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An efficient method to identify whether mild cognitive impairment (MCI) has progressed
to Alzheimer’s disease (AD) will be beneficial to patient care. Previous studies have
shown that magnetic resonance imaging (MRI) has enabled the assessment of AD
progression based on imaging findings. The present work aimed to establish an
algorithm based on three features, namely, volume, surface area, and surface curvature
within the hippocampal subfields, to model variations, including atrophy and structural
changes to the cortical surface. In this study, a new biomarker, the ratio of principal
curvatures (RPC), was proposed to characterize the folding patterns of the cortical
gyrus and sulcus. Along with volumes and surface areas, these morphological features
associated with the hippocampal subfields were assessed in terms of their sensitivity to
the changes in cognitive capacity by two different feature selection methods. Either the
extracted features were statistically significantly different, or the features were selected
through a random forest model. The identified subfields and their structural indices that
are sensitive to the changes characteristic of the progression from MCI to AD were
further assessed with a multilayer perceptron classifier to help facilitate the diagnosis.
The accuracy of the classification based on the proposed method to distinguish whether
a MCI patient enters the AD stage amounted to 79.95%, solely using the information
from the features selected by a logical feature selection method.

Keywords: mild cognitive impairment, Alzheimer’s disease, magnetic resonance imaging, hippocampal subfields,
multilayer perceptron

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia, representing a significant
burden on the global economy (Prince et al., 2015). While the treatment of AD remains a major
clinical challenge, slowing down the deterioration of cognitive capability during the mild cognitive
impairment (MCI) stage represents an important preventive approach. Consequently, it is critical
to monitor whether a patient is progressing from MCI to AD (a converter) or is still in the MCI
stage (a non-converter).

Multiple AD biomarkers have been recognized with varying trends as the disease progresses
(Bateman et al., 2012). For the prediction of AD, amyloid, tau, and neurodegeneration are
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related and efficient biomarkers that comply with the amyloid
hypothesis. This hypothesis postulated that AD is due to
a cascade mechanism, starting from the deposition of Aβ

and tau hyperphosphorylation, which then further causes
neurodegeneration, including synaptic dysfunction, death of
neural cells, and brain shrinkage (Hardy and Selkoe, 2002;
Spillantini and Goedert, 2013). However, the examinations of
amyloid and tau, including the extraction of cerebrospinal
fluid (CSF) and contrast injection for a PET scan, are
in general more invasive. Therefore, we resort to the last
potential mechanism in studying AD—neurodegeneration.
Neurodegeneration encompasses structural variations, such as
atrophy and neuronal loss due to amyloid and tau deposition,
which can be measured and, hence, quantified via structural
MRI. Clear observations of the hippocampal volume using this
neuroimaging modality are indicative biomarkers revealing the
obvious changes in the transition from MCI to AD which have
been well documented (Frisoni et al., 2010; Bateman et al., 2012).

Studies on structural atrophy in the hippocampus and
entorhinal cortex, based on the evaluation of volume and surface
area from MRI scans during the progression from MCI to AD,
have been previously carried out (Devanand et al., 2007; Frisoni
et al., 2010; Bateman et al., 2012). Although the volume and
surface area of the hippocampus and entorhinal cortex have
been observed to be highly correlated to AD (Bobinski et al.,
2000; Dickerson et al., 2009), these biomarkers are influenced
by natural aging (Bigler et al., 1997; Dickerson et al., 2009). The
curvature of the cortical surface is another feature in the analysis
of cognitive evolution. It has been shown that the mean curvature
of the cortex is less influenced by normal aging (Long et al., 2012).
The mean curvature derived from a surface analysis could be used
to distinguish MCI from AD based on the analysis of the cortical
area (Long et al., 2013).

While some AD biomarkers have achieved good prediction,
most of them require several different examined data modalities
to achieve good accuracy. In this work, we propose a method
to screen for whether an MCI patient has developed AD, using
only the MRI data, with efficiency and good accuracy. This
work analyzes geometric features to identify the conversion
from MCI to AD by characterizing structural changes in the
hippocampus. For surface curvature, we further introduce a
new feature, the “average of principal curvature ratio,” instead
of using the average curvature. In addition to the statistical
evaluation of indices, including the volume, surface area,
and curvature index within the hippocampus, the multilayer
perceptron (MLP) classifier is designed to predict whether a
subject has converted from MCI to AD.

Recent Advances
Recently, internationally encoded endpoints, e.g., clinical,
imaging, genetic, and biospecimen biomarkers, have been
introduced together with machine learning analytics algorithms
in predicting and characterizing the disease process from normal
aging to early MCI, late MCI, and dementia, especially AD.
Neuroimaging biomarkers have especially gained popularity in
providing direct indication of the AD progress.

A systematic review primarily on imaging and biochemical
biomarkers, including primarily MRI, PET scans, and CSF or
plasma amyloid-β/tau, with longitudinal cohorts in anticipating
characterization of AD progression has been documented
(Lawrence et al., 2017). Principal component analysis was used
by Blazhenets et al. (2019) to quantify cerebral metabolic
patterns measured from fluorodeoxyglucose-positron emission
tomography (FDG-PET) related to MCI to AD conversion.
Clinical variables were also used. FDG-PET brain images were
used by Brown et al. (2020) at different prodromal stages
in tracking longitudinally the AD process. Statistical textural
features on the entorhinal cortex from MRI scans were extracted
for differentiation of normal control, MCI, and AD by Leandrou
et al. (2020). Textural biomarkers were assessed for its superiority
over traditional volumetric features in earlier indication of brain
atrophy. Similarly, Lee et al. (2020) also extracted grayscale co-
occurrence matrix texture features surrogating as hippocampus
precuneus and posterior cingulate cortex biomarkers. Structural
MRI (sMRI) cortical and subcortical measurements, e.g.,
thickness and rs-fMRI functional graph connectivity biomarkers,
were studied with SVM classification having high prediction
accuracy for MCI converter or non-converter (Cabral et al.,
2015). Vuoksimaa et al. (2020) investigated on vascular risk
factors, serving as a biomarker, for MCI to AD conversion
in subjects having low cerebral small vessel burden. Memory
baseline brain (e.g., hippocampus, entorhinal cortex) and CSF
biomarkers were also studied by Kung et al. (2020).

