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Mitochondrial gene expression 
in single cells shape pancreatic beta 
cells’ sub‑populations and explain 
variation in insulin pathway
H. Medini, T. Cohen & D. Mishmar*

Mitochondrial gene expression is pivotal to cell metabolism. Nevertheless, it is unknown whether it 
diverges within a given cell type. Here, we analysed single-cell RNA-seq experiments from human 
pancreatic alpha (N = 3471) and beta cells (N = 1989), as well as mouse beta cells (N = 1094). Cluster 
analysis revealed two distinct human beta cells populations, which diverged by mitochondrial 
(mtDNA) and nuclear DNA (nDNA)-encoded oxidative phosphorylation (OXPHOS) gene expression 
in healthy and diabetic individuals, and in newborn but not in adult mice. Insulin gene expression 
was elevated in beta cells with higher mtDNA gene expression in humans and in young mice. Such 
human beta cell populations also diverged in mitochondrial RNA mutational repertoire, and in their 
selective signature, thus implying the existence of two previously overlooked distinct and conserved 
beta cell populations. While applying our approach to human alpha cells, two sub-populations of cells 
were identified which diverged in mtDNA gene expression, yet these cellular populations did not 
consistently diverge in nDNA OXPHOS genes expression, nor did they correlate with the expression of 
glucagon, the hallmark of alpha cells. Thus, pancreatic beta cells within an individual are divided into 
distinct groups with unique metabolic-mitochondrial signature.

Mitochondrial metabolism is pivotal for the function of all cells, yet it is especially critical for energy demanding 
tissues, such as brain, muscle and pancreatic beta cells. The hallmark of pancreatic beta cells’ activity is insulin 
secretion, which is compromised in type 1 diabetes, and to a lesser extent in type 2 diabetes mellitus (T2DM)1. 
This process is triggered by increase in concentrations of cytosolic Ca2+ in response to depolarization of the 
plasma membrane, and require ATP produced by the mitochondria of beta cells, via the oxidative phosphoryla-
tion system (OXPHOS)2,3. OXPHOS employs five multi-subunit protein complexes harbouring 13 mitochondrial 
DNA (mtDNA)-encoded subunits and ~ 80 nuclear DNA (nDNA)-encoded proteins4, which physically interact 
and co-evolve5,6. Such bi-genomic system is the result of genes’ transfer from the genome of the once free-living 
mitochondrial ancestor to the host nucleus7. This transfer of genes with prokaryotic heritage into the nuclear 
genome, led to their individual transcription, in different from the few remaining mtDNA-encoded genes which 
are transcribed in bacterial-like strand-specific polycistrones8,9. Despite the apparent difference in transcriptional 
regulation, mtDNA- and nDNA-encoded OXPHOS genes are co-expressed across many tissues10,11. This suggests 
that regulation of mitochondrial genes’ expression likely adapted to its host, in order to coordinate the activi-
ties of both the mitochondrial and nuclear genomes.Deficient transcription and translation in mitochondria 
have been shown to impair stimulus of beta cells insulin secretion12. Specifically, insulin secretion was severely 
impaired upon conditional knockout of transcription factor A (TFAM) and transcription factor B2 (TFB2M) in 
mouse beta cells13,14. In addition, TFAM expression was reduced with disruption of transcription factor PDX1, 
which controls embryonic development of the pancreas and function of mature beta cells. Moreover, beta cells 
mitochondria generate metabolites that couple glucose sensing to exocytosis of insulin granule15, thus underlin-
ing the importance of mitochondrial function to the fundamental activity of pancreatic beta cells. Specifically, 
these findings strongly suggest that mtDNA regulation is essential for insulin secretion.

It has been previously suggested, that pancreatic beta cells are heterogeneous in terms of gene expression, cell 
surface antigens16, metabolic capacity17, and rates of insulin synthesis18. Although it has been shown that ATP-
stimulated insulin secretion correlate with mitochondrial signalling15,19 and relies on active mtDNA regulation13, 
it is yet unclear whether beta cells are homogenous in regulation of mitochondrial gene expression, and whether 
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such putative variability affects beta cell activity. To address this question, we conducted hypothesis-free analyses 
of mitochondrial gene expression in four publically available single cell RNA-seq (scRNA-seq) experimental 
datasets of beta and alpha cells from T2DM and healthy human donors, as well as in four scRNA-seq datasets 
from mouse.

Results
Analysis of human scRNA‑seq data reveals mtDNA gene expression divergence between 
alpha and beta pancreatic islet cells.  As a first step, scRNA-seq from human pancreatic beta and alpha 
cells were analysed in three publicly available datasets20–22 (Fig. 1, Table S1). The single-cell human transcrip-
tomic Datasets I (InDrops sequencing protocol) contained ~ 10,000 human pancreatic cells from four donors 
isolated from three non-diabetic individuals (ND) and one T2DM patient. Dataset II (Fluidigm C1 sequencing 
protocol) contained a total of 1492 pancreatic cells from twelve human ND and six T2DM donors, and Dataset 
III (Fluidigm C1 as in Dataset II) contained 638 pancreatic cells from five ND and three T2DM patients. After 
filtering of Dataset I, while applying quality control measures (taking into account zero inflated reads, a mini-
mum of genes’ number per cell, maximum representation of rRNA transcripts, propensity for doublet cells—see 
details in Methods), we were left with a total of 2776 cells (1827 alpha cells and 949 beta cells) with ~ 2500 
informative genes on average per cell. For Datasets II and III, cells with less than 3000 genes were excluded 
(due to the different sequencing technology as compared to Dataset I, and the higher sequencing depth of the 
Fluidigm C1 platform). This resulted in 1396 cells from Dataset II (928 alpha cells and 468 beta cells), and 491 
cells from Dataset III (239 alpha cells and 252 beta cells) with ~ 5000 and ~ 6000 informative genes on average 
per cell for subsequent gene expression analysis, respectively (Table S1). Cells that were called either alpha or 
beta cells expressed their characteristic transcript, namely either insulin (INS; beta-cells) or glucagon (GCG; 
alpha-cells)22,23 (Fig S1, S2).

