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ABSTRACT Biomedical vocabularies and ontologies aid in recapitulating biological knowledge. The
annotation of gene products is mainly accelerated by Gene Ontology (GO), and more recently by Medical
Subject Headings (MeSH). Here, we report a suite of MeSH packages for chicken in Bioconductor, and
illustrate some features of different MeSH-based analyses, including MeSH-informed enrichment analysis
and MeSH-guided semantic similarity among terms and gene products, using two lists of chicken genes
available in public repositories. The two published datasets that were employed represent (i) differentially
expressed genes, and (ii) candidate genes under selective sweep or epistatic selection. The comparison of
MeSH with GO overrepresentation analyses suggested not only that MeSH supports the findings obtained
from GO analysis, but also that MeSH is able to further enrich the representation of biological knowledge
and often provide more interpretable results. Based on the hierarchical structures of MeSH and GO, we
computed semantic similarities among vocabularies, as well as semantic similarities among selected genes.
These yielded the similarity levels between significant functional terms, and the annotation of each gene
yielded the measures of gene similarity. Our findings show the benefits of using MeSH as an alternative
choice of annotation in order to draw biological inferences from a list of genes of interest. We argue that the
use of MeSH in conjunction with GO will be instrumental in facilitating the understanding of the genetic
basis of complex traits.
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Understanding the genetic basis of variation for complex traits remainsa
fundamental goal of biology. Different approaches, including whole-
genome scans and genome-wide expression studies, have been used in
order to identify individual genes underlying economically relevant
traits in a wide spectrum of agricultural species. These studies usually

generate lists of genes potentially involved in the phenotypes under
study. The challenge is to translate these lists of candidates genes into a
better understanding of the biological phenomena involved. It is in-
creasingly accepted that overrepresentation, or enrichment analysis
(Drăghici et al. 2003), can provide further insights into the biological
pathways and processes affecting complex traits.

Recently, theMedical SubjectHeadings (MeSH) vocabulary (Nelson
et al. 2004) has been proposed for defining functional sets of genes in
the context of enrichment analysis. MeSH is a controlled life and med-
ical sciences vocabulary maintained by the National Library of Medi-
cine to index documents in theMEDLINE database. Each bibliographic
reference in the MEDLINE database is associated with a set of MeSH
terms that describe the content of the publication. Importantly, MeSH
contains a substantially more diverse and extensive range of categories
than that of Gene Ontology (GO) (Ashburner et al. 2000), which is
probably themost popular among the initiatives for defining functional
classes of genes (Nakazato et al. 2008). Therein, GO terms are classified
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into three domains: biological processes, molecular functions, and cel-
lular components. This ontology has been used successfully for dissect-
ing relevant traits in livestock species (e.g., Peñagaricano et al. 2013;
Gambra et al. 2013). Similarly, eachMeSH term is clustered into 19 dif-
ferent categories; some MeSH categories, such as Diseases, are not in-
cluded in GO, whereas other functional categories, such as Phenomena
and Processes, or Chemicals and Drugs, share similar concepts with
those of GO. The recent availability of MeSH software packages
has rendered agricultural species amenable to MeSH-based analysis
(Tsuyuzaki et al. 2015). For instance, MeSH enrichment analysis has
been applied successfully to mammals, including dairy cattle, swine,
and horse (Morota et al. 2015), and to maize (Beissinger and Morota
2016). These studies showed the potential of MeSH for enhancing the
biological interpretation of sets of genes in agricultural organisms.

The main objective of the current study was to report the availability
ofMeSHBioconductorpackages for chicken, andto illustrate the features
of different MeSH-based analyses, including MeSH-informed enrich-
ment analysis, andMeSH-guided semantic similarity, among terms and
gene products. For this purpose, we used two lists of selected genes
available inpublic repositories: (i) differentially expressed genes reported
in a RNA-seq study (Zhuo et al. 2015), and (ii) candidate genes histor-
ically impacted by selection detected in a whole-genome scan using a
broad spectrum of populations (Beissinger et al. 2016). The results of
the MeSH-based enrichment analysis were contrasted with GO terms.
The use of MeSH and GO terms in functional genomics studies can be
further explored through computing the similarity between significant
functional terms as well as the similarity between significant genes by
leveraging the hierarchies of these two controlled vocabularies.