Non-linear Gaussian processes were documented by Lin
et al. (2020) to model non-linear interactions of biomarkers
including demographics, APOE4, CSF, hippocampal volume, and
brain age. The proposed method also provided insight into
the biomarker interactions personalized for individual patients
(Hojjati et al., 2018). This proposed an extreme learning machine-
based method to individually grade multimodal data extracted
from MRI images, PET, CSF, and gene biomarkers. Pan et al.
(2020) applied several CNN models which were subsequently
combined via ensemble learning for classifying features extracted
from MRI images. AD-NET introduced by Gao et al. (2020)
transferred age-related surrogate biomarker information in the
form of transfer learning to deep learning of sMRI features for
alleviation of data insufficiency.

In this study, we introduce algorithmic methods to
characterize and quantify the pathological variations in the
identification of biomarkers. Furthermore, extracted biomarkers
capable of indicating the severity of AD may be fed into the
MLP classifier to differentiate the MCI to AD group from the
non-converter MCI group. By honing its capacity through the
accumulation of additional data, this framework could be further
designed as a computer-aided diagnosis system to assist doctors
in taking preventive steps to reduce the progression rate of AD.

MATERIALS AND METHODS

Overview of the Proposed Algorithm
As shown in Figure 1, the proposed algorithm functions in
the following order: data pre-processing, feature extraction,
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FIGURE 1 | Block diagram of the whole proposed algorithm.

and classification after acquiring the MRI images. The overall
data pre-processing includes data cleaning for datasets with a
series of MRI selection standards and MRI pre-processing and
hippocampus segmentation. After obtaining the pre-processed
hippocampus-labeled images, the image processing pipeline
is followed by a surface construction of the hippocampus.
Subsequently, morphological metrics including volume, surface
area, and curvature of the hippocampus surface will be calculated.
The assessment of the surface curvature will be detailed in
the following section since it plays a critical role in our
classifier. We perform feature extraction based on a statistical
analysis of the volume, surface area, and average RPC, associated
to the hippocampal subfields, in the hopes of identifying a

proper neural network model to construct the MLP classifier
to mimic a neurologist’s decision in assisting with a diagnosis.
This MLP classifier serves to identify the converter and non-
converter groups.

MRI Data Acquisition and Selection
MRI data used in this study was obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database with a primary
focus on the analysis of two subject groups, namely, the converter
and the non-converter groups. The converters are those cases
diagnosed with MCI at the first visit but developing AD within
a 2 year period. Their demographic data are shown in Table 1
with the Mini-Mental State Examination (MMSE) scores shown
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in Table 10. There were no significant differences between the
converter and non-converter groups in terms of age at first visit,
gender ratio, or years of education as shown in Table 2. The
data used for the diagnosis had 1.2 mm resolution and were
T1-weighted images acquired from 1.5 to 3.0 T scanners. These
data were collected for studies through four phases: ADNI1,
ADNI GO, ADNI2, and ADNI3. The current study focuses on
demographic, neuropsychological, and structural imaging data
from the ADNI GO and ADNI2 phases.

Structural MRI images were selected from the ADNI database
and were pre-processed with images scanned in the sagittal
plane, to minimize differences as a result of individual scanning
conditions. Pre-processing includes correcting the non-uniform
intensity caused by the gradient warp distortion. The data in
the ADNI1 phase was not included in current studies to assure
consistent MRI scanning protocol. The ADNI3 phase data was
also excluded due to incompleteness. In order to eradicate
unexpected factors, a series of data cleaning steps were defined
for each cohort as follows. Data from GE were excluded due to
difference in protocols in ADNI2 and GO phases: (a) excluded
ADNI1 and ADNI3 phases; (b) included pre-processing steps,
e.g., MT1, N3, and Gradwrap; (c) excluded the accelerated
scanning images; (d) excluded images if the scanning time differs
from the diagnosis time by over 2 weeks; (e) chose the scanning
images with the scanning time closest to diagnosis time;, and (f)
investigated whether the diagnosis record has a missing score in
neuropsychological data.

MRI Pre-processing
Structural MRI pre-processing consists of two parts: one for
assuring consistencies due to different scanning systems and the
other another for inner-subject variabilities.

The pre-processing for scanning system consistency includes
MT1, N3, and Gradwrap. MT1 is a multiplane reconstruction
process, in which the scanning image will produce sagittal,
coronal, and axial planes. N3 (Sled et al., 1998) is an algorithm
for correcting intensity non-uniformity in MRI which is caused

TABLE 1 | The demographic data for the two study groups.

MCI non-converter MCI to AD

Number of subjects 89 89

Age at first visit (years) 73.4 ± 7.6 74.4 ± 8.0

Males (%) 53 (59.6%) 52 (58.4%)

Years of education 16.3 ± 2.6 15.8 ± 2.6

TABLE 2 | Chi-square test between the MCI non-converter and MCI to AD.