Comparison of mtDNA gene expression between alpha and beta cells, in healthy and T2DM donors, revealed 
significantly higher mtDNA transcript levels in beta cells both in healthy and in T2DM patients as compared 
to alpha cells in all studied datasets (Table S2) (Fig S3-5). These findings are consistent with known metabolic 
functional differences between alpha and beta cells in humans24. Notably, due to the very small sample size we 
could not directly compare healthy and diabetic individuals, as well as assess heterogeneity of the donors in terms 
of ethnicities and gender (Table S2). The consistency of these findings with previously-published studies encour-
aged us to continue our analysis further into investigating the subpopulations within each of the tested cell types.

Human beta cells diverge according to expression of mtDNA and nDNA‑encoded OXPHOS 
genes.  The function of pancreatic beta cells relies on mitochondrial activity. Nevertheless, it is unclear 

Figure 1.   Workflow of scRNA-seq analysis. Hypothesis free scRNA-seq clustering according to mtDNA gene 
expression. Fastq-files were mapped against the entire genome (GRCh38 for human cells and GRCm38 for 
mouse cells). After mapping, we calculated read counts, followed by data quality assessment, clustering and 
differential expression analyses. The RNA mutational heterogeneity data was used to identify mutations that 
characterize each of the identified cell groups per individual, in the Fluidigm C1 platform (see Methods).
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whether beta cells are homogenous in mitochondrial regulation. As a first step to address this question, we per-
formed hypothesis-free cluster analysis of mtDNA genes’ expression in beta cells from the four donors in Dataset 
I using Seurat25. This analysis identified two clearly distinct beta cells’ clusters across all tested donors, which dif-
fered in mtDNA gene expression per donor (i.e. two groups with either high or low gene expression, designated 
HE and LE, respectively) (Fig. 2A–C). The beta cell subgroups were consistently identified even when analysing 
all the individuals per dataset grouped together (Fig. 2B). Accordingly, the latter analysis revealed that ~ 84% 
of the cells in Dataset I remained in their original subgroups, regardless of the donors, thus further supporting 
the robustness of these clusters. We next analyzed Datasets II and III to determine the robustness of these sub-
groups. To avoid sample size issues, we controlled for sample sizes per donor, and limited our analysis to donors 
with a minimum of high quality RNA-seq from at least 40 beta cells (Table S1). Despite the small cell number 
per donor, our findings revealed sharp division into two cell clusters which diverged in the levels of mtDNA gene 
expression (Fig S6). When analysing all the individuals per dataset together such subgroups were consistently 
identified as in Dataset I (Fig S6), namely ~ 86% and 87% of the cells in Datasets II and III, respectively, remained 
in their original subgroups, regardless of donors. This supported the robustness of these cell clusters, which were 
identified regardless of the sequencing platform used, and health status of the tested individuals (Fig S7). It is 
worth noting, that this result did not differ between the sequence mapping methods used, i.e. unique or default 
mapping (Fig S8).

Since mitochondrial activities are coordinated between the mtDNA and the nucleus10, we asked whether the 
expression of nuclear DNA-encoded (nDNA) genes associates with our observed beta cells populations. As a first 
step to address this question we analysed genes that consistently differentially expressed between the subgroups 
across all four donors in a selected set of ~ 300 nDNA-encoded proteins which are translated in the cytoplasm 
and are imported into the mitochondria10,26. This set of genes included all known factors that regulate mtDNA 
replication, transcription, translation and RNA stability, as well as assembly factors and structural subunits of the 
mitochondrial OXPHOS system27. Our analysis of Dataset I revealed that the expression of OXPHOS structural 
genes (complexes I, III, IV and V) consistently diverged between the LE and HE beta cell populations across 
all four donors (Fig. 2B, Table S3). Notably, although to a lesser extent, certain assembly factors of OXPHOS 
complexes I and III also correlated with these cell populations. To identify differentially expressed genes across 
individuals in Datasets II and III, we applied the same analysis to the six individuals available from these datasets. 
The combined analysis of the total samples of beta cells per dataset, revealed expression divergence of OXPHOS 
structural genes between the HE and LE cellular sub-groups (Fig S9, Table S3), including genes that were con-
sistent between the three tested datasets. Therefore, our results indicate the discovery of novel sub-populations 
of human pancreatic beta cells that diverge in mito-nuclear OXPHOS gene expression. Finally, we noticed that 
previous studies used a certain mtDNA read percentage threshold (~ 10%) to avoid cells with apparently lower 
quality28. Although using such a threshold notably reduced the sample size of analysed cells per database (nearly 
tenfold in some cases), the HE and LE cellular groups prevailed, while retaining significant differences in both 
mtDNA and nDNA-encoded OXPHOS gene expression (Fig S10, Table S3). Notably, using higher mtDNA read 
threshold, calculated according to the median mtDNA read fraction per dataset (while removing cells with more 
than 2 SD higher mtDNA read counts), did not change the number of analysed genes, yet increased the numbers 
of analysed cells. Since this approach did not compromise cell quality and avoid usage of small sample sizes we 
applied it to the rest of our analyses.

