavage samples [21]. Cytology was also very useful to monitor infections in the lower
genital tract [21,22]. These noninvasive methods have proved to be powerful tools in our laboratory as
they allow not only for disease progression to be tracked longitudinally but also for maximal data to
be obtained from a small number of animals. Histological analyses were also conducted following
sacrifice of the animals. Using these tools, we have demonstrated that:
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(1) The single circumvallate papilla at the back of the mouse tongue is preferentially targeted
by the virus [20]. This observation provides opportunities to study viral infections at the back of the
tongue, the site of an increasing number of papillomavirus-associated human tumors [24].

(2) The vaginal and anal tracts are highly susceptible to virus infections [21,22]. This observation
provides a novel in vivo model to study both anal and genital infections concurrently in the same
host. These studies may reveal information that could lead to better understanding and control of
corresponding human infections and diseases.

(3) Primary infections at cutaneous sites can lead to secondary infections at mucosal
sites [23]. In a similar manner, secondary cutaneous infections often follow primary infections in
immunocompromised mice (manuscript in press). Thus, primary infection in the oral cavity or vagina
can lead to secondary infections at skin sites on the back, muzzle or tail.

3. Certain Strains of Immunocompetent Mice Are Susceptible to MmuPV1 Infection

MmuPV1 was identified in a colony of NMRI-Foxn1nu/Foxn1nu nude mice in India [5]. These
mice were immunocompromised and there was interest in determining whether immunocompetent
strains could also maintain infections. In this early report, the authors noted the development of small
cutaneous papillomas on the back skin of immunocompetent S/RV/Cri-ba/ba (bare) mice [11,17].
These lesions regressed by eight weeks and no further analyses were conducted. Subsequently,
Jiang et al. tested SKH1 (Crl: SKH1-Hrhr) mice and found that tail lesions in a subset of these animals
persisted over time [18]. Uberoi et al. subjected FVB/NJ immunocompetent mice to UVB radiation
and noted that, following treatment, ear lesions persisted although the mice were resistant to infection
prior to irradiation [13]. In work submitted for publication from our laboratory, we observed that
several immunocompetent mouse strains (e.g., C57BL6 and hairless SKH-1) mounted transient mucosal
infections, which quickly regressed. However, the immunocompetent heterozygotes of inbred NU/J
mice (Foxn1nu/+), outbred Hsd (Foxn1nu/+), and C57BL/6 (Foxn1nu/+) mice maintained persistent
vaginal infections. Thus, it is clear that MmuPV1 infections are not restricted to immunocompromised
mouse strains.

4. MmuPV1 Has Malignant Potential

4.1. Mouse Papillomavirus Oncogenes E6 and E7 Are Tumorigenic

As in many other papillomaviruses, the mouse papillomavirus also contains two putative viral
oncogenes, E6 and E7 [6]. We have tested the tumorigenicity of these proteins in vitro and in vivo using
standard methods that we have previously described [25]. Both gene products showed significantly
higher proliferative activity in vitro (Figure 2A) and tumorigenicity in vivo (Figure 2C,D). A recent
study showed that MmuPV1E6 shared some biochemical and functional characteristics with cutaneous
HPV8 E6 including inhibiting NOTCH and TGF-β signaling as well as contributing to delayed
differentiation and prolonged survival of differentiated keratinocytes [16]. MmuPV1 E6 mutants
also failed to induce tumor growth in nude mice indicating that E6 contributes to papillomavirus
pathogenesis and carcinogenesis [16]. White et al. noted that MmuPV1 E7 bound PTPN14, a
classical nontransmembrane protein tyrosine phosphatase (PTP), as did numerous oncogenic HPV
E7s [26]. These observations suggest that E7 may share oncogenic properties with the high-risk human
papillomavirus E7. Much work remains to be done to further clarify the roles of MmuPV1 E6 and E7.
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Figure 2. MmuPV1 E6 and E7 cloned into the expression vector (PCR3) were transfected into NIH3T3
cells under the selection of G418. The stably transfected cells were tested for proliferation in vitro.
Both E6 and E7 showed significantly higher proliferative activity (A); E6 and E7 stably transfected
NIH3T3 cells also showed tumorigenicity in vivo ((C,D), respectively, see arrows); and the vector
control showed minimal disease (B).