Type Chi-square Degrees
of

freedom

Significant
level 5%

Gender (M, F) 0 1 3.841

Age (50s, 60s, 70s, 80s, 90s) 8.843 4 9.488

Education (11∼20) 8.905 9 16.919

MMSE (−12, −11, −8∼5) 58.263 15 24.996

by inhomogeneous radiofrequency (RF) excitation. Gradwrap
(Axel and Morton, 1989) corrects the gradient distortion which
is caused by both gradient non-linearity and imperfections in the
B0 field to assure revelation of significant hippocampus features
in discerning between the MCI group and the AD group.

Pre-processing for inner-subject data consistency includes a
series of step. The first step is size conformation by which
image sizes from different manufacturers were normalized. The
second step consists of non-uniform intensity normalization
which is similar to the pre-processing for assuring scanning
system consistency but does not include the magnetic field
strength information. The third step is the Talairach transform
computation with Talairach coordinates used for brain size
and shape normalization. Intersubject registration within the
standardized space is used to compare different brain positions
with different sizes. The fourth step is interslice intensity
normalization which attempts to correct for fluctuations in
intensity caused by eddy current and cross talk between slices.
This intensity correction step is aimed to enhance the accuracy
of the subsequent segmentation process. The fifth step, namely,
the skull strip, utilized the watershed algorithm to segment
and remove the skull, eyes, and neck which are not part of
the brain. The sixth step applies a subcortical segmentation
algorithm to segment and label each subcortical structure. It
calculates transforms to align the input volume to the Gaussian
classifier atlas (GCA). Normalization was also performed using
non-linear transforms based on GCA, which labels subcortical
structures within the GCA model. The final step is white
matter segmentation which uses intensity, neighborhood, and
smoothness constraints to segment and separate the white matter.

Segmentation of the Hippocampus and
Its Subfields
After pre-processing, hippocampus segmentation was performed
using FreeSurfer 6.0 (Fischl, 2012). This is based on the
statistical atlas which was constructed from manual labels and
information from Bayesian reference (Iglesias et al., 2015).
The FreeSurfer pipeline used in current research generated
the masks of the entire hippocampus as well as its subfields
according to the pre-trained statistical atlas (Iglesias et al.,
2015). The hippocampus was further segmented into 12
subfields, namely, the parasubiculum, presubiculum, subiculum,
CA1, CA3, and CA4. Granule cells were in the molecular
layer of the dentate gyrus (GC-ML-DG), hippocampus–
amygdala–transition area (HATA), fimbria, molecular layer,
hippocampal fissure, and hippocampal tail. The parasubiculum,
HATA, and fimbria subfields were not included due to low
resolution in MRI.

Although there were a few literature documenting quantitative
performance evaluations on this automatic subfield segmentation
and manual segmentation process, results have shown that
the segmentation of subfields using FreeSurfer could achieve
high test–retest reliability, with intraclass correlation coefficient
(ICC) > 0.9 for most subfields (Whelan et al., 2016). The
segmented subfields were also shown to be informative in the
analysis of AD (Iglesias et al., 2015). When compared with FIRST,
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a software which also enables hippocampus segmentation in
FSL, FreeSurfer has revealed a higher correlation via manual
tracing (manual segmentation), with approximately 82 ± 1.5%
of the volume overlapping in the left hippocampus and

82 ± 2.8% of the volume overlapping in the right hippocampus
(Morey et al., 2009).

There should, in general, not be much difference
between 1.5 and 3 T images except possibly minor in

FIGURE 2 | Flowchart of curvature analysis on the hippocampus surface.
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FIGURE 3 | Laplacian smoothing on the hippocampal surface. From left to right, displayed are the series of hippocampal surfaces from the original surface
constructed from the Marching cubes to the surface with more smoothing iterations. The upper surfaces are the full size of the hippocampus, and the lower surfaces
are about the zooming surface focus on hippocampal head for observing the smoothing levels at a fine scale.

the contrast. Recently, Brown et al. (2020) have also
documented on test–retest reliability of automated
segmentation of the hippocampal subfield procedures
via T1-weighted images acquired from two models of
Siemens scanners.

Curvature Analysis
As depicted in Figure 2, the segmented hippocampus and its
subfields subsequently underwent 3D surface reconstruction,
surface smoothing, and calculation of the curvature indices.
The 3D reconstruction is based on the Marching cubes
algorithm (Lorensen and Cline, 1987) to produce a surface from
hippocampus-labeled MRI. Subsequently, surface smoothing is
performed to compensate for the spurious structure of the
original segmentation with the Laplacian smoothing algorithm.
The effect of surface smoothing is demonstrated in Figure 3.
The surface from the original hippocampal segmentation
could be quite rough due to limited spatial resolution and
SNR in MRI scans. The smoothing algorithm removes the
bulgy structure to adequately reveal the surface structure.

FIGURE 4 | Illustration about the curvature to quantify the degree of bending
and folding.

The number of iterations for smoothing has been set to
50 in this work to balance noise removal and principal
feature preservation.

The curvature analysis measures the principal curvatures
and RPC. Quantified by the curvature index, the cortical gyrus
and sulcus can be described as the juxtaposition of ridges and
valleys according to Boucher et al. (2009). Curvature was first
defined as the second-order derivative of a 1D curve, as shown
in Figure 4. The concept can be generalized to a 2D surface
to measure folding conditions in terms of normal curvature,
defined by a 1D curve intercepted by a normal plane at a specific
point. Among all normal curvatures obtained from the different
rotating angles of a given point on the surface, the maximum and
minimum are defined as the principal curvatures, respectively.
The principal curvatures of a given vertex, v, on the surface in
3D, are formulated as follows:

cmax(v) = H(v)+
√

(H(v))2
− K(v), and

cmin(v) = H(v)+
√

(H(v))2
− K(v).

