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Abstract: Gait phase detection on different terrains is an essential procedure for amputees with a
lower limb assistive device to restore walking ability. In the present study, the intent recognition of
gait events on three terrains based on sEMG was presented. The class separability and robustness of
time, frequency, and time-frequency domain features of sEMG signals from five leg and back muscles
were quantitatively evaluated by statistical analysis to select the best features set. Then, ensemble
learning method that combines the outputs of multiple classifiers into a single fusion-produced
output was implemented. The results obtained from data collected from four human participants
revealed that the light gradient boosting machine (LightGBM) algorithm has an average accuracy
of 93.1%, a macro-F1 score of 0.929, and a calculation time of prediction of 15 ms in discriminating
12 different gait phases on three terrains. This was better than traditional voting-based multiple
classifier fusion methods. LightGBM is a perfect choice for gait phase detection on different terrains
in daily life.

Keywords: locomotion mode recognition; sEMG; ensemble learning; LightGBM

1. Introduction

Reliable powered lower limb exoskeletons and prostheses are of great significance to
restore the gait of patients with lower limb disabilities. Intelligent prostheses are expected
to provide assistance according to the user’s intent. The surface electromyography (sEMG)
signal is the comprehensive effect of electromyography (EMG) and nerve stem electrical
activity on the skin surface of shallow muscles, which can reflect the characteristics of
human motion. The intent recognition of activities and motions based on sEMG has been
widely used in the design of powered prostheses, and rehabilitation robots [1,2].

From existing research work, there are two applications of locomotion recognition
based on sEMG: phase recognition and terrain recognition. The movement state of the
lower limb during human walking is periodicity and repeatability. A gait cycle can be
divided into eight events or periods at most: five events during stance phase and three
events during the swing phase. These are, as follows: initial contact, loading response,
midstance, terminal stance, preswing, initial swing, midswing, and terminal swing [3].
In some literature, load response and preswing events are ignored, and a gait cycle is
divided into six phases. Joshi et al. used a linear discriminant analysis (LDA) classification
algorithm to separate eight phases of gait using four channels of sEMG of the lower limbs,
and the average accuracy was approximately 75% [4]. Peng discriminated six different
gait phases with an average accuracy of 94.1% in a reasonable calculation time [5]. Some
studies considered more realistic gait scenarios, and the gait phases were classified on
different terrains [6], such as level-ground, ramp ascent/descent, and stair ascent/descent.
Recently, researchers have focused their attention to gait events recognition during walking
with cognitive tasks [7,8]. Referring to terrain recognition, the sEMG of the lower limbs
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during walking was acquired to identify five terrains [9]. Huang et al. developed an
algorithm for terrain identification during walking [10], and seven movement modes
were investigated: level-ground walking, stepping over an obstacle, ascending stairs,
descending stairs, ipsilateral turning, contralateral turning, and standing still. In their
study, one phase-dependent classifier was built for the sEMG of one gait phase window, in
which at least one terrain decision could be made. The classification accuracy when using
the phase-dependent classifier was higher than that when using one classifier trained by
the EMG data from the entire stride cycle. In practical applications, phase recognition on a
specific terrain or terrain recognition on a gait cycle is inadequate for prosthetic control. The
prosthesis needs to be able to sense both the gait phase and terrain environment. Therefore,
a locomotion recognition strategy is needed to classify phase events on different terrains
that exist in daily life. Lower limb exoskeletons and prostheses can provide assistance,
according to both gait phase and terrain information.

The feature extraction and selection method is an important issue in achieving the
optimal classification performance in deploying sEMG as a control signal. Many extraction
techniques, including the time domain features, the frequency domain features, the time-
frequency domain features, auto-regression coefficients, and nonlinear features, have been
proposed in the last two decades. Due to the low complexity of extraction methods without
requiring signal transformation, time domain features and auto-regression coefficients have
been used in motion recognition, with focus on real-time performance [11–13]. However,
human motion and the sEMG data have been shown to be non-stationary in nature.
Furthermore, the information of time domain features have weak robustness, and time-
frequency domain features have been shown to be a more efficient tool to extract useful
information from the sEMG signal. Among these techniques, EMG features based on
wavelet analysis have been widely used in applications of pattern classification [14–16]. A
high dimensional feature vector yielded by wavelet analysis can cause an increase in the
learning parameters of a classifier. Therefore, a method of reducing the dimensionality of
the feature vector was proposed. Methods based on the time domain or frequency domain
were used to extract a feature of the wavelet vector [17].

Another important point in EMG motion recognition is the classifier design. With the
continuous innovation of pattern recognition theory, many methods of pattern recognition
have been put forward, such as LDA, support vector machine (SVM), K nearest neighbor
(KNN), decision tree (DT), naïve Bayes, artificial neural network (ANN), to name but
a few. The application of pattern recognition to myoelectric control schemes has been
demonstrated in previous studies by employing various classifiers [18–21]. Furthermore,
classifier fusion methods that combine multiple classifiers had better accuracy, when
compared to any single classifier. Different classifier strategies, such as majority voting and
weighted combination, have been adopted to improve the classification performance of the
traditional classifier [22,23].