The two beta cell sub‑populations in humans diverge in Insulin gene expression.  Next, we 
asked whether our identified beta cell subpopulations associate with the expression of other, additional genes 
across the human genome. To test for such, we extended our analysis to the entire human transcriptome. Given 
the set of differentially expressed nDNA genes from the combined analysis (beta cells from all four donors of 
Dataset I; Table S3) we applied an enrichment analysis to explore which biological processes (GO terms) dif-
ferentially expressed in the two beta cell subgroups (Table S3). As expected, the analysis revealed that ATP meta-
bolic process and OXPHOS were in the top-ten of the genes that were upregulated in the HE sub-group of cells 
(Table S3). We noticed, that the full list of significant processes also included genes involved in insulin regulation 
and secretion. Strikingly, we found that the cell cluster with higher mtDNA gene expression showed significantly 
higher expression of INS, encoding the insulin transcript (p < 1 × 10–50, Dataset I; FDR correction). To assess 
whether the differential expression of the insulin regulatory pathway is more prominent than other pathways, 
we assessed differential expression of selected gene pathways between the HE and LE groups of cells: regulation 
of insulin secretion, cell proliferation, glycolysis and cell cycle. This analysis revealed, that the HE cells’ group 
showed significantly high expression of genes involved in regulation of insulin secretion, including the follow-
ing: Firstly, SLC30A8, encoding a zinc-efflux transporter (zinc transporter 8 (ZnT8)) which mediates uptake 
of zinc into secretory granules (p < 0.05, Dataset I, FDR correction)29; secondly, SLC25A4 and SLC25A6 which 
translocate ADP from the cytoplasm into the mitochondrial matrix and ATP from the mitochondrial matrix 
into the cytoplasm30; third, ENSA which encodes an alpha-endosulfine, a regulator of the beta-cell K(ATP) 
channels (p < 0.05, Dataset I, FDR correction)31, and HADH gene, a negative regulator of Insulin secretion32 
(Fig. 2D). Finally, PTPRN, which participates in the beta cells proliferation pathway and normal accumulation 
of secretory vesicles (p < 1 × 10–8, Dataset I; FDR correction)33 was also upregulated in the HE subgroup. Notably, 
PPP1R15A, an unfolded protein response (UPR) gene, that was previously associated with low INS gene expres-
sion levels in mouse beta cells34,35, was upregulated in the beta cells group with lower mtDNA gene expression 
(LE) (p < 0.0032, Dataset I; FDR correction). Additionally, the expression of INS was also consistently higher in 
the HE subgroup of beta cells in Datasets II and III (p < 1 × 10–5, Dataset II, FDR correction; p < 0.005, Dataset III, 
FDR correction), thus further attesting for the robustness of this result. It is worth noting, that while examining 
additional mito-nuclear genes we found that the expression of MEF2D—a transcription factor that was shown 
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Figure 2.   Human mtDNA gene expression analysis revealed two distinct beta cell clusters with either high 
or low mtDNA gene expression (designated HE and LE, respectively). (A,B) tSNE distribution of beta cells 
from the four human donors (Dataset I) showing two subgroups of beta cells with high and low mtDNA gene 
expression. (A) Subgroups of cells with either high (HE) or low (LE) mtDNA gene expression (yellow and blue 
dots, respectively); (B) cells are divided into HE and LE according to mtDNA gene expression, regardless of 
donor identity (donor’s cells are colour coded as indicated). (C,D) Heatmap showing the significant differentially 
expressed genes per beta cell cluster, per individual (after FDR correction). (C) mtDNA-encoded transcripts, 
(D) Upper panel—OXPHOS structural genes; Middle panel—OXPHOS assembly genes; lower panel—genes 
involved in insulin regulation. Colour codes: purple—low expression, yellow—high expression.
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to regulate both nDNA and mtDNA gene expression36, was higher in the HE subgroup (p < 1 × 10–6, Datasets 
II, FDR correction; p < 1 × 10–11, Dataset III, FDR correction), thus suggesting an attractive candidate regulator, 
which explains differences between the HE and LE subgroups. Finally, we analyzed a fourth dataset of single beta 
cells RNA-seq, generated from four individuals using a different platform (Cell-seq2)37 with an average of ~ 5600 
informative genes per cell (designated here as human Dataset IV). Analysis of cells from three individuals having 
sufficient high quality beta cells RNA-seq data (N = 95, N = 82, N = 143 cells, Table S1) revealed, again, the LE and 
HE groups of cells which differed in mtDNA gene expression per individual. In similar to the above-mentioned 
human datasets I-III, analysis of all individuals together revealed that 99% of the cells remained in their original 
subgroups (LE and HE), regardless of tested individuals. These cell clusters positively correlated with OXPHOS 
genes expression and with the expression of insulin (Fig S11–S12, Table S3). These results not only further for-
tify our findings but underlines the robustness of these findings to the different sequencing techniques. Taken 
together, our mito-nuclear co-expression analysis strengthen the interpretation that pancreatic beta cells are 
divided into sub-populations which diverge in mitochondrial gene expression. This divergence is not only lim-
ited to mitochondrial activities, but also associates with the expression and regulation of insulin—the hallmark 
of beta cells’ function. To our knowledge, these results serve as the first demonstration of mitochondrial regula-
tory involvement in physiologically relevant variability of beta cells activity.

