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Transcriptome Profiling in Systems
Vascular Medicine
Suowen Xu*

Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry,
Rochester, NY, United States

In the post-genomic, big data era, our understanding of vascular diseases
has been deepened by multiple state-of-the-art “–omics” approaches, including
genomics, epigenomics, transcriptomics, proteomics, lipidomics and metabolomics.
Genome-wide transcriptomic profiling, such as gene microarray and RNA-sequencing,
emerges as powerful research tools in systems medicine and revolutionizes
transcriptomic analysis of the pathological mechanisms and therapeutics of vascular
diseases. In this article, I will highlight the workflow of transcriptomic profiling, outline
basic bioinformatics analysis, and summarize recent gene profiling studies performed in
vascular cells as well as in human and mice diseased samples. Further mining of these
public repository datasets will shed new light on our understanding of the cellular basis
of vascular diseases and offer novel potential targets for therapeutic intervention.
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INTRODUCTION

According to a recent disease statistic report released by American Heart Association (AHA),
cardiovascular diseases (CVD) remain the leading cause of death in America (Benjamin et al.,
2017). The treatment of CVD also imposed a huge economic burden on the healthcare system
(Benjamin et al., 2017). Deep understanding of the mechanism of CVD is a valuable approach for
devising effective novel cardiovascular therapeutics.

With increasing number of transcriptomic studies (including microarray and RNA-sequencing)
performed in cultured cells as well as in experimental mice or patients with CVD, we now have the
capability to understand the influence of therapeutic intervention or gene perturbation on CVD
outcome at genome-wide levels which were inaccessible in the past. However, the value of these
transcriptomic data was always underestimated since most of the deposited data are not released to
public until manuscripts are published. Therefore, it is critical to make large-scale efforts to mine,
validate, and integrate the underlying information streams arising from various transcriptomics
studies (Musunuru et al., 2017). To meet the increasing need of precision medicine, AHA has
recently established the Institute for Precision Cardiovascular Medicine1, offering a new category
of data-mining grants focused on harmonizing and mining CVD-based data for cardiovascular
therapeutics. Therefore, in this article, I will summarize the workflow of transcriptomic profiling,
basic bioinformatics analysis, and those profiling studies performed in vascular cells as well as
human and mice diseased samples, aiming to provide a direct resource gallery in systems vascular
medicine. Obviously, further mining of these publicly available datasets will provide a useful
resource for understanding the cellular basis of atherosclerotic vascular diseases.

1https://professional.heart.org
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FIGURE 1 | Workflow and downstream analysis of transcriptome studies.

OVERVIEW OF TRANSCRIPTOMIC
ANALYSIS

For analyzing a small number of gene transcripts, quantitative
real-time PCR or pathway-focused (such as pathways of
angiogenesis or endothelial cell biology) gene expression analysis
using PCR arrays (such as RT2 Profiler PCR Arrays from Qiagen)
can be used. In order to understand genome-wide influence of
different conditions on CVD outcome, DNA microarray and
RNA-sequencing (RNA-seq) are frequently used. Traditional
transcriptomic analysis was mostly performed by using DNA
microarray, which employs dye (Cy3, Cy5) hybridization-based
technology to analyze differential gene expression pattern under
certain conditions (such as gene knockout, or drug/stimuli
treatment), although microarray has several technical limitations
(de Franciscis et al., 2016; Haase et al., 2016). Recently, with the
advent of next-generation sequencing technology, transcriptomic
analysis has transitioned to RNA-seq (Wang et al., 2009), to
quantify the amount of transcripts including protein-coding
genes (mRNA), splice variants, as well as long non-coding RNA
transcripts (lncRNA) in biological samples at genome-wide level
(Mortazavi et al., 2008). Comparatively speaking, RNA-seq has
the capability to identify more differentially expressed genes in
various cell types than gene microarray (Wang et al., 2009; Zhang
et al., 2014). In addition, there are also some commercial lncRNA
array services available, such as Arraystar LncRNA Expression
Arrays2 which systematically profile lncRNAs together with
protein-coding mRNAs. A typical workflow of transcriptomic
analysis involves several steps: (1) sample preparation; (2) RNA
isolation by TRIzol or other commercial kits; (3) high-quality