4.2. Cutaneous Lesions Can Develop into Cancers

Sundberg et al. reported the development of locally invasive poorly differentiated carcinomas
on the dorsal skin of B6.Cg-Foxn1nu/Foxn1nu mice [11]. They noted that the tumors resembled
trichoblastomas seen in humans [27]. Uberoi et al. subjected FVB/NJ immunocompetent mice to UVB
radiation and subsequently infected the mice at ear and tail sites [13]. Many of the mice developed
ear lesions, some of which progressed to squamous cell carcinomas. This was the first report of an
MmuPV1 cancer in an immunocompetent mouse. In our laboratory, we have detected two different
and spontaneously developing cutaneous skin carcinomas as secondary skin infections in Hsd:NU
Foxn1nu nude mice. Taken together, these findings clearly demonstrate the malignant potential of
MmuPV1 at cutaneous sites.

4.3. Mucosal Lesions Can Develop into Cancers

In data under review for publication, our laboratory has shown that both homozygous NU/J mice
(immunocompromised) and their immunocompetent heterozygous counterparts develop carcinoma in
situ in MmuPV1-infected vaginal tissues. These carcinomas were detected at 7.5 months post infection.
These findings and those above suggest that MmuPV1 may prove to be a useful model to study
papillomavirus-associated malignant progression at both cutaneous and mucosal sites in a tractable
animal model.
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5. Immune Responses to MmuPV1 Infections

Both adaptive and innate immunity play a role in MmuPV1 infections at both cutaneous and
mucosal sites. Studies of adaptive immune responses have been focused on T-cell mediated immune
responses in cutaneous infections [13,15,17,18]. Initial innate immune responses have been studied in
both cutaneous and mucosal infections in our laboratory.

5.1. T- and B-Cell Mediated Immunity in the Control of MmuPV1 Infections

Several immunocompetent mouse strains including C56BL/6, FVB/NJ, and SKH-1 have been
tested for susceptibility to MmuPV1 infections at cutaneous sites [8,11,15,17]. Both CD4 and CD8 T
cells have been found to play a crucial role in the control of papillomavirus infection at these sites,
although neither CD4 nor CD8-knockout or -depletion led to visible disease in these immunocompetent
mice [15,17,18]. Further studies demonstrated that a strong E6- and E7-specific CD8+ T cell response is
correlated with viral clearance and tumor regression in vaccinated mice [18]. Specifically, transferred
E6/90-99 specific CD8 T cells can prevent the development of tumor growth in MmuPV1-infected
athymic mice [17]. We have observed persistence and delayed regression of anal infections in C57BL/6
mice depleted of both CD4 and CD8 T cells (Figure 3A). Passive immunization with serum from
virus-particle immunized mice provided strong protection against primary viral infection [8]. Our
recent studies also demonstrated complete protection at both cutaneous and mucosal sites as a result
of passive immunization with a neutralizing monoclonal antibody in athymic mice (unpublished
observations). These findings suggest that both T- and B-cell mediated immune responses play a
critical role in the clinical outcome of MmuPV1 infections.
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Figure 3. Delayed regression of anal infections was observed in C57BL/6 mice depleted of both CD4
and CD8 T cells (A). Viral DNA was detected in lavage samples of the anal tract of one male (1–7) and
two females (2–7L and 2–7R) (B); and the lower genital tract of 2–7L and 2–7R of Ifnar−/− mice (C).
In contrast, viral infections were cleared in the wild type B6 mice before Week 5 post-infection.
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5.2. Innate Immunity in the Control of MmuPV1 Infection at Mucosal Sites

Type I interferon pathways are the first defense against pathogen invasion [28–30]. A previous
study failed to detect visible disease at cutaneous sites in ifnar−/− mice [17]. In contrast, we found
a prolonged time to regression at the anogenital (vaginal and anal) sites in these mice compared to
wild-type mice (Figure 3B,C). The infections were detectable up to three months post infection in
contrast to infections in wild type animals in which the viral DNA usually became undetectable by
week four post infection (our unpublished observations).