Beta cells heterogeneity was previously mentioned in context of specific antigens and their expression38; 
although the identified subgroups of cells in Dorrell et al. (2016) are not apparently associated with mitochondrial 
function, we assessed whether our identified groups of cells correlate with this published sub division of human 
beta cells. Our analysis did not support correlation between the expression of the antigens identified by Dorrell 
et al. with our identified sub-groups of beta cells (Fig S13).

RNA mutational repertoire is elevated along with mtDNA genes’ expression.  The divergence of 
beta cells according to the expression of both mtDNA and certain nDNA genes suggests that human pancreatic 
beta cells are divided into two populations with distinct mitochondrial profiles. We therefore asked whether 
these two sub-populations of cells also diverge in pattern of mtDNA mutations. Notably, unlike the nuclear 
genome, mitochondrial RNA (mt-RNA) sequence heterogeneity could stem from mtDNA sequence variation 
(heteroplasmy), RNA sequence heterogeneity (due to RNA polymerase errors) and RNA modifications, as we 
recently discovered39–41. To identify mt-RNA mutations with high confidence, we determined RNA heteroge-
netic mitochondrial mutations with a computational pipeline that utilized individual per-base sequence differ-
ences, while employing quality control measures to avoid sequencing errors. As mentioned above, due to low 
sequence coverage at the non-coding mtDNA region, we focused our analysis on the protein coding mtDNA 
sequences. Then, we verified that each tested individual had more than a 1000 mtDNA positions with high 
sequence coverage (> 400×). This requirement enabled analysing the sequences generated in Datasets II and 
III, but not in Datasets I and IV, which displayed lower per base coverage (Datasets I and IV contained on aver-
age ~ 100,000 and ~ 41,000 reads, respectively, for each analysed cell as compared to an average sequencing depth 
of 0.95 ± 0.46 million reads and 34 million reads in Datasets II and III, respectively). While interrogating the 
repertoire and distribution of the RNA heterogenic mutations we found greater mitochondrial RNA (mt-RNA) 
mutational repertoire in the HE group as compared to the LE cell cluster in both Datasets II and III (p < 0.005, 
Dataset II; p < 1 × 10–16, Dataset III) (Fig. 3A, Table S4). Additionally, we noticed lower number of overlapping 
mutations as compared to unique mutations of the subgroups (Table S4). Next, we divided the mt-RNA muta-
tions into candidate inherited mutations and ‘others’, according to the following logic: mutations shared by two 
cell types (i.e., alpha and beta cells) have likely been present prior to embryo differentiation, whereas this can-
not be argued for other mutations; hence, these two groups of mutations (i.e., candidate inherited mutations, 
and others) should be regarded as either enriched or low in inherited mutations, respectively. As intuitively 
expected, the percentage of candidate inherited mutations in each beta cells group was found to be higher in the 
overlapping mutations between the groups as compared to the unique mutations in each group, per individual 
(Table S4), and the proportion of unique mutations was higher in the LE group as compared to the HE group in 
five out of six individuals. To better understand the functional potential of the mutations in each subgroup, we 
tested whether RNA heterogenic mutations occurred randomly throughout the mtDNA, per subject. Interest-
ingly, the observed mutational conservation score was lower than expected by chance in both groups, although 
the LE group had significantly higher score as compared to the HE group in both datasets (p < 0.05) (Fig. 3B) and 
a tendency towards higher score in all six tested individuals (Fig S14). Thus, the two beta cells sub-groups differ 
in mitochondrial mutational repertoire, and in the potential impact of such mutations, suggesting a stronger 
signature of negative selection acting on mt-RNA mutations in the HE beta cells group.

Glucagon and OXPHOS genes do not consistently co‑express in human pancreatic alpha cells 
subpopulations.  As a first step to assess the generality of the distinct beta cell sub-groups to other pancre-
atic cell types, we took advantage of scRNA-seq data of pancreatic alpha cells from the same four datasets, con-
sidering only individuals with more than 40 alpha cells each. These criteria left us with all donors from Dataset 
I, seven human donors in Dataset II, including the three individuals that had sufficient numbers of beta cells; 
two human donors in Dataset III, excluding one individual in our above-described beta cells analysis and four 
human individuals in Dataset IV. After applying the same approach used for beta cells analyses, although alpha 
cells could be divided into sub-groups according to mtDNA gene expression (Fig S15, Fig S16, Fig S17, Fig S18) 
they co-expressed with certain nDNA-encoded OXPHOS genes across two datasets out of four (Datasets I and 
II) (Fig S15, Fig S18, Fig S19), yet such subgroups did not display significant expression difference of glucagon 
(GCG) between the two subgroups (Fig S15, Fig S18, Fig S19). Notably, GO terms analysis revealed a weaker 
association with the OXPHOS and ATP metabolic processes as compared to beta cells (Table S5). In summary, 
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although both pancreatic alpha and beta cells could be divided into subgroups according to mitochondrial gene 
expression, alpha cells display weaker association of nDNA-OXPHOS genes with such cellular population divi-
sion, and do not correlate with their hallmark gene expression. Therefore, while considering human pancreatic 
islets, the association of mitochondrial gene expression with the hallmark of cellular gene expression is limited 
to beta cells.