METHODS
We used two datasets from previously published studies with the
objective of demonstrate some capabilities of different MeSH-based
analyses in chicken. The first dataset includes 263 genes that showed
differential expression in abdominal fat tissue between high and low
feed efficiency broiler chickens (Zhuo et al. 2015). The second data-
set contains 352 genes identified by a whole-genome scan using Ohta’s
between-population linkage disequilibriummeasure, D2

IS, in a panel that
included 72 different chicken breeds (Beissinger et al. 2016). In both
datasets, the list of background genes was defined as all annotated
genes in the chicken genome available in NCBI. Below we present
the MeSH analyses coupled with several example code for illustration
purposes.

The suite of MeSH (Tsuyuzaki et al. 2015) and the GOstats (Falcon
and Gentleman 2007) packages in Bioconductor were used for per-

forming a hypergeometric test in the enrichment analysis. This test
evaluates whether a given functional term or vocabulary is enriched
or overrepresented with selected genes. In particular, the P-value of
observing g significant genes in a functional term (i.e., MeSH or GO
term) was calculated by

P-value ¼ 12
Xg21
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where S is the total number of selected genes, N is the total number
of analyzed genes, and k is the total number of genes in the func-
tional term under study. The meshr package has a feature to perform
a multiple testing correction by choosing from Benjamini-Hochberg,
Q-value, or empirical Bayes method. We used a lenient P-value of
0.05 for the illustrative data in order to directly compare the results
fromMeSH enrichment analysis with those from the GOstats pack-
age, which does not offer a multiple testing correction option. Al-
though a multiple testing correction reduces false positives, if we
view MeSH analysis as a tool to generate hypotheses or to obtain a
big picture of selected genes for subsequent downstream analysis,
we may want to know the top 10% of MeSH terms regardless of
P-values. The first step of MeSH analysis is to load the namespace of
the packages.

TheMeSH.db package contains the relationship betweenMeSH IDs
and MeSH terms (see box 1). The MeSH.Gga.eg.db is an annotation

package that provides the correspondence between MeSH IDs and
Entrez Gene IDs. This package was created based on gene2pubmed
(ftp://ftp.ncbi.nih.gov/gene/DATA/) that maps Entrez Gene IDs and
PubMed IDs. By using data licensed by PubMed (http://www.nlm.nih.
gov/databases/license/license.html), we then associated PubMed IDs to
MeSH terms. This was followed by merging MeSH terms with MeSH
IDs via NLM MeSH (Tsuyuzaki et al. 2015). The meshr package per-
forms a hypergeometric test and returns significantly enriched MeSH

Figure 1 A cartoon illustrating semantic simi-
larity among MeSH terms in the MeSH hierar-
chy. The semantic similarity measure between
Mesh Term 2 and Mesh Term 3 is greater than
that of Mesh Term 1 andMesh Term 2 because
they are closer in the hierarchy.

Box 1:

library (MeSH.db)
library (MeSH.Gga.eg.db)
library (meshr)
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terms. Once the three packages are loaded, we proceed to create the
object of a parameter classMeSHHyperGParams-class. This object con-
tains all parameters required to run the hypergeometric test (see box 2).

Here, geneIds and universeGeneIds are the vectors of EntrezGene
IDs for selected and background genes, respectively; category is one
of the abbreviation codes for MeSH categories such as D (Chemicals
and Drugs), C (Diseases), A (Anatomy), and G (Phenomena and
Processes); pvalueCutoff is the numeric value for P-value cutoff;
and pAdjust allows users to choose multiple testing methods from
among BH (Benjamini-Hochberg), QV (Q-value), lFDR (empirical
Bayes), or none (unadjusted). Finally, the meshHyperGTest func-
tion accepts the MeSHHyperGParams-class object and performs a
MeSH enrichment analysis (see box 3).

The returned object is MeSHHyperGResult-class, and we can access
the results with the summary function (see box 4).

The summary function returns a data.frame object with infor-
mation about MeSH ID, P-value, MeSH term, Entrez Gene ID, and
PubMed ID.