5.2.1. Neutrophils and NK Cells Are Associated with Decreased Local MmuPV1 Mucosal Infection in
Immunocompetent Heterozygous (Foxn1nu/+) NU/J Mice

Innate immune cells including NK cells and neutrophils are important in host defense against the
early stages of viral infections. Previous studies demonstrated that adaptive immunity is sufficient to
eliminate skin MmuPV1 infections in immunocompetent mice [15,17]. We examined both neutrophils
and NK cells in situ in infected mucosal and cutaneous tissues of both immunocompetent heterozygous
NU/J mice (Foxn1nu/+) and immunocompromised homozygous (Foxn1nu/nu) NU/J mice. We found
that increased numbers of NK cells were observed in the tail tissues of the heterozygous NU/J mice
(with minimal infections) relative to those detected in the homozygotes with visible lesions (data not
shown). Tissue resident NK cells are reported to be very different from conventional splenic NK cells in
that they produce cytokines TNFα and GM-CSF rather than of IFNγ [31]. Although cytokines are key
players in numerous inflammatory processes and the production of cytokines is under tight genetic
control [32], this difference in resident NK cells may result in differential local cytokine production
leading to tissue-specific disease outcome.

Immunocompetent (Foxn1nu/+) and immunocompromised (Foxn1nu/nu) NU/J mice showed
persistent infections in vaginal tissues. We detected higher numbers of infiltrating neutrophils in the
vaginal tissues of the immunocompetent (Foxn1nu/+) NU/J mice than in those of immunocompromised
(Foxn1nu/nu) mice. The homozygous (Foxn1nu/nu) mice had more severe disease indicating that
neutrophils may have contributed to the control of disease in the immunocompetent (Foxn1nu/+) mice
(manuscript in preparation). Collectively, our findings suggest that neutrophils and NK cells may be
associated with reduced MmuPV1 infection in immunocompetent mice. The role of these and other
immune cells in MmuPV1 infection and persistence needs further investigation.

5.2.2. RNA Sequencing Data Support the Involvement of NK Cells and Neutrophils as Well as Type I
IFNs in MmuPV1-Infected Tissues

Recently, we conducted genome-wide RNA sequencing on different tissues with or without
MmuPV1 infection. In agreement with findings in HPV-associated human studies, many molecules in
different signaling pathways associated with antiviral activities, cell growth and differentiation, cancer
development, and inflammation were dysregulated in the infected tissues [33–37]. Host defense factors
including β-defensins [36,38–41] and TLR5 [42,43] were associated with MmuPV1 infection (Table 1).
Type I interferon (IFNs) are the most potent known antiviral factors limiting the replication and spread
of most viruses [30,44,45]. Significant changes were found in type I IFNs as well as IL-12, IL-15, and
IL-18 (Table 1). These molecules are produced by macrophages and dendritic cells and are critical
for NK-cell maturation and regulation of NK-cell function [46–49]. CXCR2 expressed by circulating
neutrophils was upregulated in infected muzzle tissues (Table 1). We have also detected significant
changes of several interferon-stimulated genes (ISGs). For example, Stat3 and Stat6, which promote
innate antiviral responses and contribute to the detrimental effects of viral infection, were upregulated
in MmuPV1-infected muzzle and tongue tissues (Table 1). Other ISGs including Trim proteins (Trim
23 and Trim 29) were dysregulated in infected tissues (Table 1). We also detected downregulation of
CD53, a pan-leukocyte surface glycoprotein proposed to play an important role in thymopoiesis and
leukocyte signal transduction in all infected tissues [50].
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Table 1. Some significantly changed molecules in MmuPV1-infected tissues.