2http://www.arraystar.com/lncrna-array-service/

RNA submitted to Core facility or commercial companies for
RNA-seq; or reverse transcription to cDNA for hybridization-
based microarray analysis (Figure 1). To visualize the result of
data analysis, gene expression values from both transcriptomic
analyses can be represented as heat maps, listing the most
significantly changed genes in assays. Downstream analysis of
microarray and RNA-seq are quite similar, include gene ontology
(GO) enrichment and pathway analysis as well as functionally
classification of gene annotation (Yue and Reisdorf, 2005).

ADVANTAGES AND LIMITATIONS OF
TRANSCRIPTOME PROFILING
TECHNOLOGIES

Currently, microarrays remain a widely used approach for
transcriptome studies due to its relatively low cost (readily
affordable by many researchers) and ease to process large
numbers of samples (Zhao et al., 2014). However, microarray
has several limitations, most of which arise from probe
and hybridization-related issues (probe performance and non-
specific hybridization etc), such as high background level, difficult
to detect very lowly expressed transcripts, and novel transcripts as
well as splice variants (Draghici et al., 2006; Zhao et al., 2014).
In contrast, RNA-seq has obvious advantages in these aspects
(Russo et al., 2003; Wang et al., 2009; Zhao et al., 2014; Zhang
et al., 2015) (Table 1): (1) Ability to detect novel transcripts;
(2) Wider dynamic range of detection; (3) High signal-to-noise
ratio; (4) High reproducibility and low variation. However,
performing RNA-seq-based experiments is more expensive than
microarray-based experiments, and requires extensive technical
and bioinformatic expertise in data analysis (Zhao et al.,
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2014). The cost issue would potentially limit its application in
experimental and clinical medicine. Moreover, a typical RNA-
seq data in various formats was at the scale of GB depending on
the number of samples tested. This presents a potential challenge
for RAW data storage, processing, and analysis (Draghici et al.,
2006). Fortunately, with recent technological advances, the costs
for performing sequencing have declined; thus, RNA-seq is
becoming more affordable than usual to users. Also various data
depositing platforms (such as Gene Expression Ominbus and
ArrayExpress) have emerged, and these platforms significantly
solved the storage issue of large-scale RNA-seq RAW data.
Readers are referred to references (Russo et al., 2003; Draghici
et al., 2006; Wang et al., 2009; Zhao et al., 2014; Zhang et al.,
2015) for details of the advantages and limitations of RNA-seq
and microarray technology.

DATABASE SEARCH

Traditionally, transcriptomic data were included as
supplementary information in published scientific literature.
Nowadays, to meet the need of open data and data sharing,
most of the transcriptomic profiling data were deposited in
ArrayExpress3 and NCBI Gene Expression Ominbus (GEO)4. In
this study, I will summarize part of the datasets that has been
deposited in GEO database with supported publication records.

BASIC BIOINFORMATICS ANALYSIS OF
PUBLISHED DATASETS

Currently, there are many softwares or websites that can help
researchers analyze the data obtained from microarray and RNA-
seq when uploading gene ID list. I summarize here some of the
softwares and websites in Table 2. Basic bioinformatics analysis
of transcriptomic data include the following (Yue and Reisdorf,
2005):

3https://www.ebi.ac.uk/arrayexpress/
4https://www.ncbi.nlm.nih.gov/geo/

TABLE 1 | Comparisons of qPCR array, microarray and RNA-sequencing.

Technology Advantages Limitations

qPCR Array Low-cost; simple Only testing limited number of
genes of interest in specific
pathways

Microarray Low-cost; ability to process
large number of samples;
high-throughput

Low sensitivity for very lowly-or
very highly expressed genes;
high background; difficult to
detect novel transcripts

RNA-seq High accuracy; high sensitivity
and dynamic range; low
background/noise signal;
high-throughput; identify novel
transcripts, splice junctions,
SNPs and non-coding RNAs

High-cost; high data storage

SNPs, single nucleotide polymorphism.