The present study discusses the intent recognition of gait events on three terrains
based on sEMG, with the expectation to determining its applicability in reliable powered
lower limb assistive devices. Section 2 details the employed methodology in the study,
which includes the feature extraction, feature selection, and ensemble learning methods
of classification. Section 3 presents the evaluation of features and classifiers. Finally,
discussion and conclusions are shown in Sections 4 and 5.

2. Materials and Methods
2.1. Participants

Four male subjects were recruited by convenience sampling. They were 21.50 ± 0.58 years
old, 172.5 ± 5.0 cm tall, and 65.75 ± 10.90 kg in weight. All subjects had no history of
neurological disorders, and can walk unassisted in daily life. They provided a written
informed consent prior to participating into the study. The experimental protocol was
approved by the South-Central University for Nationalities (Wuhan, China).
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2.2. Experimental Protocol

Each subject was instructed to walk on three terrains: (1) The subject walked back
and forth a 5-m long section of level ground. (2) The subject walked up a 0.64-m high
four-step staircase. Each step was 0.6 m wide, 0.37 m deep, and 0.16 m high. (3) The subject
walked down the four-step staircase. A 2-m long and 0.64-m high movable platform board
connected the staircase to provide area for the end and beginning of walking. On each
terrain, the subject walked at the preferred walking speed, and 30 trials were conducted.
The subject sat for five minutes to rest after finishing tasks on a terrain.

2.3. The sEMG Recordings

Most of the important muscles in the lower extremities were active at both heel strike
and toe off events. These were the periods of deceleration and acceleration of the legs,
when the body weight is transferred from one foot to the other. Previous studies have
analyzed the map of muscle relationships from the 14 EMG signals of the locomotion
system [24]. Table 1 shows the relationships between all 14 muscles in the muscle space.

Table 1. Gait space of muscles of the lower extremities.

Muscle Space Muscles

Biphasic space Sartorius, Erector spinalis, Adductor longus

Propulsion space
Soleus, Lateral gastrocnemius, Medial

gastrocnemius,
Peroneus longus

Heel strike space Tibialis anterior, Extensor digitorum longus,
Medial hamstrings, Lateral hamstrings

Loading response space Vastus lateralis, Rectus femoris, Gluteus
medius

According to the division of the four muscle spaces, three muscles from the first three
spaces and two muscles from the fourth space were chosen for the present experiments.
The monitored muscles were the tibialis anterior (TA), medial gastrocnemius (MG), rectus
femoris (RF), vastus lateralis (VL), and erector spinalis (ES).

After careful preparation of the skin, the activity of five left lower limb and back
muscles were recorded using wireless surface EMG electrodes (Delsys Trigno System,
Natick, Massachuestts, USA). The location of each muscle belly was found using various
anatomical landmarks for reference [25]. The EMG electrodes were secured to the body
using double-sided tape and athletic bandage, in order to minimize the motion artifact. The
data was filtered within 10–850 Hz, and sampled at 1926 Hz. During walking, the toe off
(TO), toe strike (TS), heel off (HO), and heel strike (HS) events in a gait cycle were extracted
through the foot pressure insole data sampled at 148 Hz (FSR Adapter, Delsys Trigno
System). All data were transmitted to the EMG acquisition software on the computer by
Wi-Fi (Figure 1).

Figure 1. The wireless EMG acquisition system.
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2.4. Data Preprocessing

The raw EMG data was resampled to 500 Hz, bandpass filtered at 10–150 Hz, and
notch filtered to remove 50 Hz and its harmonics components. Next, the wavelet denoising
algorithm was used to subtract the motion artifact due to electrode movement during
walking. The foot pressure data was also resampled to 500 Hz. Then, the TO and HS gait
event timings were extracted. The consecutive EMG data on the three terrains were divided
into gait cycles, according to the left heel strike event timings. A gait cycle occurred over
the time between a HS event and consequent HS event. The TO event was relative to the
beginning of the swing phase, and the HS event was relative to the beginning of the stance
phase. During walking on the stair descent terrain, although the toe touched the staircase
before the heel, the cycles were still picked based on the timing of the HS.