The K(v) indicates the discrete Gaussian curvature at vertex v
which can be obtained from the Gauss–Bonnet theorem, given
by

K(v) = d(v) = 2π−

N∑
i

= 0βi,

where N is the number of faces containing v and βi is the interior
angle of v. H(v) represents the discrete mean curvature defined as

H(e) =
1
N

N∑
i=1

s(e) ·ψ(e)
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FIGURE 5 | Local folding pattern corresponds to the principal curvature.

FIGURE 6 | Input features and proposed architecture in MLP.
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FIGURE 7 | CA1 subfield surface attached with calculated maximum curvature, minimum curvature, and RPC. The leftmost artwork is about the CA1 subfield
surface with maximum curvature. The second artwork from the left is about the CA1 subfield surface with minimum curvature. The third artwork from the left is about
the CA1 subfield surface with RPC. The right artwork is about the demonstration of RPC by the medial side of the hippocampus surface with RPC attached. In this
illustration, the RPC showed its ability to indicate valleys and ridges on the surface.

FIGURE 8 | Comparison of CA1 surface between MCI and AD. The three artworks in the left are the comparison of volume and surface area. The volume is 443.964
mm3 and surface area is 753.45 mm2 when the subject was diagnosed as MCI. The volume is 325.024 mm3 and surface area is 594.504 mm2 when the subject
was diagnosed as AD. The two artworks in the right are targeted to demonstrate the change of “average of RPC.”

where e is the edge set incident to the vertex v and N
is the number of edges in the edge set. Besides, the s(e)
denotes the length of the edge, and ψ(e) denotes the dihedral
angle of e. Based on the topology observed, we also noted
that RPC can be an effective index to distinguish the local
folding pattern, as shown in Figure 5, which is defined by

RPC =
Max

{∣∣CMax
∣∣, ∣∣CMin

∣∣}
Min

{∣∣CMax
∣∣, ∣∣CMin

∣∣}
The curvature indices of the entire hippocampus as well as
all the segmented subfields are all calculated. Separation of the
curvature of the entire hippocampus and its subfield will help
to reveal structural alterations inside the hippocampus during
the conversion. Instead of mapping the calculated curvature
on the lattice grid of the segmentation map, an iterative
closet points (ICP) surface registration algorithm (Besl and
Mckay, 1992) has been used to register the curvature values
of the subfield segmentation after smoothing. The refined
registration was applied out of concern that the curvature of
the subfield is prone to a low signal-to-noise ratio and limited
spatial resolution.

Feature Selection for Classification
Proper selection of features as prediction variables has been
known to be a critical factor in constructing classification models.
In our current work, neuropathological and morphological

TABLE 3 | Two-sample t-test on changing rate of volume in different hippocampal
subfields.

Regions Changing rate of volume p-value Cohen’s d

MCI
non-converter

group

MCI to AD
group

Presubiculum −2.73 ± 8.38% −7.34 ± 6.46% 0.00001 0.61848

Subiculum −3.96 ± 6.13% −7.78 ± 5.81% 0.00001 0.64324

CA1 −2.74 ± 5.14% −4.84 ± 4.99% 0.00154 0.41515

CA3 −3.21 ± 7.99% −6.13 ± 6.68% 0.00233 0.39884

CA4 −3.07 ± 6.02% −5.34 ± 5.01% 0.00167 0.41205

GC-ML-DG −3.52 ± 6.07% −5.61 ± 4.86% 0.00365 0.38056

Molecular layer −3.6 ± 6.23% −6.62 ± 4.71% 0.00003 0.54958

Hippocampal
fissure

0.57 ± 7.83% −3.34 ± 8.93% 0.00037 0.46771

Hippocampal
tail

−2.26 ± 8.36% −4.87 ± 6.3% 0.00681 0.35392
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changes as described by medical experts have been used to
characterize the volume, surface area, averages of the principal
curvatures, and the average of the RPC biomarkers. These indices
featuring the entire hippocampus and its subfields were chosen
for investigation while anticipating biomarker identification
to categorize the converter and the non-converter cohorts.
Furthermore, this work seeks to track symptom changes over
time. The change in rate of each morphological index should be
more useful than the indices at each time point. Thus, the change
in rate

(
Cf
)

of a morphological index is defined as

Cf =
fsecond − ffirst

fsecond
, f ∈ F

=
{

volume, surface_area, average_curvature
}

to quantify the relative difference between two visits. In the
feature selection step, we explore neuroimaging features. Feature
selection is carried out because that multilayer perceptron

TABLE 4 | Two-sample t-test on changing rate of surface area in different
hippocampal subfields.

Subfields Changing rate of the surface area p-value Cohen’s d

MCI
non-converter

group

MCI to AD
group

Presubiculum −2.23 ± 4.95% −4.75 ± 4.62% 0.00006 0.52750

Subiculum −2.59 ± 4.14% −5.68 ± 4.16% 0.00001 0.74995

CA1 −2.36 ± 4.58% −4.36 ± 3.93% 0.00003 0.47154

CA3 −3.22 ± 5.58% −5.62 ± 5.29% 0.00075 0.44230

CA4 −2.91 ± 4.39% −5.01 ± 3.89% 0.00045 0.50678

GC-ML-DG −3.36 ± 4.87% −4.87 ± 4.23% 0.00109 0.33237

Molecular layer −3.25 ± 5.38% −5.71 ± 4.54% 0.00017 0.49474

Hippocampal
fissure

2.53 ± 13.24% −3.96 ± 13.42% 0.000205 0.48880

Hippocampal
tail

−1.61 ± 4.08% −4.06 ± 4.43% 0.00001 0.57654

TABLE 5 | Two-sample t-test on changing rate of “average of RPC” in different
hippocampal subfields.