(1) Gene Ontology (GO) analysis. One of the main uses of the
GO is to perform enrichment analysis of target gene sets.
For example, given a set of genes that are up-regulated
under certain conditions, an enrichment analysis will
find which GO terms are over-represented (or under-
represented) using annotations for that gene set. There are
mainly three types of GO analysis, i.e., biological process,
molecular function and cellular component.

(2) Pathway analysis: After transcriptomic studies, we may
find many genes that are differentially expressed under
certain conditions. To summarize the specific pathways
that mediated by those genes, two most commonly
used pathway analysis-PANTHER and KEGG2016 are
frequently used.

(3) Venn diagram analysis of overlapping genes. If multiple
RNA-seq or gene arrays were performed, finding
the overlapping genes can be quickly achieved by
using the venn diagram to show common genes (for
example, overlapping genes upregulated by vector-
based overexpression or pharmacological agonists, but
downregulated by siRNA treatment or pharmacological
inhibitor treatment). This would help define a common
transcriptional program directed by target gene or
therapeutic intervention.

MINING TRANSCRIPTOMIC PROFILING
DATA

Due to the fact that gene microarray or RNA-seq generates
big data that cannot be presented in regular format,
therefore, it is critical to mine the data/information
deposited in publicly available databases and perform related
analysis.

TABLE 2 | Basic bioinformatic tools for gene profiling studies.

Downstream analysis Tool software or website

GO analysis Enrichr:
http://amp.pharm.mssm.edu/Enrichr/
(Chen et al., 2013)

Gene Ontology Consortium:
http://www.geneontology.org/
(Ashburner et al., 2000)

BiNGO: https://www.psb.ugent.be/
cbd/papers/BiNGO/Home.html (Maere
et al., 2005)

Pathway analysis Enrichr:
http://amp.pharm.mssm.edu/Enrichr/
(Chen et al., 2013)

Qiagen Ingenuity pathway analysis:
https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis/

Venn Diagram Gene Venn:
http://genevenn.sourceforge.net/

BioVenn: http://www.biovenn.nl/
(Hulsen et al., 2008)

GO, gene ontology.
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FIGURE 2 | An example of mining existing data from public repository GSE17939 (Ohnesorge et al., 2010) and GSE25145 (Clark et al., 2011). A full list of 27
common genes revealed by both datasets was presented in the right panel. Total number of genes was less than 250 which is due to missing annotations in both
datasets. MEK5CA OE, overexpression of constitutively active MEK5 mutant; HUVEC, human umbilical vein endothelial cells; HEMEC, Human dermal microvascular
endothelial cells.

Analytical Steps
(1) Enter GEO accession number in GEO database
(2) Click “analyze with GEO2R,” which allows users to identify

differentially expressed genes across various experimental
conditions.

(3) Define sample groups and assign all samples
(technical/biological replicates) in each group to minimize
technical variation and improve reproducibility as
instructed5.

(4) Perform the test and analyze top 250 differentially expressed
genes or all whole gene sets. Adjusted p-value (after
multiple-test correction) and log FC (fold change) are two
important parameters for mining the data.

An Example to Mine Gene Profiling Data
To exemplify the utility of data-mining, two transcriptomic
studies GSE17939 (Ohnesorge et al., 2010) and GSE25145
(Clark et al., 2011), utilizing retrovirus-mediated overexpression
of constitutively active mutant of MEK5 (MEK5-CA) in
human primary endothelial cells was compared to study the
transcriptiome of ERK5 activation. For simplicity, top 250

5https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html

differentially expressed gene signature were mapped using venn
diagram. As can be seen from Figure 2, transduction with MEK5-
CA retrovirus, significantly altered 27 common genes in human
umbilical vein endothelial cells and human dermal microvascular
endothelial cells. Among the 27 genes, well-known downstream
genes ensuing ERK5 activation, such as KLF2, KLF4, THBD, and
TEK were identified. Venn diagram analysis also showed that
MEK5-CA overexpression upregulates novel transcripts such as
PLA1A and LINC00520, indicating both transcripts are potential
MEK5 downstream effectors which may regulate endothelial
function.