After removing the EMG data during the gait cycle transition to and from rest, and
data with poor quality, a subject completed 49± 18 cycles of ground walking, 41 ± 9 cycles
of stair ascents, and 35 ± 2 cycles of stair descents on average. Pattern recognition was
performed on four analysis windows aligned with the HS and TO gait events. These
were, as follows: immediately after HC (Post-HC), prior to TO (Pre-TO), immediately after
toe-off (Post-TO), and prior to the next HC (Pre-HC). For each analysis window, a set of
features was calculated, and provided to the pattern classifier. One of the challenges in
using EMG signals to classify a user’s movement pattern is that the recorded EMG signals
are time-varying. The features of EMG signals from the leg and back muscles on analysis
windows with short duration generally show large variations within the same gait mode,
which might result in low performance for pattern recognition. A larger length segment of
EMG has a stationary property, but imposes high computational load and a challenge to
perform real-time prosthesis control. Real-time constraints enforce a delay time of less than
300 ms between the onset of muscle contraction made by a subject, and the corresponding
motion in a device [26]. In the literature, less 256-ms transient EMG signals were used to
obtain high movement classification accuracy [10]. These results imply a segment of EMG
signals with a length of 256 ms, although time-varying, contain enough information to
estimate a motion mode. Based on the study above, the duration of each analysis window
was defined as 200 ms for the present study. In real-time motion control scenarios, enough
time (at least 100 ms) can be left for features computation, classification, control commands
generation, and prosthesis device response. The definition of four analysis windows in a
gait cycle were shown in Figure 2. It is noteworthy that data overlapping was observed
between the Post-TO and Pre-HC windows for the tasks of level-ground walking and
descending stairs. For level-ground walking, subject #2, #3, #4 showed an maximum of 22,
1 and 40 ms of data overlapping separately; for the task of descending stairs, subject #3,
had 16 data overlapping, ranging from 8 to 60 ms.

Figure 2. Four analysis windows aligned with heel contact (HC) and toe-off (TO).
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2.5. Data Analysis
2.5.1. Feature Extraction

A feature is an individual measurable property of the process being observed [27].
Many feature extraction techniques have been proposed in several domains. Due to the
implementation and computation simplicity, time domain features and auto-regression
coefficients are the most popular in EMG movement recognition. In the present study,
12 features were preliminary selected, which included the mean absolute value (MAV),
Willison amplitude (WAMP), number of zero crossings (ZC), waveform length (WL),
number of slope sign changes (SSC), logarithm of variance (LogVAR), root mean square
(RMS), 75% quantile (Q3), and the four coefficients of the fourth order auto-regressive
model (AR1, AR2, AR3 and AR4). Furthermore, frequency domain features were commonly
used to detect neuromuscular disease and muscle fatigue [28,29], and used for EMG hand
movement recognition in few cases [30,31]. Five features in the frequency domain were
evaluated. These were, as follows: median frequency (MDF), mean frequency (MNF),
frequency ratio (PR), peak frequency (PKF), and mean power (MNP). Due to the non-
stationary characteristic of human motion and EMG data, time-frequency domain features
have been shown to be more representative of these types of data. Features based on
discrete wavelet transform (DWT) have been widely adopted to extract useful information
from the EMG signal [32,33]. The Daubechies (Db) wavelet family has been proven to be
the most suitable wavelet for EMG signal analysis. However, the high dimensional feature
vector yielded by DWT can lead to the increase in the classifier’s learning parameters. In
order to reduce the dimensionality of the feature vector, the single feature statistic was
calculated from the wavelet coefficient array. In the present study, the Db1, Db4 and
Db7 wavelet bases were selected, and the decomposition level was set at 3. The DWT
respectively generates the coefficient subsets at the third level approximation (cA3), and the
first to the third level details (cD1, cD2 and cD3). In general, the low-frequency components
(cA3 and cD3) of the EMG always contain an irrelevant low-resolution background, while
the first and second decomposition levels (cD1 and cD2) are similar to the original EMG
signal. Therefore, the investigators chose signals cD1 and cD2 to calculate the MAV, WAMP
and WL features. Finally, 18 (3 wavelet bases ×2 decomposition levels ×3 features) time-
frequency domain features were obtained. The MAV of the cD1 obtained through the Db1
wavelet was called Db1-cD1-MAV, and so on. The selection of wavelet bases, coefficient
subsets and feature statistics were based on the results of existing literature [17,34,35].

2.5.2. Feature Selection

Certain features can give good results in certain environmental conditions. The focus of
the feature selection was to select a subset of property from the input, which can efficiently
describe the input data, while reducing the effects of noise or irrelevant variables, and
still providing good prediction results [36]. In general, there are two methods of feature
selection: the measure of classification accuracy and the evaluation using statistical criteria.
The first method evaluates EMG features through prediction results, depending on the
classifier type. The second method aims to quantify the classification ability of the feature
space. The present study focused on the second feature selection method. Three existing
statistic criteria were used to evaluate the 35 EMG features above: the Davies-Bouldin
index [37], scattering index [38], and rate between the Euclidean distance and standard
deviation [39].

(1) Davies-Bouldin (DB) index The DB index is an evaluation metric for cluster separabil-
ity, which is calculated, as follows:

DB =
1
L

L

∑
i=1

max
i 6=j

Dii + Djj

Dij
(1)

where: L is the total number of classes, and set to 12 (four phases in three terrains); Dii
and Djj are the dispersions of the ith and jth classes, respectively; Dij is the Euclidean
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distance between the mean values. As observed from the formula: the DB index is
the average of the worst situation distances of two by two clusters. A lower DB index
implies a higher degree of cluster separability.

(2) Scattering index The scattering index considers the combination of all clusters to
estimate the feature space quality. This is calculated, as follows:

J =
trace(SW)

trace(SB)
(2)

where: SW and SB are the covariance matrices of all classes and between-classes,
respectively. It is obvious that the lower value of the scattering index signifies a better
feature space quality.