Subfields Changing rate of average of RPC p-value Cohen’s d

MCI
non-converter

group

MCI to AD
group

Presubiculum 3.26 ± 7.82% 1.24 ± 9.65% 0.07571 0.23127

Subiculum −0.24 ± 7.74% 1.87 ± 8.92% 0.05146 0.25377

CA1 0.17 ± 7.1% 2.59 ± 8.33% 0.01595 0.31467

CA3 4.23 ± 14.62% 3.61 ± 14.42% 0.74307 0.04254

CA4 13.0 ± 54.5% 14.3 ± 58.17% 0.85797 0.02323

GC-ML-DG 3.5 ± 20.75% 4.35 ± 19.91% 0.74702 0.04187

Molecular layer 4.08 ± 23.04% 7.0 ± 24.87% 0.34714 0.12212

Hippocampal
fissure

2.14 ± 19.4% 2.85 ± 19.14% 0.77527 0.03705

Hippocampal
tail

2.12 ± 11.1% 2.11 ± 12.34% 0.99021 0.00159

will usually treat all features as equivalent or begin. With
the training process, a multilayer perceptron will determine
the most suitable parameters in the feature map. As such,
reducing some features such as noise can more accurately and
quickly yield a suitable weight in the feature map. In the first
selection method, the univariate selection, a two-sample t-test
is conducted to compare the Cf in each volume of interest
to explore potential useful biomarkers. The indices showing
significant differences between the two groups will be adopted as
the candidate prediction variables in the classifier. Features are
selected on the basis of their p-value in an independent t-test.
The p-value may represent whether the difference is sufficiently
large to justify the conclusion that the two samples were
drawn from different populations. The second method is feature
importance, which is based on the features set combinability
and Gini impurity, whereby features are selected based on their
combination relevance.

Multilayer Perceptron Classifier
MLP is a popular and efficient neural network model in the
field of pattern recognition. MLP mimics the developing brain,
the plasticity, and the storage of experiential knowledge, which

TABLE 6 | Selection result based on univariate selection.

Rank Region Feature p-value

1 Subiculum Surface area < 0.00001

2 Subiculum Volume < 0.00001

3 Presubiculum Volume < 0.00001

4 Hippocampal tail Surface area 0.00001

5 Molecular layer Volume 0.00003

6 Presubiculum Surface area 0.00006

7 CA4 Surface area 0.00012

8 Molecular layer Surface area 0.00017

9 Hippocampal fissure Surface area 0.00021

10 CA1 Surface area 0.00034

11 Hippocampal fissure Volume 0.00038

12 CA3 Surface area 0.00076

13 CA1 Volume 0.00155

14 CA4 Volume 0.00168

15 CA3 Volume 0.00234

16 GC-ML-DG Volume 0.00366

17 Presubiculum CurvMin 0.00373

18 Hippocampal tail Volume 0.00681

19 CA1 CurvMax 0.00969

20 GC-ML-DG Surface area 0.01097

21 CA1 RPC 0.01596

22 Subiculum RPC 0.05146

23 Presubiculum CurvMax 0.06049

24 CA4 CurvMin 0.06766

25 Presubiculum RPC 0.07571

26 Molecular layer CurvMax 0.11261

27 Hippocampal tail CurvMax 0.25083

28 Hippocampal fissure CurvMax 0.29224

29 Molecular layer RPC 0.34715

30 CA4 CurvMax 0.41302
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TABLE 7 | Selection result based on feature importance.

Rank Region Feature Score

1 Presubiculum Volume 2,335

2 Hippocampal tail Surface area 2,004

3 Subiculum Surface area 1,994

4 Presubiculum Surface area 1,972

5 Hippocampal fissure Surface area 1,687

6 Subiculum Volume 1,598

7 Hippocampal fissure Volume 1,551

8 CA4 Volume 1,545

9 GC-ML-DG Surface area 1,420

10 GC-ML-DG Volume 1,374

11 CA4 Surface area 1,349

12 Hippocampal tail Volume 1,277

13 Presubiculum CurvMin 1,107

14 Molecular layer Surface area 1,053

15 Molecular layer Volume 1,016

16 Molecular layer CurvMax 694

17 CA3 Volume 663

18 CA1 CurvMax 619

19 Subiculum CurvMax 612

20 CA4 CurvMin 609

21 Presubiculum RPC 479

22 CA1 RPC 462

23 CA3 RPC 458

24 Subiculum RPC 320

25 CA4 CurvMax 306

is also known as learning processing. MLP is a multilayer
network capable of multilevel information extraction through its
hierarchical structure. MLP may also be seen as a multivariate
probabilistic function or mapping of input features to outputs.

The MLP architectures proposed in this current research
are shown in Figure 6. There are three main parameters
needed for the design: (1) the number of hidden layers, (2)
the number of neurons in each layer, and (3) the activation
function. With regard to choosing the number of hidden layers,
we have a shallow design network. Our input features are highly
representative, and we do not need a deep network to identify

the complicated relations. With regard to choosing the number
of neurons in each layer, we used a grid search method to
find out the best parameter. In addition, we used ReLU as an
activation function. ReLU reduced the probability of a vanishing
gradient and is more computationally efficient. According to the
design, the MLP is equipped with two hidden layers within each
12-neuron layer.