TRANSCRIPTOMIC PROFILING IN CELL,
ANIMAL EXPERIMENTS AND HUMAN
PATIENTS

Transcriptomic comparisons would facilitate the identification
of differentially expressed transcripts between human diseased
and control samples, in different vascular cell types (endothelial
cells, monocytes/macrophages, and smooth muscle cells), or
in response to different pharmacological/genetic/environmental
perturbations (Musunuru et al., 2017). Three common types of
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transcriptome profiling in vascular biology are summarized as
below (Tables 3–5):

Human Diseased Samples vs. Controls
Comparing different expression profiles of genes in normal
(disease-free, or mild disease, or adjacent non-disease regions)
and pathological tissues in the majority of cases can represent
both a cause and a consequence of the disease. Given the
fate of atherosclerotic plaques can be divided into stabilized
(asymptotic) and vulnerable plaques (symptomic), and most
acute cardiovascular events are caused by the rupture of
vulnerable plaques (Jackson, 2011), thus mining of these data
will yield valuable information regarding key genes that regulate
plaque stability.

Mice Diseased Samples vs. Controls as
well as Cardiovascular Drugs Treatment
vs. Control Treatment
Compared with human samples with vascular diseases, mice
samples are easier to be obtained by diet/chemical induction.
In this regard, ApoE−/− and LDLr−/− mice were two of the
most frequently used mouse strains for transcriptomic analysis in
vascular diseases, atherosclerosis and abdominal aorta aneurysms
(AAAs) in particular (Emini Veseli et al., 2017). In addition, mice
are very useful in evaluating vasculoprotective drugs. Comparing
differential gene expression among aortas from hyperlipidemic
mice treated with drugs or vehicle control could yield important
mechanistic insights into drugs’ vasculoprotective actions and
mechanisms.

Since hyperlipidemia represents a key risk factor that drives
multiple cardiometabolic diseases including atherosclerosis,
Novák et al. (2015) have recently reviewed miRNAs in
cholesterol, fatty acid metabolism and atherosclerosis. This
review highlights the complexity and importance of gene
regulation by miRNA in the context of vascular diseases.
However, the quest for disease-associated miRNA and target
genes has been hampered by research tools, and fortunately, this

TABLE 3 | Gene profiling studies of vascular diseases in human patients.

Sample comparison GEO accession# Reference

Carotid atheroma vs. adjacent
plaque-free carotids

GDS5083 Ayari and Bricca, 2013

Abdominal aorta aneurysms vs.
abdominal aorta control

GDS2838 Hinterseher et al., 2011

Abdominal aorta aneurysms vs.
abdominal aorta control

GSE7084 Lenk et al., 2007

Ruptured vs. stabilized plaques GSE41571 Lee et al., 2013

Early vs. advanced
atherosclerotic plaques

GSE28829 Doring et al., 2012

Peripheral blood from female
atherosclerotic vs.
non-atherosclerotic patients

GSE20129 Liu et al., 2016

Platelets from CAD patient and
healthy control

GSE59421 Kok et al., 2015

CAD, coronary artery disease.

difficulty can be tackled by computational prediction, followed by
target validation (Lagana, 2015).

Gene Profiling Studies in Vascular Cells
Endothelial dysfunction is the underlying cause for multiple
cardiometabolic diseases (Fang et al., 2017). However, endothelial
dysfunction can be prevented by lipid-lowering statins, laminar
flow, as well as naturally occuring phytochemicals. For example,
recently, Maleszewska et al. (2016) has conducted RNA-seq
analysis to interrogate the transcriptome of endothelial cells in
response to fluid shear stress. This deep transcriptomic analysis
of endothelial cells in the context of atheroprotective shear stress,
together with other recently published transcriptomic profiling
data (Qiao et al., 2016), constitute useful resources to further
explore functions of mechanosensitive genes and lncRNAs
in endothelial cell biology. There are also many deposited
GEO datasets evaluating the effects of disease-associated
stimuli (such as angiotensin II and oxidized LDL)/disease-
modifying drugs (such as statins) on smooth muscle cells
function (proliferation and migration) and macrophage
function (inflammation, lipid loading, and polarization). In
the GEO database, mining of these data will advance our
understanding of the patho-mechanisms of atherosclerosis,
which would potentially lead to novel anti-atherosclerotic
therapy.