Mito‑nuclear genes’ expression and insulin define beta cell sub‑groups in new‑born, but not in 
adult mice.  We next asked whether the phenomenon of two distinct beta cell sub-groups in humans, which 
are divided according to mtDNA gene expression, is conserved in evolution. The available scRNA-seq mouse 
datasets originate from three studies of the C57Bl6 mouse strain (termed mouse Datasets I, II, III)22,42,43, with 
mouse Dataset I yielding 551 single beta cells22, 314 single beta cells in Dataset II from 3–7 month-old mice42 
and 387 beta cells from multiple postnatal time points in Dataset III collected from new-born mice (e.g., 84 
cells collected from day 1, 87 cells from day 7, 88 cells from day 14, 68 cells from day 21, and 60 cells from day 
28 postnatal)43. Similar to humans, mouse Dataset I was sequenced by the InDrops platform, whereas Datasets 
II and III were sequenced by Fluidigm C1. After quality control analysis (see Methods), 264 single beta cells 
remained for further analysis from mouse Dataset I, while considering ~ 1600 genes genome-wide on average 

Figure 3.   mtRNA mutation patterns display higher mutational repertoire and lower conservation score in the 
HE subgroup. (A) Box plot showing the comparison of the mutational repertoire in protein coding mtDNA 
genes between the two subgroups (LE and HE), per dataset (Datasets II and III). (B) Box plot demonstration 
of the distribution of evolutionary conservation ratios in mutations within the LE and HE groups, per analysed 
dataset.
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per cell. Filtering cells and genes in mouse Dataset II resulted in 309 single beta cells with an average of ~ 5700 
informative genes per cell. In mouse Dataset III (new-born mice) a total of 304 beta cells remained, including 
70, 62, 69, 53 and 50 single cells for mice from day 1, day 7, day 14, day 21 and day 28, respectively, with ~ 6500 
informative genes on average, per cell. As in humans, the InDrops platform (Dataset I) enabled us analysing 
mtDNA protein-coding transcripts with > 10 PolyA nucleotides (excluding Nd4l, Atp8 and Nd6; Table  S6)44. 
To control for high similarity (99.9%) of the mouse mtDNA sequences overlapping the genes Nd3, Nd4l, Cox2, 
Cox3, Atp6, Atp8 with several nuclear mitochondrial mouse pseudogenes (NUMTS)45, we first limited our anal-
ysis to the seven remaining mtDNA protein-coding genes. This analysis revealed a single group of beta cells in 
adult mice (mouse Datasets I, II) (Fig. 4A,B). In contrast, Dataset III (new-born mice) displayed two subgroups 
of beta cells (Fig. 4C) in each of the available postnatal days, with one beta cells cluster showing higher mtDNA 
gene expression levels (in all tested mtDNA-encoded genes). Differential expression analysis of the orthologues 
nDNA-encoded OXPHOS genes in new-born mice revealed co-expression of certain structural genes, which 
differed among the postnatal days (Table S7). Specifically, Day 1 showed significantly high expression of certain 
structural and assembly genes in the LE subgroup, which were also upregulated in the human HE subgroup. 
Day 7, and more prominently cells from days 14–28, displayed significant overexpression of certain OXPHOS 
structural genes in the HE group as in humans, although certain structural and assembly genes that were mark-
ers of the HE group in humans were upregulated in the LE group of cells from these days. When we extended the 
analysis to the entire genome we found significantly higher expression of Ins2 at postnatal day 1 (p < 0.001) in 
the LE group and higher expression of Ins1 gene (p < 1 × 10–5) in the HE group. In contrast, this analysis revealed 
significantly higher expression of Ins2 in the HE subgroup as compared to the LE subgroup at postnatal days 14 
(p < 0.001), 21 (p < 1 × 10–5) and 28 (p < 0.05) (Fig. 4D), and with significantly higher expression of Ins1 at day 14 
(p < 0.01), but not in day 7 (Table S7). Finally, unlike our analysis in human beta cells, comparison of the mt-RNA 
mutational repertoire between the mtDNA gene expression of the beta cell clusters from the new-born mice 
(Dataset III) at postnatal days 14 and 28 revealed significantly higher mutational repertoire in the LE group (i.e., 
with the lower mtDNA gene expression) (p < 0.005, day 14; p < 1 × 10–10, day 28) (Fig S20), while day 1 and day 21 
showed higher mutational repertoire in the HE subgroup as in humans. Notably, similar to human, the percent 
of the overlapping mutations was lower than the percent of the unique mutations in the subgroups (Table S4). 
Nevertheless, conservation analysis of these mutations revealed that the observed ratios of each group were 
insignificant and inconsistent among the postnatal days (Fig. 4E). It is worth noting that the results withstood a 
different mapping approaches, namely mapping solely against the mtDNA, which enabled including all protein-
coding mtDNA genes in the analysis (see methods, Fig S21, Table S4, Fig S22).

In a previous study a cluster of beta cells with higher expression of mitochondrial genes has been identified 
in adult mice46. Interestingly, these mice (assigned here as mouse dataset IV) were fed either by regular or by 
high fat diet, thus allowing testing for the possible impact of such environmental condition on gene expression. 
When we analysed the available ~ 300 beta cells from mouse Dataset IV (Fig S21) we identified two beta cell 
clusters which differed in mtDNA gene expression, thus confirming the published results. Nevertheless, such 
division of the cells into sub-groups did not correlate with the expression of OXPHOS genes, neither did they 
correlate with the expression of Insulin gene. Notably, this lack of correlation did not change in mice fed with 
either type of diet. In summary, these findings revealed clustering of mito-nuclear gene expression within new-
born mouse beta cells, suggesting that although mt-RNA gene expression divided beta cells into subpopulation in 
both human and young mice, other attributes of these sub-group of cells (such as mt-RNA mutational repertoire 
and conservation score) diverge.