In addition, the hierarchical structures of MeSH and GO permitted
us tocompute semantic similaritiesbetween functional terms (Lord etal.
2003; Pesquita et al. 2009). This is a metric between two terms on the
basis of their biological meanings of annotation: the closer two terms
are in the hierarchy, the higher the similarity measure is between these
terms. Figure 1 shows aMeSH hierarchy for illustrative purpose. In this
example, the semantic similarity measure between Mesh Term 2 and
Mesh Term 3 is greater than that of Mesh Term 1 and Mesh Term
2 because they are closer in the hierarchy. We employed the in-
formation content-based Jiang and Conrath’s measure (Jiang and
Conrath 1998) to compute the pairwise similarities within GO on-
tologies and MeSH headings. The semantic similarity measure be-
tween two terms t1 and t2 is given by the information content
ICðtÞ ¼ 2 log  pðtÞ, where pðtÞ is the probability of occurrence of
the term t and its children terms in MeSH or GO hierarchy. The se-
mantic distance metric is a function of

Dist ¼ ICðt1Þ þ ICðt2Þ � 2ICðMICAÞ;
where MICA is the most informative common ancestor.

We further computed semantic similarity between selected genes
by aggregating their MeSH or GO terms assigned. This is a similarity
measure at the level of genes, which is analogous to a similaritymatrix
among SNPs (Morota and Gianola 2013). We calculated similarity
scores over all pairs of terms between the two vocabulary sets of genes
under consideration. All these GO and MeSH-guided semantic sim-
ilarity analyses were carried out using the GOSemSim (Yu et al. 2010)
and the MeSHSim (Zhou et al. 2015) Bioconductor packages, re-
spectively. We selected exactly the same genes as were identified in
GO categories when computingMeSH-based gene similarity to allow
direct comparisons between these two functional vocabularies.
Source code and reproducible output reports generated by R Mark-
down are available as Supplemental Material, File S1, File S2, File S3,
and File S4.

Data availability
The MeSH.db, MeSH.Gga.eg.db, and meshr packages are available for
download at Bioconductor https://www.bioconductor.org/. The two
datasets used in the current study have already been published. The
gene expression data can be downloaded from http://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0135810#sec025. Raw data
for the selective sweep data are available from http://dx.doi.org/
10.6084/m9.figshare.1497961, and selected genes can be found in
Beissinger et al. (2016).

RESULTS

Summary of MeSH and GO annotations
The organism and the biomaRt Bioconductor packages were queried
to annotate genes by MeSH and GO terms. Table 1 shows the total
number of genes (background and selected genes) annotated by
MeSH and GO in each of the datasets under study. Both MeSH
and GO terms had a similar number of annotated known genes
(10,227 vs. 12,460), whereas the number of selected genes withMeSH
terms assigned was about one-half of that of GO. For example, in the
gene expression (selective sweep) data, 245 (333) genes are annotated
by GO while only 110 (145) genes are annotated by MeSH. It is
important to note that this difference could be because the majority
of chicken genes are annotated by Inferred from Electronic Annota-
tion (evidence code: IEA) in GO, whereas all MeSH terms are
assigned by manual curation at NCBI. On the other hand, the advan-
tage of using GO-IEA over MeSH is that MeSH does not include
genes with no published literature in PubMed, while GO-IEA can
still predict function for these genes. We expect that, over time,
MeSH will improve as new knowledge is created and published in
the scientific literature.

Enrichment analysis

Gene expression data: A subset of significant MeSH terms (P-value
# 0.05) enriched with differentially expressed genes detected in fat

n Table 1 Number of known and selected genes annotated by
MeSH and GO

Annotated Genes Selected Genes

Data MeSH GO Total MeSH GO

RNA-seq 10227 12460 263 110 245
Selective sweep 352 145 333Box 2:

meshParams ,�new(”MeSHHyperGParams”,geneIds=selectedGenes,
universeGeneIds = universeGenes,
annotation=”MeSH.Gga.eg.db”,category=”D”,
database=”gene2pubmed”,pvalueCutoff=0.05,
pAdjust = ”none”

)

Box 3:

meshR ,� meshHyperGTest (meshParams)