TABLE 4 | Gene profiling studies of vascular diseases in experimental animal
models.

Sample comparison GEO accession# Reference

Diabetic ApoE−/− mice vs.
control ApoE−/− mice

GDS3755 Bu et al., 2010

ApoE−/− mice + HFD vs.
ApoE−/− mice + ND

GSE83112 Bao et al., 2016

Vitamin E-treated ApoE−/−

mice vs. vehicle treatment
GSE42813 Abd Alla et al., 2013

ApoE∗3 Leiden mice treated
with rosuvastatin and ezetimibe
vs. vehicle

GSE38688 Verschuren et al., 2012

ApoE−/− mice treated with
captopril vs. vehicle

GDS3683 Abd Alla et al., 2010

ApoE−/− mice treated with
rosiglitazone vs. vehicle

GSE28031 Abd Alla et al., 2016

Ang-II induced AAA in
ApoE−/− mice vs. saline
control

GSE17901 Spin et al., 2011

Ang-II induced AAA in
ApoE−/− aorta vs.
AAA-resistant aorta and control
aorta

GSE12591 Rush et al., 2009

Elastase-induced AAA
C57BL/6J mice aorta vs.
control

GSE51228 Maegdefessel et al., 2014

Atherosclerosis prone vs.
resistant regions of ApoE−/−

aorta

GSE13836 Van Assche et al., 2011

AAA, abdominal aorta aneurysms; Ang-II, angiotensin II; HFD, high fat-diet; ND;
normal chow-diet.
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DISCUSSION AND CONCLUSION

Genome-wide transcriptomic analysis by microarray and
RNA-seq emerge as powerful tools for translational research.
Serval studies have conducted microarray and RNA-seq in
parallel to compare the similarity and difference in transcriptome
profiling of target cells/tissues and found that there is a high
concordance between two technologies, suggesting the general
suitability and reliability of both technologies (Bottomly et al.,
2011; Sirbu et al., 2012; Zhao et al., 2014). Both technologies
greatly transformed our traditional method of research into
“discovery”-based method for mechanistic studies, allowing

us to readily evaluate the cell-type and stimulus (or small-
molecule drug)-specific regulation of gene expression. From
these studies, readers can also mine data according to web-based
instructions, and develop a working hypothesis to test whether
gene X is involved in the development and progression of
vascular diseases. Due to the complex nature of transcriptional
regulation, the level of specific transcripts is determined by
both transcriptional machinery and environment (such as
diet, nutrient etc) (Musunuru et al., 2017). Together with
recently emergence of single cell RNA-seq (Linnarsson and
Teichmann, 2016), these biotechnological advances will provide
powerful toolboxes for understanding the vascular transcriptome

TABLE 5 | Gene profiling studies in cultured vascular cells.

Cell type Treatment GEO accession# Reference

Endothelial Cells Different degree of laminar shear stress GSE23289 White et al., 2011