(3) The rate between the Euclidean distance and standard deviation (RES) The RES index
considers both separation index between classes and variation index in the same class.
This can be expressed, as follows:

RES =
1

L(L− 1)

L

∑
i,j=1

RESij =
1

L(L− 1)

L

∑
i,j=1

Dij
1
2 (δii + δjj)

(3)

where: Dij is the Euclidean distance between the mean values of the ith class and
jth class; δii and δjj are the standard deviations; RES is the average of RESij from all
possible combinations of L classes. A good classification performance can be obtained
when the RES index is high. The DB index, scattering index and RES index of the
35 EMG features were calculated. For the convenience of comparison, the inverse of
RES index (invRES) was obtained. Features with lower values for these three indexes
had better class separability.

(4) Sensitivity to noise (STN) In addition to class separability, the sensitivity of feature
space to environmental noise was considered to evaluate robustness. The standard de-
viation of the index among the four subjects was calculated to measure the robustness
of the features. A lower standard deviation implies stronger robustness.

STN =

√√√√√ n
∑

i=1
(indexi − index)

2

n− 1
(4)

where: index is the mean value of the n subjects; indexi is the value of i-th subject; n
is set to four. Features with good class separability and robustness were selected to
form a feature vector, and these were provided to the classifier.

2.6. Classification

Two ensemble learning methods were considered in the present study: classifier fusion
and light gradient boosting machine.

2.6.1. Classifier Fusion

A certain classifier fusion method can obtain a classification accuracy that is better than
that can be obtained from individual classifiers. The flowchart for the multiple classifier
strategy employed in the present study is shown in Figure 3.

The N features were extracted from the sEMG data. Then, individual classifiers
were generated from each feature. The class labels generated by N classifiers were subse-
quently provided to the fusion method, in order to obtain a final classification result. The
investigators set N as 6 in the present study.

In many classification methods, LDA has been proven to be highly efficient and
unsusceptible to overfitting, and SVM has a high potential for recognizing patterns that are
more complex. LDA and SVM classifiers have been applied to upper limb motion and gait
phase classifications, in order to obtain the good classification results [7,20]. In the present
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study, the investigators applied both the LDA and SVM classifier to recognize lower limb
motion from sEMG signals. Two kinds of fusion methodologies were investigated.

Figure 3. Flow diagram for the multiple classifier strategy.

(1) Plurality majority voting fusion For majority voting fusion, a simple summation of
class labels was used to decide the classification result. The equation is, as follows:

li =
N

max
j=1

L

∑
i=1

li, j (5)

where: l is the class label, L is the number of classes, and N is the number of classifiers.
The result of the fusion method is the class label with the greatest number of votes in
L class labels. If more than one label gets the most votes at the same time, one will be
randomly selected.

(2) Weighted majority voting fusion In general, individual classifiers are not of identical
accuracy when classifying a class. A classifier with higher accuracy in a class should
have a greater say in the final class label. Hence, it is reasonable to weigh the classifiers.
This can be implemented based on the following expression:

li =
N

ma
j=1

x
L

∑
i=1

bidi, j (6)

where: d is the individual result of a classifier, and b is the numerical weight assigned
to this.

The L-dimensional quantity w was assigned to each classifier, which can be expressed
as below:

w = [b1 b2 b3 . . . bL] (7)

For w, bi (1≤ i≤ L) represents the confidence of the classifier in predicting the ith class.
The N class labels from N classifiers were combined by the summation of the columns

of the matrix shown below:

W = [w1 w2 w3 . . . wN ]
T = (bij)N×L (8)

After the summation of the columns, the L values were compared, and the maximum
was designated as the final classification result.

2.6.2. Light Gradient Boosting Machine

Light gradient boosting machine (LightGBM) is an effective parallel algorithm for
the gradient boosting decision tree. LightGBM leverages the local statistical information
contained in each machine through two-stage local voting and a global voting process,
in order to identify the most informative attribute, and uses the full-grained histogram
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algorithm to speed up the arithmetic process. Experiments have shown LightGBM can
achieve high accuracy at a very low communication cost [40].

2.6.3. Training and Testing Model

The EMG feature data were segmented into the train data set and test data set. K-
fold stratified cross-validation was used for the more precise estimation of classification
performance. All available data were randomly partitioned into K subsets. Stratification
means that the class abundance in the original feature data is maintained in each subset.
Among these K subsets, a single subset was retained as the validation data for testing
the model, and the remaining K−1 subsets were used as training data. Then, the cross-
validation process was repeated for K times (folds), with each of the K subsets used exactly
once as validation data. The K results from these folds can be averaged (or otherwise
combined) to produce a single estimation. The stratified 5-fold cross-validation was used
for the present study.

In the method of weighted majority voting fusion, a 5-fold cross-training, similar to
the 5-fold cross-validation, was used to obtain the K-dimensional weights of each classifier.
The K−1 subset training data was further partitioned into five subsets. The weights of
the individual classifiers derived from the classification results of the training data were
applied to validate the data for testing the model.