Discussion
Taken together, this work revealed mitochondrial gene expression clustering in human pancreatic beta cells. Such 
heterogeneity was reflected by two distinct sub-populations of cells which diverged by mtDNA gene expression, 
nDNA OXPHOS and Insulin gene expression, and in patterns of negative selection acting on mt-RNA mutational 
repertoire. Since all mtDNA protein-coding genes comprise essential subunits of the OXPHOS, such differences 
between the sub-groups of beta cells most likely reflect previously overlooked beta cell populations divergence 
in terms of mitochondrial regulation, and activity. This interpretation is consistent with the positive correla-
tion that we found with insulin gene expression. This yields a testable hypothesis—it would be of interest to test 
whether our observed sub-populations of beta cells correlate with beta cells activity. Such analysis will enable 
correlating mitochondrial gene expression with the presence of so-called insulin secreting hubs17 having high 
glucokinase:insulin ratios, and the presence of ‘extreme’ beta cells with elevated mRNA levels of insulin versus 
‘non-extreme’ beta cells that were identified in mouse47. While human beta cells presented with a profound 
mitochondrial regulatory difference between two cellular sub-groups, pancreatic alpha cells did not. Specifically, 
although we observed an apparent sub-division into cells with different mtDNA gene expression, the expres-
sion correlation with nDNA OXPHOS genes was weaker, and the connection to the inherent function of the 
cell—glucagon expression, was not evident. This suggests that the mitochondrial subdivision of beta cells into 
subgroups is not common to all islet cell types. Furthermore, as insulin secretion has been clearly shown to rely 
on mitochondrial function, and alpha cells function rely more on anaerobic glycolysis12,48,49, it is plausible that 
heterogeneity in mitochondrial regulation within a given cell type relies on the centrality of mitochondrial func-
tion to the tested cell type. Therefore, there is great interest in assessing mitochondrial regulatory heterogeneity 
in other additional cell types and tissues.

While considering mitochondrial regulatory heterogeneity in mouse beta cells, new-born mice displayed 
sub groups of cells which, similar to humans, diverge in their mtDNA gene expression patterns and correlated 
with Insulin gene expression. However, the characteristics of the subgroups in terms of nuclear gene expression 
changes during the development of the neonates, as days 14–28 displayed a more similar expression pattern to 
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Figure 4.   Pancreatic beta cells from newborn, but not adult mice, are divided into two clusters according to 
mtDNA genes’ expression. (A) tSNE profile of mtDNA genes’ expression pattern (protein-coding genes) in 
beta cells from 8 weeks old mice (mouse Dataset I). (B) tSNE of mtDNA genes’ expression pattern (as in A) 
from beta cells from 3–7 month old mice (mouse Dataset II). (C) Gene expression heatmap of mtDNA gene 
expression in beta cells reveal cellular sub-groups in newborn mice (1, 7, 14, 21 and 28 days postnatal—mouse 
Dataset III). (D) Ins2 gene expression in beta cell sub-groups in each of the tested postnatal days (mouse Dataset 
III). (E) Box plot of the evolutionary conservation ratio of mtDNA mutations in beta cells from new-born mice, 
per postnatal day (mouse Dataset III). Significance: *p < 0.05, **p < 0.001, ***p < 1 × 10–5.
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human as compared to days 1 and 7. This can stem from the immature metabolic phenotype of the neonatal 
beta cells in mice50. In contrast, while considering mitochondrial gene expression, the adult mice (8 weeks and 
3–7 month) displayed a more homogenous population of beta cells. The observed differences between human and 
adult mouse beta cells might stem from the islets architecture51 and the difference in longevity of the beta cells52. 
Interestingly, analysis of gene expression in zebrafish beta cells revealed a subset of cells with high OXPHOS gene 
expression, of which some had lower insulin gene expression and were interpreted as hub beta cells53. Thus, the 
characteristics of beta cells with high mitochondrial gene expression may be more complex, and differ not only 
across the life of the individual, but also between species. It may also be of interest to isolate hub cells and assess 
their correlation with OXPHOS genes expression in the future. Thus, it will be of interest to explore whether the 
beta cell mitochondrial sub-groups in humans also appear in children, and if they do, whether they correlate 
with expression of nDNA-encoded mitochondrial genes, as well as with the expression of Insulin.

The identification of the human beta cells subgroups in both healthy and type 2 diabetes individuals sup-
port the fundamental importance of such subpopulations of cells for life. As the sample size of humans tested is 
relatively small, with very few patients and healthy individuals, future increase in sample sizes of such groups is 
required to draw any conclusion about the implications of our observations to disease conditions.

The positive correlation of mtDNA gene expression in the identified beta cells subgroups with Insulin gene 
expression lends a first clue for the physiological importance of these subgroups. Specifically, our findings sug-
gest that human beta cells diverge into functionally different groups already at the gene regulatory level, and not 
only physiologically17. Nevertheless, it still remains to be found whether the nature of the subgroups and their 
composition will change upon exposure to mitochondria-related environmental conditions.