Pulsatile, oscillatory shear stress GSE92506 Huang et al., 2017

Laminar shear stress GSE71164 Maleszewska et al., 2016

Laminar shear stress in young and
senescent cells

GSE13712 Mun et al., 2009

Low shear stress, high shear stress,
reversing flow

GSE16706 Conway et al., 2010

MEK5/CA GSE17939 GSE25145 Ohnesorge et al., 2010;
Clark et al., 2011

Ox-PAPC, TNFα, and IL1β GSE72633 Briot et al., 2015

Acrolein GSE56782 O’Toole et al., 2014

IL4 GSE28117 Tozawa et al., 2011

oxLDL GDS4262 Mattaliano et al., 2009

HDL GSE53315 Tabet et al., 2014

Atorvastatin GSE2450 GSE8686 Boerma et al., 2006, 2008

High glucose GSE30780 Pirola et al., 2011

Vascular Smooth Muscle Cells Ang II GSE38056 Leung et al., 2013

Homocysteine GDS3413 Van Campenhout et al., 2009

Nebivolol or metoprolol GDS2021 Wolf et al., 2008

Atg7-SMC-KO GSE54019 Grootaert et al., 2015

IL1 GSE21403 Alexander et al., 2012

oxLDL GSE36487 Minta et al., 2010

2-methoxyestradiol GSE12261 Rigassi et al., 2015

Fluid shear stress GSE19909 Ekstrand et al., 2010

Macrophages oxLDL GSE54039 GSE32358
GSE54975 GSE58913

Gold et al., 2012; Hu et al.,
2014; Ramsey et al., 2014;
Reschen et al., 2015

Ac-LDL GSE24894 Kim et al., 2011

HDL GSE44034 De Nardo et al., 2014

LPS GSE32359 Gold et al., 2012

CXCL4 GDS3787 Gleissner et al., 2010

Palmitate GSE98303 Oteng et al., 2017

IFNγ and LPS (M1), IL-4 (M2a), IL10
(M2c)

GSE57614 Derlindati et al., 2015

Hypochlorous acid GSE15457 Woods et al., 2009

Simvastatin GSE4883 Tuomisto et al., 2008

GW3965 GSE70444 Ito et al., 2015

STX4 GSE39079 Feldmann et al., 2013

Anti-miR-33 GSE28783 Rayner et al., 2011

MEK5/CA, MEK5 constitutively active mutant; IL, interleukin; oxLDL; oxidized LDL; Ac-LDL, acetylated LDL; HDL, high-density lipoprotein; ox-PAPC, oxidation product of
1-palmitoyl-2-arachidonyl-sn- glycero-3-phosphorylcholine; CXCL4, chemokine (C-X-C motif) ligand 4.
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and represent an import step toward precision cardiovascular
medicine.

Overall, RNA-seq is a high-throughput, and “discovery-based”
approach for investigating transcriptome of different samples.
It is more sensitive in detecting very lowly expressed genes
or extremely highly expressed genes, therefore, offers a wider
dynamic range than traditional microarray (Zhao et al., 2014).
It is replacing microarray and thus becoming the predominant
tool for transcriptome studies in basic, translational and clinical
research (Musunuru et al., 2017). Noteworthy, RNA-seq is also
a powerful tool for investigating non-coding RNA, lncRNAs in
particular [such as SMILR (Ballantyne et al., 2016), MANTIS
(Leisegang et al., 2017), LincRNA-p21 (Wu et al., 2014), Lnc-
Ang362 (Leung et al., 2013), MYOSLID (Zhao et al., 2016),
RNCR3 (Shan et al., 2016)], regulates many facets of vascular
biology (reviewed in Li et al., 2016; Poller et al., 2017),
demystifying the “dark” genome of vascular diseases. These
lncRNA emerge as important players and therapeutic targets
in vascular diseases. However, we have to bear in mind that:
different variables of experimental conditions (such as cell types,
treatment time, and animal models) pose a challenge to make
quantifiable conclusions from published datasets. At least, by

mining and comparing different datasets from different studies,
we can gain a general comprehension on specific genes that are
commonly regulated by the same treatment/disease.

The invention of new datamining tools/softwares is a good
strategy to mine existing data. Recently, a web-based tool,
Transcriptomine (Becnel et al., 2017), was developed to mine
data on dissecting the effects of genetic or pharmacological
interventions on nuclear receptor signaling. We can envisage
that deep mining of the “hiden” data in vascular medicine
will definitely accelerate biomarker discovery and prompts
the identification and functional characterization of novel
therapeutic targets (including coding genes and lncRNAs) in
vascular diseases including atherosclerosis, AAA, and other
rare-occuring vascular diseases. To conclude, mining expression
profiling data from bench to bedside represents a cost-efficient
new avenue for research of precision cardiovascular medicine.
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