3. Results
3.1. The sEMG Data

Figure 4 illustrates the typical sEMG signals of three gait cycles during level ground
walking. Figures 5 and 6 illustrates the sEMG signals of two gait cycles during walking
up and down the stairs, respectively. It can be observed from these figures that the data
measured in three experimental scenarios had an obvious difference for the reason that the
same muscle activates at different time points of a gait cycle.

Figure 4. Typical sEMG signals during level ground walking.

3.2. Features Evaluation

The class separability, index mean value, and standard deviation of the 35 EMG
features are shown in Figure 7. The results show that all features have a similar DB Index.
The ZC, SSC features of the time domain, AR1~AR4, and MNF, PR and PKF features of
the frequency domain had higher values in both the Scattering and invRES indexes. The
LogVAR, MDF, MNP and DbN-cDM-WAMP (N = 1, 4 and 7; M = 1 and 2) features of the
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time-frequency domain had higher values only in the invRES index. In addition, higher
indexes were usually accompanied by higher standard deviations.

Figure 5. Typical sEMG signals during walking up the stairs.

Figure 6. Typical sEMG signals during walking down the stairs.

A similar DB index failed to distinguish the class separability of the features. Most
features with a high invRES index also have high values in the scattering index. Further-
more, due to the lower complexity of computation and implementation, when compared
to the other two methods, the invRES index can be a more effective indicator to evaluate
the features.

Based on these above calculation results, three time-domain features and three time-
frequency domain features were chosen as classifier inputs. These were, as follows: MAV,
WL, RMS, Db1-cD2-MAV, Db1-cD1-WL, and Db1-cD2-WL.

3.3. Classification Results

The features were individually extracted from the data collected from the four subjects.
Each of the six chosen features were ran on the LDA and SVM classifiers, in order to
classify the twelve locomotion. Five types of ensemble learning methods were considered:
majority voting fusion based on LDA (MV-LDA), majority voting fusion based on SVM
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(MV-SVM), weighted majority voting fusion based on LDA (WV-LDA), weighted majority
voting fusion based on SVM (WV-SVM), and LightGBM.

Figure 7. The separability index of features.

3.3.1. One Classifier

The classification performance of six features for the four subjects is graphically shown
in Figures 8–11. The legends were placed on the right side of the figures. The number 1,
2 and 3 in the brackets refer to the level-ground, stair ascent, and stair descent terrains,
respectively. In Figure 8, it can be observed that the classification accuracy of all features in
the LDA classifier can reach up to 100% for Post_TO on the stair descent terrain. The worst
available classification accuracy was 25% for Pre_HC on the stair ascent terrain using the
Db1-cD1-WL feature for subject #1. In the SVM classifier, the classification accuracy for
Post_TO on the stair ascent terrain was lower than 100%, but the classification accuracy for
Pre_HC on the stair ascent terrain increased to over 52%. These results show that these
classification accuracies are mutually exclusive, and that no single feature has an equal
classification accuracy for all classes. A similar inference can be made from Figures 9–11.

Figure 8. Classification performance of individual sEMG features; Subject #1.
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Figure 9. Classification performance of individual sEMG features; Subject #2.

Figure 10. Classification performance of individual sEMG features; Subject #3.

Figure 11. Classification performance of individual sEMG features; Subject #4.

Tables 2 and 3 show the overall classification accuracy for the twelve locomotion. It
can be observed that LDA performs significantly weaker with the same feature in most
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cases. The SVM classifier can offer classification performance that matches or exceeds
LDA classifier.

Table 2. Overall classification accuracy of individual sEMG features, LDA classifier.

Subject
LDA

MAV WL RMS Db1-cD2-
MAV

Db1-cD1-
WL

Db1-cD2-
WL

S1 91.82% 89.09% 86.14% 88.86% 84.32% 85.45%
S2 81.85% 88.89% 81.30% 84.44% 87.96% 82.96%
S3 86.3% 84.09% 83.26% 82.02% 83.68% 78.93%
S4 79.33% 80.31% 77.95% 77.95% 79.92% 74.21%

Table 3. Overall classification accuracy of individual sEMG features, SVM classifier.

Subject
SVM

MAV WL RMS Db1-cD2-
MAV

Db1-cD1-
WL

Db1-cD2-
WL

S1 91.59% 91.36% 90.23% 88.64% 87.27% 85.45%
S3 84.26% 89.26% 85% 86.3% 88.52% 86.3%
S4 88.64% 85.74% 86.78% 85.33% 82.85% 78.51%
S5 81.1% 82.68% 80.91% 82.09% 83.27% 80.71%

3.3.2. Ensemble Learning

The classification performance of ensemble learning method for Subject #1 is shown
in Figure 12. The classification accuracy based on the LDA classifier and SVM classifier can
be observed in the two sub-graphs above and below the figure. For a better comparison of
performance, a circled black line, a dashed red line, an asterisked red line, and a circled
blue line were added, indicating the average performance of the six features, and the
performance of the majority voting fusion, the weighted majority voting fusion, and
LightGBM, respectively.

Figure 12. Classification performance for the ensemble learning method; Subject #1.

First, it can be observed that there was a more dramatic improvement for the SVM
classifier, when compared to the LDA classifier (Figure 12). This result is consistent with
the result in Figure 8.