The prediction was based on these architectures and was
performed using the scikit-learn framework. The ReLU function
was used as the activation function. The Adam with momentum
(0.9) and adaptive learning rate to enhance training was used to
optimize the learning process. An L2 norm penalty of weight
0.0001 was also imposed for regularization. The maximum
iteration was set to 800. All the subject data were randomly
shuffled; 60% of them were treated as the training set, 30% of
them were treated as the testing set, and 10% of them were
used for validation.

RESULTS

Feature Extraction From the
Hippocampus
The 3D curvature mappings are shown in Figure 7. The
maximum curvature is capable of delineating the ridges of
the local structure (Figure 7), while the minimum curvature
is capable of outlining the cap-shape patterns (Figure 7).
While the two principal curvatures enhance the folding
regions bending in different directions, the RPC helps to
distinguish the folding area and the flatting area. However,
the RPC is instrumental in enhancing the morphological
complexity of cortical surfaces, as shown in Figure 7, indicating
capture of the structural changes in the hippocampus.
Figure 8 illustrates the morphological changes in CA1
from a typical converter. Not only the volume but also the
surface area was significantly reduced. A smaller flat region
was also noticed when the subject was diagnosed with AD
with increased RPC.

The rates of change in volume, surface, and RPC data of all
nine subfields are listed in Tables 3–5. The converter generally

TABLE 8 | Performance of the MLP classifier with different input features (100 times training result averaging).

Input feature Neuroimaging features

Basic MLP architecture 2 hidden layers with 12 neurons

Selection method Criteria Number of features Accuracy (%) Sensitivity (%) Specificity (%)

Univariate selection p-value < 0.01 19 79.07 72.41 85.74

Univariate selection p-value < 0.05 21 78.47 72.04 84.91

Univariate selection p-value < 0.1 25 75.96 71.39 80.00

Feature importance Random forest top 10 10 72.45 60.00 84.91

Feature importance Random forest top 15 15 78.10 70.28 85.93

Feature importance Random forest top 20 20 79.95 74.44 85.46

Feature importance Random forest top 25 25 76.39 73.52 79.26

Whole feature (without feature selection) 45 65.97 60.56 71.39
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shows a higher reduction level over time in terms of volume and
surface area than the non-converter. Most of the subfields reveal
statistically significant differences, except for the parasubiculum,
HATA, and fimbria. The hippocampus subregion segmentation
algorithm will make an error in a small region appear particularly
significant since our surface model is constructed by labeled
segmentation of MRI data. These errors will continue to be
passed on to the feature via the feature extraction step. On the
other hand, only temporal changes in the average RPC in CA1
achieved significant difference levels between the two groups and
reached a statistical significance level quite early in the subiculum.

Table 6 shows the selection results for neuroimaging features.
For neuroimaging features, we found that volume and surface
area are strong features in different subregions. There are only
seven curvature features selected by the criteria. We also observed
that the presubiculum might be a region of interest since the
volume, surface area, RPC, minimum curvature, and maximum
curvature have been selected. In addition, the subiculum, CA1,
CA4, and the molecular layer have four features which have been
selected by a univariate selection method. They might also be
regions of interest to carefully focus on. We built 100 random
forest classifiers with 20 decision trees. Due to the randomness

TABLE 9 | Classification comparison of different approaches (order follows the time of publication).

Study ROI Subjects Features Accuracy (%)

Chupin et al. (2009) Hippocampus and
amygdala

76 MCI-C 134 MCI-NC MRI (volume) 67.0

Misra et al. (2009) Whole brain 27 MCI-C 76 MCI-NC MRI (RAVENS score) 75–80

Liu et al. (2010) Hippocampus, amygdala,
and caudate

21 MCI-C 79 MCI-NC MRI (volume) 69.0

Davatzikos et al. (2011) Whole brain 69 MCI-C 170 MCI-NC MRI (SPARE-AD) + CSF 61.7

Wolz et al. (2011) Whole brain 167 MCI-C 238 MCI-NC MRI (hippocampus volume) 65.0

MRI (hippocampus volume,
thickness, TBM, and
manifold-based learning)

68.0

Duchesne and Mouiha (2011) Whole brain 20 MCI-C 29 MCI-NC MRI 72.3

Costafreda et al. (2011) Hippocampus 22 MCI-C 81 MCI-NC MRI (shape), cognitive scores
(MMSE)

80.0

Coupe et al. (2012) Entorhinal cortex and
hippocampus

167 MCI-C 238 MCI-NC MRI (volume, SNIPE) 73.0

Cheng et al. (2015b) GM 43 MCI-C 56 MCI-NC MRI (volume) + CSF + PET 70.7

Ewers et al. (2012) Hippocampus 58 MCI-C 72 MCI-NC MRI (hippocampus volume), CSF
P-tau181, Aβ1-42, cognitive scores
(TMT-B), age

76.9

Westman et al. (2012) Whole brain 81 MCI-C 81 MCI-NC MRI (volume, thickness) + CSF 68.5

Zhang et al. (2012a) Whole brain 43 MCI-C 48 MCI-NC MRI (volume) + CSF + PET 73.9

Zhang et al. (2012b) Whole brain 38 MCI-C 50 MCI-NC MRI (volume) + PET + cognitive
scores (MMSE, ADAS-Cog)

78.4

Young et al. (2013) Whole brain 47 MCI-C 96 MCI-NC MRI + CSF + PET + APOE 74.1

Wee et al. (2013) Whole brain 89 MCI-C 111 MCI-NC MRI (volume, thickness) 75.05

Suk and Shen (2013) Whole brain 43 MCI-C 56 MCI-NC MRI (volume) + CSF + PET +
cognitive scores (MMSE,
ADAS-Cog)