Box 4:

summary (meshR)
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tissue between high and low feed efficiency chickens are highlighted
in Table 2. The majority of the MeSH terms in the Chemicals and
Drugs category are related to lipid deposition and lipid metabolism.
For instance, Lipoproteins (MeSH:D008074) and Apolipoproteins
(MeSH:D001053) are closely related to lipid transportation. Addi-
tionally, Fatty Acid-Binding Proteins (MeSH:D050556) regulates di-
verse lipid signals, while PPAR alpha (MeSH:D047493) controls lipid
and lipoprotein metabolism. Interestingly, many GO terms related to
lipid deposition and metabolism, such as cholesterol metabolic process
(GO:0008203), high-density lipoprotein particle assembly (GO:0034380),
spherical high-density lipoprotein particle (GO:0034366), and high-density
lipoprotein particle binding (GO:0008035), were also significantly
enriched with differentially expressed genes (File S1). Similarly,
MeSH terms related to Wnt proteins and signaling pathways, such
as Wnt Proteins (MeSH:D051153), Wnt4 Protein (MeSH: D060528),
Wnt1 Protein (MeSH:D051155), and their counterparts in GO, such as
regulation of Wnt signaling pathway (GO:0030111) andWnt signaling
pathway (GO:0016055), were found as significant. The Wnt proteins
are known to interact with lipids. We also found Steroid 17-alpha-
Hydroxylase (MeSH:D013254) and steroid 17-alpha-monooxygenase
activity (GO:0004508) as significant terms; these two categories are
enriched in genes involved in the synthesis of lipids. Moreover, we
detected some MeSH terms related to the immune system regula-
tion (e.g., Interleukin-6 (MeSH:D015850) and Chemokines (MeSH:
D018925)). Lastly, Glycoproteins (MeSH:D006023), is produced from
the gene AHSG and plays a role in glucose metabolism and the regu-
lation of insulin signaling. Taken together, our findings confirm that
MeSH enrichment analysis can either reinforce findings from GO or
even bring an additional biological insight. Figure 2 depicts the

semantic similarity between significant MeSH terms in the Chem-
icals and Drugs category. In general, this subset of MeSH terms
showed low to high levels of semantic similarity.

For theDiseases category,which is unique toMeSH-based analysis, a
subsetof significantMeSHterms thatdeservesparticular attention in the
area of feed efficiency and lipid metabolism in poultry is highlighted in
Table 2. For instance,Hyperplasia (MeSH:D006965) is a potential con-
tributor to abdominal fat mass in broiler chickens; its relationship with
Diabetes Mellitus, Type 2 (MeSH:D003924) is well documented in hu-
mans. SomeMeSH terms directly related to the immune function, such
as Newcastle Disease (MeSH:D009521) and Inflammation (MeSH:
D007249), also showed a significant enrichment with differentially ex-
pressed genes. Interestingly, Hyperplasia and Inflammation showed a
moderate semantic similarity according to theMeSH hierarchy (File S1).

Selective sweep data: Table 2 shows the results of theMeSH-informed
enrichment analysis using genes putatively swept or under epistatic
selection derived from a chicken diversity panel. Most of these terms
are related to insulin metabolism. For instance, resistance to insulin
occurs in birds due to high plasma glucose and fatty acid levels; this is
supported by Insulin Resistance (MeSH:D007333) in both the Diseases
and Phenomena and Processes categories, as well as Receptor, Insulin
(MeSH:D011972) and Insulin (MeSH:D007328) in the Chemicals and
Drugs category. Moreover, we identified MeSH terms involved in the
circadian clock of chicken. These are Period Circadian Proteins (MeSH:
D056950), CLOCK Proteins (MeSH:D056926) and ARNTL Transcrip-
tion Factors (MeSH:D056930) inChemicals andDrugs, as well asE-Box
Elements (MeSH:D024721), Biological Clocks (MeSH:D001683), and
Light (MeSH:D008027) in Phenomena and Processes. Figure 3 shows

n Table 2 A subset of statistically significant MeSH terms

Data Category MeSH ID Background Selected MeSH Term P-Value

RNA-seq CD D008074 14 4 Lipoproteins 0.0001
D001054 7 2 Apolipoproteins A 0.0069
D001053 5 2 Apolipoproteins 0.0034
D050556 17 3 Fatty Acid-Binding Proteins 0.0037
D047493 7 2 PPAR alpha 0.007
D012177 6 2 Retinol-Binding Proteins 0.005
D051153 91 8 Wnt Proteins 0.0003
D060528 8 3 Wnt4 Proteins 0.0003
D051155 19 2 Wnt1 Proteins 0.0488
D015850 25 4 Interleukin-6 0.0078
D018925 14 2 Chemokines 0.0276
D007136 76 5 Immunoglobulins 0.0127
D013254 1 1 Steroid 17-alpha-Hydroxylase 0.0188
D006023 120 15 Glycoproteins ,0.0001