Online Methods
Available samples for analysis.  scRNA-seq data from mouse and human pancreatic beta cells were 
obtained from five studies. Datasets were downloaded from the following sites;

Human and mouse Dataset I: https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE84​133
Human Dataset II: https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE81​608
Human Dataset III: https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE86​473
Human Dataset IV: https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE85​241
Mouse Dataset II: https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE77​980
Mouse Dataset III: https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE86​479
Mouse Dataset IV: https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE11​0648

Processing of scRNAseq data.  For Dataset I containing human and mouse RNA-seq data, the bioinfor-
matics pipeline of the data processing was carried out as previously reported22.

For Datasets II and III of human and mouse sequenced reads were trimmed using Trim Galore (version 
0.4.5; https​://www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/trim_galor​e/) while employing default parameters, 
in addition to the following parameters: [–clip_R1 n] and [–three_prime_clip_R1 n] (n—representing 5% of 
the read length) to avoid low quality bases and potential adapter contamination. Trimmed reads were mapped 
against the reference human genome (GRCh38 for human cells and GRCm38 for mouse cells) using STAR (ver-
sion 2.5.3)54. Mapping of the sequencing reads in the human datasets was performed using default parameters, in 
addition to the [—outFilterMultimapNmax 1] parameter, to achieve unique mapping, as previously performed55 
to avoid contamination of expressed mitochondrial pseudogenes—mtDNA fragments that were transferred to 
the nucleus during the course of evolution (NUMTs, see dedicated section below)56. Non-unique mapping was 
also performed for comparison and assessment of such potential contamination. As certain mouse NUMTs 
are longer and more similar to the active mtDNA, sequencing reads from six mtDNA genes were erroneously 
filtered out while applying the unique mapping protocol. To overcome such problem, sequencing reads from the 
mouse datasets were mapped solely against the mtDNA genome using bwa with aln parameter (BWA-backtrack 
algorithm)57; this enabled subsequent analysis for all mtDNA encoded-genes. Expression levels of all genes were 
counted using HTSeq-count v0.11.258, using default parameters and employing the [-f bam] parameters. For 
quality control filtering, gene count values as defined by HTSeq-count were concatenated into a resulting gene 
expression matrix for each library, which then was loaded into Seurat R-package (version 3.0.2) for subsequent 
computational analysis. Seurat objects were created using the function “CreateSeuratObject”25. Human Dataset 
IV reads were processed using UMI-tools59, which enabled read mapping by STAR (unique mapping), removal 
of duplicate reads and generation of a gene expression matrix. For all datasets (human and mouse), cell types 
identities were already reported in the original studies. Nevertheless, we verified such using “FindVriableFea-
tures” function and clustering in Seurat (shown is a representative analysis in Dataset IV-Fig S11). Notably, 
quality control filtering of cells and genes was performed, while, using only cells having at least 3000 detected 
transcripts, with a maximum of 20% ribosomal genes; cells with zero mtDNA read counts were excluded. For 
all datasets cell doublets were excluded (i.e., cells that were assigned to a given cell type—beta or alpha cell, yet 
express a mixture of cell type-specific markers—such as both Glucagon and Insulin) (Fig S1, S2, S11). Cells with 
mtDNA read counts which either exceeded two-fold above the median (for human Dataset I), or displayed more 
than 10% mtDNA reads were excluded. These measures were taken since overrepresentation of mtDNA genes 
expression could either associate with stress, or with cell death60.

Cluster identification using Seurat.  To identify clusters of pancreatic beta cells which share patterns of 
mitochondrial gene expression, Seurat pipeline was utilized25. The data matrices were imported and processed 
with Seurat R package version 3.0.2. To account for the possibility that individual cell complexity leads to cluster 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86473
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77980
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86479
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110648
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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separation and subsequent reduction in the number of total read counts per cell, we used the “vars.to.regress” 
parameter in scaling function of Seurat. PCA was performed for each separate individual (for both human and 
mouse experiments) using the mtDNA-protein coding mRNA genes. Although the mtDNA codes for 37 genes, 
of which 13 encode essential protein-subunits of the OXPHOS system, 2 rRNA genes (12S, 16S) and 22 tRNA 
genes, the RNA-seq libraries of all datasets enabled analysis of only longer transcripts, while excluding transcripts 
with short 3′ poly-A (i.e. < 10A) in the inDrops platform, which selected for PolyA + transcripts (Dataset I)61. 
This limited our analysis to the 13 mtDNA-encoded protein coding genes for the Fluidigm C1 platform and to 
9 of the 13 mtDNA-encoded OXPHOS subunits (excluding ND5, ND6, ND4L, ATP8 which have a short polyA 
tail) in the inDrops platform (Table S6). Although the mtDNA is transcribed in strand-specific polycistrons, 
it is not obvious that mtDNA transcripts will be expressed in the same levels mainly due to post-transcription 
processing; therefore, multidimensional clustering was performed. Using the first two principle components 
as input, density clustering was performed per individual to identify cell groups in the data and t-distributed 
statistical neighbour embedding (tSNE) to visualize the data. A range of values (0.1–1) were examined to assess 
differences in mitochondrial gene expression. To gain statistical power, the cells of all individuals were clustered; 
the percent of cells that consistently retained their group identity was calculated and these cells were used for 
subsequent analyses. Using further Seurat functionality applications, marker genes for each respective cluster 
were identified and used for subsequent analysis. The specific markers for each cluster identified by Seurat were 
determined using the “FindAllMarkers” function, using only highly expressed genes (non-zero genes above 0.25 
of cells). Finally, to verify the specificity of the identified cell clusters per individual, per dataset, we compared 
between the identified clusters the expression of 100 random genes that were resampled 1000 times, in each of 
the tested samples. Heatmaps were generated using ’DoHeatmap’ function in Seurat.