75.8

Eskildsen et al. (2013) Whole brain 166 MCI-C 134 MCI-NC MRI (thickness) 80.9

Suk et al. (2014) Whole brain 76 MCI-C 128 MCI-NC MRI + PET 75.9

Liu et al. (2015) Whole brain 117 MCI-C 117 MCI-NC MRI 78.9

Cheng et al. (2015a) GM 43 MCI-C 56 MCI-NC MRI (volume) + CSF + PET 80.1

Suk et al. (2015) Whole brain 43 MCI-C 56 MCI-NC MRI 69.3

MRI + CSF + PET + cognitive
scores (MMSE, ADAS-Cog)

83.3

Cabral et al. (2015) Whole brain 25 MCI-C 56 MCI-NC MRI+PET 74.0

Moradi et al. (2015) GM 164 MCI-C 100 MCI-NC MRI, age, cognitive scores (MMSE,
ADAS-Cog, CDR-SB, RAVLT, FAQ)

82.0

Korolev et al. (2016) Left hippocampus, middle
temporal gyrus, inferior
parietal cortex

139 MCI-C 120 MCI-NC MRI (volume, thickness) + plasma
proteomic data + cognitive scores
(ADAS, RAVLT, FAQ)

79.9

ROI, regions of interest; GM, gray matter; TBM, tensor-based morphometry; SNIPE, Scoring by Non-local Image Patch Estimator; CDR-SB, Clinical Dementia Rating-Sum
of Boxes; ADAS, Alzheimer’s Disease Assessment Scale; RAVLT, Rey Auditory Verbal Learning Test; FAQ, Functional Activities Questionnaire; MCI-C, MCI converters;
MCI-NC, MCI non-converters.
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of the subset of features in forming the decision tree, the model
may yield important differences in feature weights each time.
By training the model multiple times, for a certain number
of cycles, we were finally able to obtain a certain amount of
features that make an important contribution to the impact of
the classification task. The importance of a feature is computed
as the total Gini impurity reduction of the criterion brought
by that feature. It is also called the Gini importance. We sort
the rank from the whole feature according to the sum of the
feature importance with different weights. A higher feature
importance rank in the random forest has a higher weight. The
order of ranking is representative of the relative importance in
Table 7.

Identification of MCI Converting Based
on MLP
Performances of the MLP, adopting different combinations
of prediction variables, are listed in Table 8. We found the
criteria (p < 0.01) with a higher accuracy (79.07%) in a
univariate selection method. Performance decreased with this
criteria (p < 0.05; p < 0.1). This means that the extra
selected features represent noise in the classification task. The
second observation was that the criteria (random forest top
20) had a higher accuracy (79.95%) in the feature importance
method. The best accuracy was also found in the two-selection
method. This is reasonable, since the random forest considered
both the combination of feature set and classification ability
at the same time. We roughly assessed the different criteria.
We will compare the selected features by a two-selection
method and remove the common parts. This can help with the
interpretation. Using both selection methods can enhance the
model accuracy by about 15%.

Correlation Between MMSE and
Neuroimage Biomarkers
The correlation between the neuroimaging biomarkers with
MMSE scores is shown in Table 10. It is observed that based
on p < 0.05, the volume and surface area markers have
revealed high correlations with the presubiculum, subiculum,
molecular layer, and hippocampal fissure subfields. In addition,
the newly introduced RPC biomarker, representing degeneration,
has statistical significance between MMSE at the CA1 and
molecular layer subfields. High correlations could also be
observed between pathological indicative maximum curvature
and minimum curvature biomarkers and MMSE primarily at
the CA1 subfield.

DISCUSSION

Previous studies have found that morphological changes in the
hippocampus are highly related to the progression of AD. While
most research studies have investigated the entire hippocampus
as a single unit, the present work has tried to associate
the alteration of the subfields of the hippocampus with the
progression of cognitive impairment. The results suggested that
the rate of change of the average RPC can be used as a biomarker

TABLE 10 | Correlation between MMSE and neuroimage biomarkers.