Second, the improvement in classification accuracy for most locomotion can be ob-
served in the majority voting fusion and weighted majority voting fusion methods, when
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compared to the average performance of the six features. The only exception is the Pre_HC
on the stair ascent terrain in the LDA classifier. In Figure 8, this locomotion had the worst
classification accuracy, regardless of the feature used. In this case, ensemble learning based
on multiple classifiers may exhibit a poorer performance. The reason is that multiple
classifiers fuse the classification results of an individual classifier. If the latter yields a
similar classification performance, the voting fusion would allow good to be better and
bad to be worse.

Third, the majority voting fusion method and weighted majority voting fusion method
are close in terms of classification performance. The reason is that the weights of indi-
vidual classifiers in the weighted majority voting fusion method were derived from the
classification results of the training data. Due to the similar classification performance of
the individual classifier in the training data, the individual classifier would have a similar
weight vector. In order to obtain better results, the multiple classifiers based method should
guarantee a certain classification accuracy of the individual classifier, and also allow for a
high degree of classification performance independence under various locomotion.

Finally, an improvement in the classification accuracy of most locomotion can be
observed in LightGBM, when compared to the other three results, regardless of the classifier.
Although the Pre_HC on level-ground, and the Post_HC and Post_TO on the stair ascent
terrain had lower classification accuracies in LightGBM, when compared to those in the
two voting fusion methods, an improvement in the classification accuracy of Pre_HC on the
stair ascent terrain can be acquired in LightGBM. It can be observed that the classification
accuracy for this locomotion improved from 44.44% to 75.00%, when compared to the
methods in the LDA classifier, improved from 72.22% to 75.00%, when compared to
methods in the SVM classifier.

Similarly, Figures 13–15 show the classification performance of the ensemble learning
method for Subject #2–#4, respectively. The same results shown in Figure 12 can be
extended to Figures 13–15. In Figure 13, a very dramatic improvement in the classification
accuracy for Pre-HC on the stair descent terrain can be observed in LightGBM (from
59.38% to 84.36%), when compared to the other methods, and there was a considerable
improvement in the classification accuracy of Post_HC on the stair ascent terrain (from
67.74% to 77.42%) and the Pre_HC on the stair ascent terrain (from 70.97% to 87.1%) for
Subject #2. In Figures 14 and 15, it was also revealed that LightGBM had an improved
classification performance for Subject #3 and #4.

Figure 13. Classification performance for the ensemble learning method; Subject #2.

Tables 4–7 illustrate the detailed results of the five ensemble learning methods. The
average classification accuracy for LightGBM among four subjects was 93.1%.
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Figure 14. Classification performance for the ensemble learning method; Subject #3.

Figure 15. Classification performance for the ensemble learning method; Subject #4.

Table 4. Detailed classification performance for the five ensemble learning methods; Subject #1.

Subject Terrain Phase
Classifier

MV-
LDA

MV-
SVM

WV-
LDA

WV-
SVM LightGBM

S1

Ground

Post_HC 97.37% 94.74% 97.37% 94.74% 97.37%
Pre-TO 97.37% 100% 97.37% 100% 84.21%

Post_TO 97.37% 92.11% 94.74% 92.11% 97.37%
Pre-HC 97.37% 100% 97.37% 100% 100%

Stairs
Ascent

Post_HC 88.89% 91.67% 88.89% 88.89% 83.33%
Pre-TO 86.11% 88.89% 88.89% 86.11% 94.44%

Post_TO 97.22% 97.22% 100% 100% 94.44%
Pre-HC 47.22% 72.22% 44.44% 72.22% 75%

Stairs
Descent

Post_HC 97.22% 100% 97.22% 100% 97.22%
Pre-TO 94.44% 100% 94.44% 100% 97.22%

Post_TO 100% 100% 100% 100% 97.22%
Pre-HC 75% 69.44% 75% 72.22% 88.89%

Overall 89.77% 92.27% 89.77% 92.27% 92.73%

Table 5. Detailed classification performance for the five ensemble learning methods; Subject #2.

Subject Terrain Phase
Classifier

MV-
LDA

MV-
SVM

WV-
LDA

WV-
SVM LightGBM

S2 Ground

Post_HC 86.11% 91.67% 86.11% 90.28% 93.06%
Pre-TO 94.44% 100% 94.44% 100% 98.61%

Post_TO 98.61% 100% 98.61% 100% 98.61%
Pre-HC 81.94% 90.28% 80.56% 90.28% 94.44%
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Table 5. Cont.

Subject Terrain Phase
Classifier

MV-
LDA

MV-
SVM

WV-
LDA

WV-
SVM LightGBM

Stairs
Ascent

Post_HC 70.97% 70.97% 70.97% 67.74% 77.42%
Pre-TO 87.10% 74.19% 83.87% 74.19% 87.10%

Post_TO 100% 100% 100% 100% 100%
Pre-HC 80.65% 70.97% 80.65% 70.98% 87.10%

Stairs
Descent

Post_HC 81.25% 81.25% 84.38% 90.63% 90.63%
Pre-TO 93.75% 100% 90.63% 96.88% 93.75%

Post_TO 100% 90.63% 100% 90.63% 93.75%
Pre-HC 59.38% 59.38% 59.38% 59.38% 84.36%

Overall 87.41% 88.70% 87.04% 88.70% 92.96%

Table 6. Detailed classification performance for the five ensemble learning methods; Subject #3.