D D006965 1 1 Hyperplasia 0.0188
D003924 2 1 Diabetes Mellitus, Type 2 0.0373
D009521 9 3 Newcastle Disease 0.0005
D014802 5 2 Vitamin A Deficiency 0.0034
D007249 12 2 Inflammation 0.0205

Sweeps CD D011972 2 8 Receptor, Insulin 0.0160
D007328 26 3 Insulin 0.0268
D056950 5 2 Period Circadian Proteins 0.0037
D056926 8 2 CLOCK Proteins 0.0160
D056930 6 2 ARNTL Transcription Factors 0.0122

D D007333 1 1 Insulin Resistance 0.0252
PP D007333 1 1 Insulin Resistance 0.0252

D024721 8 2 E-Box Elements 0.0160
D001683 13 2 Biological Clocks 0.0410
D008027 28 3 Light 0.0325

Background and Selected denote the number of background genes and selected genes annotated by the MeSH term, respectively. CD, Chemicals and Drugs; D,
Diseases; PP, Phenomena and Processes.
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the semantic similarities among MeSH terms in the Chemicals and
Drugs category. Biological clock-related annotations, such as Period
Circadian Proteins and CLOCK Proteins, exhibited moderate to high
similarity. The results obtained from the other MeSH and GO cate-
gories are shown in File S2.

Gene semantic similarity

Gene expression data:Comparisonofgenesemantic similaritybetween
MeSH and GO Biological Process for a subset of significant genes
(n = 49) from the RNA-seq dataset is depicted in Figure 4. MeSH-
based gene semantic similarity analysis showed that genes related to
energy reserve metabolic process are highly related. For instance, genes
that are involved in triacylglycerol and cholesterol biosynthesis, such
as methylsterol monooxygenase 1 (MSMO1), insulin induced gene
1 (INSIG1), 1-acylglycerol-3-phosphateO-acyltransferase 9 (AGPAT9),
and ADP ribosylation factor like GTPase 2 binding protein (ARL2BP),
were highly similar to each other based on the MeSH hierarchy. In-
terestingly, GO-based analysis produced slightly different results; for
instance, the gene MSMO1 was highly similar to INSIG1, but moder-
ately similar to AGPAT9 and ARL2BP. Additionally, genes MSMO1
and INSIG1 were moderately or highly related to lecithin-cholesterol
acyltransferase (LCAT) and cytochrome b5 type A (microsomal)
(CYB5A), respectively, based on the GO structure. These two genes,
involved in lipid metabolism, also showed high similarity to apolipo-
protein A-I (APOA1) and cytochrome P450, family 17, subfamily A,
polypeptide 1 (CYP17A1). The relationship among these genes was low

tomoderate based on theMeSH hierarchy. The results based on theGO
Molecular Function and Cellular Component categories are presented
in File S3.

Selective sweep data: Gene semantic similarity based on both MeSH
and GO Biological Process among a subset of genes (n = 45) under
selection is shown in Figure 5.Notably, a large group of genes, including
strawberry notch homolog 1 (Drosophila) (SBNO1), ARP5 actin-
related protein 5 (ACTR5), SET domain containing 1B (SETD1B),
Obg-like ATPase 1 (OLA1), and histone deacetylase 9 (HDAC9),
were highly related based on both MeSH and GO-guided semantic
similarity analyses. All these genes are involved in chromatin orga-
nization and regulation of gene expression. Moreover, particular
attention was paid to the top five candidates under epistatic selection
reported by Beissinger et al. (2016). These genes are adenylate cyclase
5 (ADCY5), myosin light chain kinase (MYLK), phosphatidylinositol-
4,5-bisphosphate 3-kinase, catalytic subunit beta (PIK3CB), calcium
binding protein 39 (CAG39), and interleukin 1 receptor accessory protein
(IL1RAP). Although none of these pairs of genes appeared in a GO-based
similarity matrix, ADCY5 andMYLK presented a low to moderate gene
semantic similarity based on the MeSH hierarchy (File S4).

DISCUSSION
This article reports the MeSH analysis for chicken using the newly
developed Bioconductor packages. These new resources enabled us to
carry out differentMeSH-based analyses, including enrichment analysis
andMeSH-guided semantic similarity among functional termsandgene
products.We exemplified the potential usefulness of theseMeSH-based
approaches by using twodifferent publicly available chicken data sources.

The adipose tissue is the major site for lipid deposition and lipid
metabolism, and it plays a central role in energy homeostasis.

