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Abstract

Protein aggregation, arising from the failure of the cell to regulate the synthesis or degradation of aggregation-prone
proteins, underlies many neurodegenerative disorders. However, the balance between the synthesis, clearance, and
assembly of misfolded proteins into neurotoxic aggregates remains poorly understood. Here we study the effects of
modulating this balance for the amyloid-beta (Ab) peptide by using a small engineered binding protein (ZAb3) that binds
with nanomolar affinity to Ab, completely sequestering the aggregation-prone regions of the peptide and preventing its
aggregation. Co-expression of ZAb3 in the brains of Drosophila melanogaster expressing either Ab42 or the aggressive familial
Alzheimer9s disease (AD) associated E22G variant of Ab42 abolishes their neurotoxic effects. Biochemical analysis indicates
that monomer Ab binding results in degradation of the peptide in vivo. Complementary biophysical studies emphasize the
dynamic nature of Ab aggregation and reveal that ZAb3 not only inhibits the initial association of Ab monomers into
oligomers or fibrils, but also dissociates pre-formed oligomeric aggregates and, although very slowly, amyloid fibrils. Toxic
effects of peptide aggregation in vivo can therefore be eliminated by sequestration of hydrophobic regions in monomeric
peptides, even when these are extremely aggregation prone. Our studies also underline how a combination of in vivo and
in vitro experiments provide mechanistic insight with regard to the relationship between protein aggregation and clearance
and show that engineered binding proteins may provide powerful tools with which to address the physiological and
pathological consequences of protein aggregation.
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Introduction

Of the neurodegenerative disorders that have been linked to

protein misfolding and aggregation [1], Alzheimer’s disease (AD) is

the most common [2,3]. Transgenic animal models have shown

that aggregation of the Alzheimer b-peptide (Ab) causes memory

impairment [4,5] and cognitive deficits [6] similar to those seen in

patients suffering from AD. Ab aggregation precedes neuritic

changes [7], and there is a quantitative correlation between the

propensities of mutant forms of Ab to aggregate and their

neurotoxicity [8]. In vitro aggregation of Ab proceeds from the

initial association of monomers into oligomeric, but still soluble,

assemblies that ultimately form highly structured and insoluble

amyloid fibrils [1,9,10,11]. Evidence suggests that the primary

neurotoxic species are the soluble oligomeric aggregates

[4,5,12,13] and that a fundamental building block may be dimeric

Ab species [14]. However, despite this progress, the details of Ab
aggregation in vivo, the structure of toxic aggregates, the

mechanism of toxicity, and in particular, the relationship between

aggregate formation and peptide clearance are not known.

We set out to investigate a novel approach to study the

dynamics of Ab aggregation in vitro and neurotoxicity or

degradation in vivo by using a conformation-specific Ab binding

protein, the ZAb3 Affibody [15,16]. Affibody molecules are

engineered binding proteins, which are selected by phage display

from libraries based on the three-helix Z domain [17,18]. The
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ZAb3 Affibody was selected [15] to bind specifically to Ab
monomers with nanomolar affinity (dissociation constant

Kd<17 nM) [16]. It forms a disulfide-linked dimer to which Ab
binds and folds by induced fit [19] into a hairpin conformation

such that its two aggregation-prone hydrophobic faces become

buried within a tunnel-like cavity in the ZAb3 dimer [16,19]. The

specificity and well-characterized structural features of ZAb3

binding to Ab make it an ideal candidate for studying the effects

of Ab monomer binding in vivo. We find that the presence of the

Affibody molecule, achieved by co-expression, can eliminate Ab
neurotoxicity in a fruit fly (Drosophila melanogaster) model of AD

[20,21], and we used biochemical and biophysical experiments to

identify the molecular mechanism by which this process occurs.

Results/Discussion

Elimination of Ab Neurotoxicity In Vivo
We first generated Drosophila strains transgenic for ZAb3. As ZAb3

is most effective in binding Ab when it is in its dimeric form, we

also generated Drosophila in which two copies of ZAb3 are

connected head-to-tail—(ZAb3)2—to enable the disulfide-linked

dimer to form more readily. Drosophila transgenic for the wild-type

Z domain were used as controls. These three Affibody fly lines

were then each crossed with Drosophila transgenic for Ab42,

Ab42E22G [22], or Ab40, and the co-expression of both transgenes

together in the brain or in the eye was initiated by crossing with

appropriate driver flies [20,21].