Subject Terrain Phase
Classifier

MV-
LDA

MV-
SVM

WV-
LDA

WV-
SVM LightGBM

S3

Ground

Post_HC 86.67% 90% 76.67% 86.66% 90%
Pre-TO 100% 100% 96.67% 100% 100%

Post_TO 90% 100% 90% 100% 96.67%
Pre-HC 86.67% 80% 76.67% 83.33% 86.67%

Stairs
Ascent

Post_HC 82.69% 90.38% 82.69% 88.46% 92.31%
Pre-TO 76.92% 88.46% 75% 88.46% 94.23%

Post_TO 100% 100% 100% 100% 98.07%
Pre-HC 69.23% 76.92% 73.08% 76.92% 92.31%

Stairs
Descent

Post_HC 92.31% 97.44% 92.31% 100% 97.44%
Pre-TO 74.36% 74.36% 79.48% 76.92% 89.74%

Post_TO 97.44% 92.31% 97.44% 92.31% 94.88%
Pre-HC 87.18% 82.05% 87.18% 82.05% 92.31%

Overall 86.16% 89.05% 85.33% 89.26% 93.8%

Table 7. Detailed classification performance for the five ensemble learning methods; Subject #4.

Subject Terrain Phase
Classifier

MV-
LDA

MV-
SVM

WV-
LDA

WV-
SVM LightGBM

S4

Ground

Post_HC 86.67% 84.44% 86.67% 84.44% 97.37%
Pre-TO 100% 100% 100% 100% 84.21%

Post_TO 93.33% 93.33% 93.33% 91.11% 97.36%
Pre-HC 55.56% 84.44% 55.56% 84.44% 100%

Stairs
Ascent

Post_HC 66.67% 64.58% 56.25% 52.08% 83.33%
Pre-TO 85.42% 79.12% 81.25% 77.08% 94.44%

Post_TO 95.83% 93.75% 95.83% 95.83% 94.44%
Pre-HC 66.67% 68.75% 68.75% 72.91% 75%

Stairs
Descent

Post_HC 73.53% 85.29% 73.53% 88.24% 100%
Pre-TO 94.12% 91.18% 97.06% 91.12% 97.22%

Post_TO 100% 100% 100% 100% 100%
Pre-HC 55.88% 73.53% 55.88% 76.47% 88.89%

Overall 81.1% 84.45% 80.12% 83.86% 92.73%
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The macro-F1 score of the five models were calculated to measure the generalization
performance of five classification algorithms. The definition of the macro-F1 score is given,
as follows:

macro− F1 =

2× 1
L

L
∑

i=1
Pi × 1

L

L
∑

i=1
Ri

1
L

L
∑

i=1
Pi +

1
L

L
∑

i=1
Ri

(9)

where: L is 12, and Pi and Ri are the precision and recall of the ith locomotion classification,
respectively.

The macro-F1 score results are shown in Table 8. LightGBM had the best generalization
classification performance among the five algorithms.

Table 8. The macro-F1 score results for the five ensemble learning methods.

Subject macro-F1

MV-LDA MV-SVM WV-LDA WV-SVM LightGBM
S1 0.896 0.923 0.896 0.923 0.928
S2 0.867 0.867 0.86 0.867 0.918
S3 0.869 0.892 0.858 0.895 0.94
S4 0.818 0.849 0.807 0.844 0.928

Average 0.863 0.883 0.855 0.882 0.929

Table 9 illustrates the calculation time of the five models, in which NS is the number
of samples to be classified. In the present study, the calculation was performed using the
following: I7-8550U, 1.8 GHz CPU and 16G RAM, and Pycharm IDE. It can be observed
that the SVM classifier had a slightly longer computational time, when compared to the
LDA classifier, and that the computational complexity for the weighted majority voting
method was larger, when compared to the majority voting method.

Table 9. Calculation time.

Subject Ns
MV-LDA MV-SVM WV-LDA WV-SVM LightGBM

TTraining TPrediction TTraining TPrediction TTraining TPrediction TTraining TPrediction TTraining TPrediction

S1 440 0.043 0.014 0.1 0.016 0.113 0.015 0.231 0.02 1.999 0.012
S2 540 0.075 0.016 0.13 0.022 0.294 0.025 0.132 0.018 3.216 0.02
S3 484 0.042 0.016 0.119 0.023 0.115 0.017 0.276 0.026 2.501 0.014
S4 508 0.062 0.018 0.124 0.023 0.113 0.016 0.274 0.025 2.071 0.013

LightGBM had an average of 2.4 s for training computational time, this far outweighs
the other four methods. However, it obtains a short average prediction time (15 ms). Hence,
LightGBM is still a more ideal model.