Figure 2 MeSH semantic similarity in the Chemicals and Drugs for the
RNA-seq dataset. The higher the semantic similarity between MeSH
terms, the bigger (darker) the circle. D006023 (Glycoproteins), D008074
(Lipoproteins), D001054 (Apolipoproteins A), D001053 (Apolipopro-
teins), D050556 (Fatty Acid-Binding Proteins), D047493 (PPAR alpha),
D012177 (Retinol-Binding Proteins), D051153 (Wnt Proteins), D060528
(Wnt4 Proteins), D051155 (Wnt1 Proteins), D015850 (Interleukin-6),
D018925 (Chemokines), D007136 (Immunoglobulins), and D013254
(Steroid 17-alpha-Hydroxylase).

Figure 3 MeSH semantic similarity in the Chemicals and Drugs for the
selective sweep dataset. The higher the semantic similarity between
MeSH terms, the bigger (darker) the circle. D011972 (Receptor, Insulin),
D007328 (Insulin), D056950 (Period Circadian Proteins), D056926
(CLOCK Proteins), and D056930 (ARNTL Transcription Factors).
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Unsurprisingly, several MeSH terms closely related to fat metabolism,
such as Lipoproteins, Apolipoproteins, Fatty Acid-Binding Proteins,
and PPAR alpha, were significantly enriched with genes that showed
differential expression in fat tissue between high and low feed effi-
ciency broiler chickens. We found some genes were annotated by the
same MeSH terms. For instance, gene overlap between Lipoproteins
and Apolipoproteins was one-half, and 66% of genes were shared be-
tween Fatty Acid-Binding Proteins and PPAR alpha. It is likely that
this gene overlap is observed because each MeSH term inherits all

annotations from its more specific child terms (Falcon and Gentle-
man 2007). It is possible to address this issue by conducting a con-
ditional analysis that is implemented in the GOstats package. Adding
this feature in the meshr package might alleviate the overlap of genes.
Also, adipose tissue is now recognized as a metabolically active tissue
that has important endocrine and immune regulatory functions
(Kershaw and Flier 2004). Interestingly, we found many significant
MeSH terms, such as Interleukin-6, Chemokines, and Immunoglobu-
lins, that are closely associated with the regulation of the immune

Figure 4 Gene semantic similarity for the RNA-seq dataset. The higher
the semantic similarity between gene pairs, the bigger (darker) the
circle. Top, MeSH; Bottom, GO.

Figure 5 Gene semantic similarity for the selective sweep dataset. The
higher the semantic similarity between gene pairs, the bigger (darker)
the circle. Top, MeSH; Bottom, GO.
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function. Overall, our MeSH-based findings provide further insights
into the biological mechanisms underlying differences in adiposity
between high and low feed efficiency broiler chickens.

Included in our exemplary applications of MeSH annotations is a
set of 352 genes previously identified as putatively affected by selection.
Genes identified through population-genetic approaches such as this
can be elusive, because their identification does not rely on phenotypes.
Therefore, associating selection with any specific trait is often very
difficult (Akey 2009). As we demonstrate in this study, tools such as
GO and now MeSH are useful for suggesting biological interpreta-
tions that can later be followed up on or drive future biological hy-
potheses. For instance, our results showed that insulin-related MeSH
terms appeared unusually often in the set of genes impacted by se-
lection. This implies that selection for insulin-related traits may have
played an important role in differentiating chicken breeds. Further-
more, our analysis involved testing for semantic similarity between
pairs of genes, which was particularly useful for evaluating the most
promising gene-pairs highlighted by Beissinger et al. (2016) as can-
didates for epistatic selection. Our expectation was that these pairs of
genes are likely to be related to each other, as they have been predicted
to be involved in the same selected phenotype. Our finding that one
pair showed at least a weak semantic similarity may be interpreted as
evidence that these two genes, ADCY5 andMYLK, are the most likely
among the set to be truly epistatic.

The recent advancement in cataloguing genes with MeSH and GO
has made it possible to assess the role of selected genes and has opened
new opportunities for genetic research. Enrichment analysis recapitu-
lates a set of genes into higher-level biological features. We argue that
obtaining a complete picture of genes of interest usingMeSH andGO is
an important initial step toward functional genomics studies in poultry
as well as other agricultural species, as it facilitates efforts to illuminate
the genetic basis of phenotypic variation.
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