Statistical analyses.  Statistical analysis for categorical groups comparisons was performed by unpaired 
Wilcoxon test with Jack knife 1000X re-sampling test. The latter was performed to control for comparisons 
of groups with uneven sample sizes. Mutation repertoire and conservion ratio differences were tested using 
ANOVA. Differential expression of genes was tested using “negbinom” test for Dataset I and Dataset IV which 
identifies differentially expressed genes between each couple of groups. In brief, we performed a likelihood ratio 
test of negative binomial generalized linear models. We used the “bimod” test for Datasets II and III which was 
developed for measurements from the Fluidigm platform62. To control for multiple testing, the results of differ-
ential genes’ expression was FDR corrected.

Mitochondrial sequence extraction.  Bam files were indexed using default parameters of Samtools v1.3.1 
(index command). To create multiple sequence alignment, we generated pileup files using the Samtools mpileup 
command (default parameters). In addition, we used the -r MT parameter in order to determine read counts per 
cell, per-base; to facilitate the usage of this parameter for each studied sample we used a custom-made Python 
script for each sequenced sample. For each given mtDNA position, with sufficient read coverage that passed 
our quality control filters (see below), the base frequency was calculated by dividing the number of reads which 
displayed a certain base by the total read coverage per position.

Variant quality control and filtering.  We counted base changes (i.e. RNA mutations), only in mtDNA 
positions covered by at least 400 sequencing reads. A mutation was considered trustworthy only if it was covered 
by at least two sequencing reads from each direction (e.g., forward and reverse), and if the identified mutation 
was not in the end of the sequencing read. Secondly, high quality variants per sample, per position were deter-
mined if the total coverage of the position was > 400 reads with the mutation represented by > 1% coverage in 
a given nucleotide position. To avoid errors due to low sequence coverage, only cells with at least 1000 covered 
mtDNA positions within the protein-coding region were included in the variant analyses. Notably, due to low 
coverage in the non-coding mtDNA region (D-loop), only mutations in the mtDNA coding region were used 
for subsequent comparison of mutational repertoire between cells. While considering the mtDNA mutational 
repertoire, permutation analysis (1000 repeats) was performed by resampling 1000 high quality positions per 
iteration, per cell. Mutations percentage per subgroup was calculated by summing the variants per subgroup and 
dividing such by 1000 X number of cells per iteration.

Identification of personalized sub‑group mutations.  To identify mutations that are more prevalent 
in a certain group of cells as compared to the other cells’ group per individual, or per tested condition, frequen-
cies of mutations and RNA heterogeneic percentage (mean plus SD) were determined in each of the cell groups 
(Table S4). Additionally, candidate inherited mutations were identified such that they were shared between alpha 
and beta cells isolated from the same individual. For each individual the percent of candidate inherited muta-
tions was determined by dividing the number of such by the total number of mutations, per cell subgroup, per 
individual.

Assessing the functional potential of mutations in mtDNA transcripts.  To assess whether RNA 
mutations occurred randomly throughout the mtDNA, or were subjected to selective constraints, the conser-
vation score averages of all the detected mtDNA positions was compared to random distribution. To this end, 
100-way phastCons63,64 score per human and mouse mtDNA position was downloaded from the UCSC website 
(http://genom​e.ucsc.edu/), and the average score of all RNA heterogenic positions was calculated for each sam-
ple. The scores of random distribution were calculated by sample-specific permutation. For each sample, the 
original number of detected heterogenic positions was resampled ten thousand times, and the average score of 
all the resampled positions in each iteration was calculated. Next, the expected random value was calculated by 

http://genome.ucsc.edu/
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averaging the score of all iterations. The ratio between the observed score average, and the expected random 
average, was calculated to compare between the distributions of the two cellular sub-populations, per subject. 
Sample specific p values were calculated based on the permutation scores, as the fraction of iterations that had 
either lower or higher score averages than the observed average (when the observed-expected ratio was lower or 
higher than 1, respectively).

Mitochondrial nDNA pseudogenes (NUMTs) likely did not impact expression differences.  It 
has been known for some time, that the nDNA harbours a repertoire of mtDNA sequence fragments (NUMTs) 
that were transferred from the mitochondria during the course of evolution. NUMTs potentially pose an obstacle 
to mtDNA gene expression assessment, as a subset of RNA reads might originate from NUMTs rather than from 
the active mtDNA. As a first step to control for such a scenario, we performed both unique and non-unique map-
ping in the human datasets. Similarly, in mus musculus there is a large NUMT covering a substantial part of the 
mtDNA (~ 4.5 kb), with high sequence similarity to the corresponding mitochondrial reference genome (99.9% 
identity across this sequence)45. As leaving this mtDNA region out will result in data loss for 6 mtDNA genes in 
mouse, we used bwa mapping only for the mtDNA genome sequence. To test the levels of potential NUMTS in 
the unique mapping data, the percent of NUMT reads (+/− SD) was calculated per cell, per base (Table S8). In 
addition, whole genome differential expression analysis further filtered out pseudogenes to avoid noise.
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