Transcripts
MmuPV1 Infected Tissues

Muzzle Tongue Vagina

IL15 Down Down N.S.
Il1rn UP UP N.S.
Il4ra N.S. UP UP

IFNar1 N.S. UP N.S.
Ifi27l2b N.S. Down Down

Ifi27 Down N.S. N.S.
Ifit2 N.S. N.S. Down

TLR5 N.S. UP N.S.
CXCR2 UP N.S. N.S.
CD53 Down Down Down
Stat3 UP UP N.S.
Stat6 UP UP N.S.

Trim23 Down Down N.S.
Trim29 UP N.S. UP
Defb4 Down Down N.S.
Defb6 Down Down N.S.

N.S. Not significant between the infected vs. non-infected tissues.

6. Other Host-Restricted Factors in Local MmuPV1 Infections

Besides the involvement of innate and adaptive immunity in papillomavirus infections, other
host-restricted factors may play a role in disease outcome. A previous study showed that NOD/SCID
mice, a strain that is deficient in T-, B-, and NK cells, were resistant to cutaneous MmuPV1
infections [11]. In agreement with this finding, we detected a single small tail lesion on one of
seven infected NOD/SCID mice although all infected sites were positive for viral DNA (manuscript
under review). This finding suggests that a latent or subclinical infection may have been established in
these infected tail tissues and that additional host defenses may have played a role in the control of
cutaneous infections in this strain.

We and others have observed site specific infections in other mouse strains. For example, the
inbred NU/J nude mice, which manifested minimal cutaneous disease relative to that in outbred
Hsd:NU mice, showed advanced mucosal infections. We and others observed that the back skin is
less susceptible to viral infection when compared with the muzzle and tail in the same animal [14].
In addition, we have shown that viral encapsidation is significantly reduced in back skin relative
to other cutaneous sites (manuscript in press). To understand the site-specificity, Sundberg et al.
conducted transcriptome assays in different skin papillomas [11]. While they found dysregulation
of several skin cancer-associated genes in papilloma tissues, they also found a significant difference
in gene expression in different skin sites supporting the concept that the local environment may
contribute to the disease outcome at these sites [11]. In another study, the authors noted that the tail
showed less disease than the ear skin in UV-irradiated mice [13]. All these findings suggest local
host defense factors may have contributed to disease outcome in these different mouse strains. More
thorough molecular and genetic studies should provide new evidence of the site-specific host control
in viral infections.

7. Conclusions and Future Directions

The discovery of MmuPV1 is very recent. In the short time since it was first reported, several
groups have made significant findings with respect to the immunology, molecular biology, and
tropism of the disease [5–23]. The findings have set the stage for some very useful new models to
investigate papillomavirus disease in vivo. They also introduce new opportunities to better refine our
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understanding of tissue-specific immune responses to papillomavirus infections. Among the most
important findings and their implications are the following.

(1) The first small animal model to study papillomavirus infections and associated diseases in
anogenital and oral tissues:

More than 66% of cervical cancers are associated with PV. Cervical cancers create an enormous
medical burden for the world’s women. More than 250,000 individuals die each year of the
disease [51,52]. Current prophylactic vaccines have no effect on existing disease and so a
therapeutic vaccine would represent an important advancement [53]. With the finding that certain
immunocompetent strains of mice support persistent vaginal MmuPV1 infections, the model is
well-placed to test potential therapeutic vaccines [54].