Regions Feature MMSE

Pearson’s r p-value

Presubiculum Volume 0.3166 < 0.0001

Surface_area 0.3399 < 0.0001

RPC 0.01606 0.8316

Max_Curvature 0.0268 0.7248

Min_Curvature −0.0815 0.2836

Subiculum Volume 0.3093 < 0.0001

Surface area 0.3352 < 0.0001

RPC −0.0437 0.5669

Max_Curvature −0.0541 0.4782

Min_Curvature −0.0666 0.3843

CA1 Volume 0.0974 0.1984

Surface area 0.1059 0.1618

RPC −0.1639 0.0303

Max_Curvature −0.2193 0.0034

Min_Curvature 0.1938 0.01

CA3 Volume 0.09047 0.2325

Surface area 0.1353 0.0734

RPC −0.0394 0.6039

Max_Curvature 0.00488 0.9488

Min_Curvature −0.0581 0.4424

CA4 Volume 0.06013 0.4266

Surface area 0.1001 0.1848

RPC 0.0023 0.9763

Max_Curvature −0.1453 0.0642

Min_Curvature 0.07523 0.3339

GC-ML-DG Volume 0.1068 0.1585

Surface area 0.08517 0.2597

RPC −0.0482 0.5233

Max_Curvature 0.06343 0.4003

Min_Curvature 0.03293 0.6662

Molecular layer Volume 0.2298 0.0022

Surface area 0.2101 0.0051

RPC −0.2311 0.0019

Max_Curvature −0.1014 0.1952

Min_Curvature 0.02585 0.7342

Hippocampal fissure Volume 0.1829 0.0145

Surface area 0.2416 0.0012

RPC 0.04782 0.5262

Max_Curvature 0.09744 0.1996

Min_Curvature 0.04733 0.546

Hippocampal tail Volume 0.09862 0.1928

Surface area 0.121 0.1097

RPC −0.0423 0.577

Max_Curvature 0.06056 0.4273

Min_Curvature −0.0475 0.5294

of whether an MCI patient will convert to AD. While the average
RPC captures the structural features in AD progression, the ways
in which the pattern changes were also qualitatively analyzed.
Based on the correspondence between principal curvature indices
and morphology, the histogram showing the distribution of the
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surface pattern from the data of a typical converter subject is
plotted in Figure 9. The flat pattern was found to diminish more
than the other patterns. This finding suggests that the boundaries
of the hippocampal subfields would grow increasingly spurious
during conversion to AD. Consequently, RPC has the potential
to detect whether a subject has developed AD according to the
change in surface pattern.

Several studies have focused on the link between volume
and surface area while discriminating MCI and AD. These
two structural quantities have shown their potential in the
classification. Consequently, this work has invested much effort
into investigating these two quantities and their temporal
changes, as shown in Tables 3, 4. The experimental results also
showed that the curvature features can improve the classification
ability. Curvature features which have statistical meaning and
important features have been selected by univariate selection. As
a result, the combination of the random forest top 20 features
is likely to provide the highest accuracy in predicting changes
in symptoms based on the presented framework. However,

there is still room to improve the prediction accuracy, and
we anticipate that further factors, regardless of morphology or
physiology, should be further investigated to increase the quality
of the classification.

The architecture of the MLP classifier is also key to the
prediction accuracy, in addition to properly selecting the
prediction features. After obtaining the optimized prediction
results for the two hidden-layer MLP, we tried modifying the MLP
to a larger number of layers and neurons. However, as far as the
number of subjects is concerned, the MLP structure cannot go too
much deeper lest overfitting takes place. Another interesting fact
in the experiment is shown in Table 8, whereby the increase in
input features does not guarantee a better prediction, even when
combining the three prominent features. These two findings
suggest that the design of an optimal MLP classifier requires
sophisticated tests. While there is no standard way to optimize the
variables and parameters, our approach, starting with a statistical
analysis on the feature selection, may greatly ease the daunting
procedure of optimizing the structure of the classifier.

FIGURE 9 | Comparison between MCI and AD according to the detected local folding pattern on the whole hippocampus surface. The two left artworks are the
local folding pattern identification of the surface in MCI stage and the surface in AD stage, respectively. Moreover, the two right artworks are the histogram about the
proportion ratio of each local folding patterns in the MCI stage and AD stage, respectively.
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Several studies have sought to discriminate between MCI
converters (MCI-C) and MCI non-converters (MCI-NC). A list
of the accuracy from the literature is listed in Table 9. This
study achieved a 79.95% accuracy based on the MLP classifier
with a surface area and average RPC as input features, while
the accuracy of the other approaches ranged from 74.1 to
83.3%. We have found that the present work has achieved
relatively high accuracy, with only MRI data extracted from the
regions in the hippocampus without combining other features
from PET, CSF, or cognitive scores. This work could be used
as a good screening tool for clinical examinations, as only a
structural MRI scan is required with a simple MLP classifier. The
loads for scan and computation are minimal. Given that other
examination data may provide complimentary information to
improve prediction quality, the MLP classifier can be augmented
to accommodate more information to ensure better accuracy
when a MCI converter is suspected.

Normalization is a key step in the FreeSurfer to register a
brain to the template for subfield segmentation (Wisse et al.,
2020). Despite concerns on the accuracy in volumetry of the
automatic segmentation, the results suggest that the two different
groups, MCI converter and MCI non-converters, could still be
distinguishable statistically following the presented procedure.
We believe the outcome can be greatly improved providing
more accurate information if the anatomical image at a higher
resolution becomes available.

Recent advances in machine learning-based biomarker studies
for AD are generally faced with two major challenges: the first on
diagnostic confirmation of the disease without biopsy and second
on data insufficiency. Statistical models are introduced to model
the degenerative process which, however, are independent or
irrespective of pathological feedbacks. Supervised deep learning
via CNN has gained high popularity, and information such
as, e.g., clinical data, has been transferred to train CNN using
neuroimaging biomarkers. To address both challenges, our main
contribution is on the introduction of a machine learning
algorithm which incorporates the neuropathologist’s experiences
in characterizing pathological morphology of the disease in the
form of subfield biomarker, primarily curvature analysis, with
features selected via univariate t-test and random forest.

In Table 10, hippocampal volumetric MRI measurements have
revealed statistical significance which is consistent with well-
established outcomes in clinical AD progression research. In
addition to characterizing the degenerative process via coarse or
global features using volume and surface area, we have further
introduced curvature as fine or local neuropathological features
delineated at the hippocampal subfields.

Based on a recently published paper (Gao et al., 2020),
the highest accuracy for MCI to AD conversion using

only structural MRI is 73%. The accuracy could reach
79% after adding PET markers. Our proposed technique
achieves one of the highest accuracy by using only structural
MRI biomarker. Medical experts’ intelligence is subsequently
augmented with the semisupervised algorithm, primarily via the
MLP decision-making process using limited imaging data. These
biomarkers are further confirmed from the neuropsychological
MMSE information.

CONCLUSION

The present work has assessed the structural information of
the hippocampal subfields, including volume, surface area, and
surface pattern as characterized by a curvature analysis. The
combined biomarkers of the rate of change in volume, surface
area, and curvature from the hippocampal subregions are
considered critical in classifying an MCI converter, which can
achieve an accuracy of 79.95%.
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