4. Discussion

In this paper, locomotion mode recognition for walking on three terrains based on
sEMG of lower limb and back muscles was presented. Previous studies have used classi-
fication algorithm to separate several phases of gait on a specific terrain or differentiate
terrains on gait cycles [4,5,9,10]. To the authors’ knowledge, this is the first study in which
gait phase events on more than one terrain have been classified to provide both gait phase
and terrain information.

Researchers have investigated the sEMG of the lower limbs during walking to identify
lower limbs motion [41]. A previous study has detect the knee motion intention from
sEMG of erector spinalis muscle with a high accuracy (>95%) [42]. Considered the map of
muscle relationships of the locomotion system, erector spinalis of back is active around
both heel strike and toe-off during walking. This paper chooses this back muscle and other
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four lower limb muscles for walking experiments. The usage of multiple EMG electrodes
increases data dimensions and computation time. Thus, combinations of fewer EMG
channels to obtain an optimal electrodes array will be studied in the future.

Feature extraction and selection is an important step in locomotion mode pattern
recognition. Previous studies have shown sEMG features based on the time domain
information and the wavelet transform could achieved considerable accuracy for classifying
hand movements and gait events [6,7,11,21]. This paper uses statistic criteria to evaluate
the 35 EMG features of time domain, frequency domain and time-frequency domain. Due
to the lower complexity of computation and better distinguishing ability, when compared
to Davies-Bouldin index and scattering index, the rate between the Euclidean distance and
standard deviation is a more effective indicator to evaluate the features. Three time-domain
features and three Daubechies wavelet transform based time-frequency domain features
which have better class separability and stronger robustness are chosen as inputs of LDA
or SVM classifiers.

Classification results on individual classifier and multiple classifier fusion both show
LDA performs significantly weaker than SVM in most cases. This result is consistent with
that in previous researches [43]. Although the improvement in classification accuracy for
most locomotion can be observed in the majority voting fusion and weighted majority
voting fusion methods, when compared to the average performance of individual classifier,
multiple classifiers methods exhibit poor performance in the locomotion that individual
classifier do not accurately identify. The reason is that individual classifier has similar
low classification performance, voting fusion yields a worse accuracy. It can also explain
why the majority voting fusion method and weighted majority voting fusion method are
close in terms of classification performance. Continuous efforts on feature extraction and
selection would be required to obtain features which can guarantee both good and inde-
pendence classification performance under various locomotion. Then better classification
performance on voting fusion methods can be expected. In addition, feature based on
other signals (accelerometer signals or angular velocity signals) can be used to train a
independence classifier, improving classification accuracy of some locomotion which can
not be better differentiated by sEMG feature based classifier.

LightGBM is superior to traditional fusion methods in locomotion mode recognition.
Improvement in the classification accuracy of locomotion on which individual classifier
and multiple classifier fusion exhibit poor performance can be acquired in LightGBM.
LightGBM had a better performance in the worst case scenario. Although its training
computational time outweighs the other methods, LightGBM obtains a short average
prediction time. Futhermore, the macro-F1 score results show LightGBM had the best
generalization classification performance among the five algorithms.

This research will be go on to advance in the following parts: In terms of electrodes,
different neuromuscular control information will be studied to obtain an optimal sEMG
electrodes array. In terms of signal source, accelerometer signals or angular velocity signals
will be used to fuse with sEMG. In addition, EEG-EMG coherence between the motor cortex
and lower leg muscle which can reveal engagement of motor cortex during locomotion
tasks is expected as an effective metrics for gait identification. But there is no acknowledged
way to remove motion artifacts in EEG during walking. In terms of terrains, application
scenarios will consider other terrains of daily living, such as ramp, obstacle and so on.
Finally, the research will demonstrate the accuracy of real-time classification.

5. Conclusions

The present study analyzed the performance of five ensemble learning algorithms
in recognizing the gait phase events on three terrains that exist in daily life. The time
domain, frequency domain and time-frequency features based on the sEMG of the five
muscles of the lower limb and back were extracted. Then, three feature selection methods
were used to evaluate the class separability and computation complexity of the features.
After the quantitative analysis of features based on the rate between the Euclidean distance
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and standard deviation (RES) feature selection method, the mean absolute value (MAV),
waveform length (WL), root mean square (RMS), absolute mean value of Db1 wavelet
decomposition detailed coefficient on level 2 (Db1-cD2-MAV), waveform length of the
DB1 wavelet decomposition detailed coefficient on level 1 (Db1-cD1-WL), and waveform
length of the Db1 wavelet decomposition detailed coefficient on level 2 (Db1-cD2-WL) were
chosen as the optimal feature set. Furthermore, the accuracy rate, macro-F1 score, and
calculation time of the five ensemble learning algorithms were synthetically considered.
On one hand, the LightGBM algorithm was proven to have a better average accuracy rate
and generalization performance, when compared to the traditional voting fusion decision
making algorithm in locomotion mode recognition. On the other hand, LightGBM obtains
a comparable prediction time to other algorithms, although this has a larger training
computational time. Overall, LightGBM is a more superior model to effectively improve
the recognition rate of locomotion mode.
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