PV-related oral cancers are on the rise in younger men [55,56]. They present a major challenge to
the medical community and result in considerable morbidity for the patients. A suitable preclinical
model of oral PV-associated disease is therefore in great demand. The finding that the circumvallate
papilla of the mouse tongue is a preferred site for infection suggests that the MmuPV1/mouse model
could be ideal for the study of papillomavirus-related oral cancers in humans, in which cancers tend to
occur at the back of the tongue and in the tonsillar region [57].

Anal cancers are on the rise in women [58]. The reasons are poorly understood and few
interventions are available. MmuPV1 infects the anal canal, especially the transition zone. The
MmuPV-1 mouse model thus could provide a much-needed model to study these enigmatic infections.

(2) A small animal model to study host defense against papillomavirus infections:

T- and B-cells have been shown to be critical factors in generating immunity to MmuPV1. However,
the fact that not all mouse strains deficient in T- and B-cells develop MmuPV1 lesions supports the idea
that other immune components and pathways can play a role. Our early work has shown possible roles
for neutrophils and NK cells and both RNAseq data generated in our laboratory and the microarray
data of Sundberg et al. support this hypothesis as well [11]. We expect that a more complete analysis
of the RNA sequencing and array data will suggest other avenues for investigation and validation.
The availability of many genetically-modified mice will also allow for the expanded investigation of
host factors in viral infections.

(3) A small animal model to study papillomavirus-associated tissue tropism:

Tissue tropism has always been of interest to researchers in the papillomavirus field. Most
papillomaviruses display either cutaneous or mucosal tropism and even within those broad categories
only specific tissues are commonly targeted [51]. MmuPV1 is different in that it displays both cutaneous
and mucosal tropism [11,23]. The tissues of different strains can be differentially susceptible to the
virus infections and this provides a tool to plumb local immune and other factors contributing to tissue
tropism. We anticipate that high throughput analyses such as RNAseq will be instrumental in helping
to elucidate the molecular and cellular components of PV tissue tropism.

(4) A small animal model to study papillomavirus-associated skin cancers:

Cutaneous cancers are sometimes associated with papillomaviruses [59]. MmuPV1 lesions have
been shown to undergo malignant transformation in immunocompromised animals [11] as well as in
immunocompetent irradiated mice [13] and so the MmuPV1 model may become a useful tool to study
cutaneous skin cancer disease and progression.

(5) A small animal model to study papillomavirus-associated transmission:

Our recent studies demonstrated that genital tissues of both males and females are susceptible
to viral infections. In addition, our studies have shown that the development of secondary lesions
resulted from virus shedding from primary infections [21,23]. These observations suggest that the
MmuPV1 model will be useful to study both horizontal (between partners) and vertical (mother to
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child) transmission of virus. HPV-induced Recurrent Respiratory Papillomatosis (RRP) is believed
to result from HPV transmission from mothers to newborns as a result of passage through the birth
canal [60]. RRP is a devastating pathological condition in children. It is characterized by the recurrent
appearance of wart-like lesions in the respiratory tract, particularly at the larynx and vocal cords [61].
These patients must undergo repeated surgery or other invasive treatment to manage the disease.
There is a great need for model systems to study papillomavirus-associated vertical transmission.

(6) A small animal model to study the role of the menstrual cycle and contraceptives in
papillomavirus-associated diseases:

The influence of the menstrual cycle and contraception on other viruses such as genital herpes
and zika has been reported [62–65]. Whether the menstrual cycle and contraception play a role in
genital papillomavirus infections is of great practical interest. We demonstrated in our previous studies
that highest viral titers was detected at the estrus stage [21]. Whether contraception plays a role in
viral susceptibility and persistence is under investigation in the laboratory. The MmuPV1 vaginal
model will be an excellent tool to study the interplay between viral infection, the menstrual cycle,
and contraceptive use. Figure 4 illustrates in graphic form the potential of the MmuPV1 model for
multiple studies in situ. The model is a major step forward in the study of papillomavirus disease
and pathology.Viruses 2017, 9, 246 9 of 12 
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