Expression of Ab42E22G in the brain of Drosophila causes rapid

neurodegeneration resulting in a drastic reduction in lifespan from

38 (61.8) to 9 (60.5) days, consistent with the findings of previous

studies [8]. Co-expression of ZAb3 with Ab42E22G, however,

increases the lifespan to 20 (60.2) days. Strikingly, if the-head-to-

tail dimer (ZAb3)2 is co-expressed with Ab42E22G, the toxic effects

of the peptide are yet further reduced and the lifespan increases to

31 (60.8) days, which is almost as long as in wild-type controls

(Figure 1A, Table S1) and indicates that the neurotoxicity of Ab
has been almost entirely abolished. Co-expression of the Z

domain, which has no affinity for Ab, does not affect Ab42E22G

toxicity, demonstrating that the rescue of Ab toxicity in vivo is

specific to ZAb3. Co-expression of ZAb3 with wild-type Ab42 also

significantly prolongs the lifespan of these flies (from 28, 60.4, to

32, 60.7, days). Again, the (ZAb3)2 head-to-tail-dimer is even more

effective, completely eliminating the toxicity associated with Ab42

(lifespan 40, 61.2, days), whereas the Z domain control has no

effect (Figure 1B). Expression of the less aggregation-prone Ab40

has no effect on lifespan, and none of the Affibody molecules or

the control significantly affected the lifespan of flies expressing

Ab40 or wild-type Drosophila (Figure 1C and 1D).

The ability of (ZAb3)2 to abolish the toxic effects of Ab42E22G

was confirmed physiologically by its ability to abolish the

abnormal eye morphology associated with Ab42E22G expression

in the photoreceptors in the fly (Figure 2).

Clearance of Ab from the Drosophila Brain
To determine the mechanism by which ZAb3 mediates

suppression of Ab toxicity, we assessed the levels of Ab42 in the

brains of flies co-expressing Ab42E22G and either ZAb3, (ZAb3)2, or

the Z domain by Western blotting. Fly brains were homogenized in

1% SDS, subjected to electrophoretic separation, and probed using

an antibody against the N-terminus of Ab, which detailed structural

studies reveal remains exposed in the Ab:ZAb3 complex [16]. SDS

soluble Ab can clearly be detected in flies expressing Ab42E22G, but

it is absent in flies co-expressing ZAb3 or (ZAb3)2 (Figure 3A). The

specificity of this effect is confirmed by the continued presence of the

Ab42E22G in flies that co-express the non-binding Z domain.

The ZAb3:Ab complex is stable in 1% SDS (B. Macao,

unpublished), and Ab remaining in complexes or in SDS insoluble

aggregates in the fly brain might therefore not be detectable by

Western blot. In order to address this possibility, fly brains

expressing Ab42E22G with or without (ZAb3)2, ZAb3 or the Z

domain were homogenized in 5 M GdmCl, conditions known to

dissociate both Ab aggregates and Ab:ZAb3 complexes. The total

level of Ab42E22G in these extracts was then measured by a

sensitive ELISA assay (Figure 3B). Flies expressing both (ZAb3)2
and Ab42E22G show a 97% (63%) reduction in the concentration

of Ab42E22G compared to flies co-expressing Ab42E22G and the

inert Z domain (the most appropriate control for the non-specific

effects of expressing a second transgene on the levels of Ab).

Decreased Ab42E22G levels in the presence of different Affibody

constructs correlate well with corresponding reduction in neuro-

toxicity measured by the survival assay (Figure 1).

The prevention of Ab42E22G aggregation by ZAb3 and (ZAb3)2 is

demonstrated by immunohistochemical detection of Ab42E22G in

whole mount brain preparations analyzed by confocal microscopy.

Flies expressing Ab42E22G under the control of the OK107-Gal4

driver, which drives expression in a subset of adult neurons,

contain abundant deposits in the brain recognized by the anti-Ab
6E10 antibody, whereas flies co-expressing Ab42E22G and (ZAb3)2
have almost no visible 6E10 immunoreactive deposits (Figure 3C).

In good agreement with the results of the ELISA analysis, co-

expression of ZAb3 results in a significant reduction in the burden

of aggregates but does not result in their complete removal,

whereas co-expression of the Z domain gives levels of Ab deposits

similar to those present in flies expressing Ab42E22G.

In order to determine whether the presence of Ab42E22G had

altered the levels of ZAb3 or (ZAb3)2 present in the fly brain, brain

homogenates were analyzed using either anti-cMyc antibodies to

detect ZAb3 or anti-Affibody antibodies to detect (ZAb3)2; both

dimeric Affibody molecules can be observed as 12 kDa dimers

under non-reducing conditions. The levels of these Affibody

species are not detectably altered in flies co-expressing Ab42E22G

(Figure 3D) despite the marked reduction of the levels of soluble

Ab42E22G (Figure 3A). While this experiment suggests that Ab
clearance could be occurring without the corresponding clearance

of its binding partner ZAb3, the quantities seen by Western blot

Author Summary

Alzheimer’s disease is thought to be a result of neuronal
damage caused by toxic aggregated forms of the Ab
peptide in the brain. There is no cure and existing
treatments are ineffective in reversing or preventing
disease progression. Here we describe a novel strategy
that makes use of an engineered ‘‘Affibody’’ protein to
study the disease and potentially combat its underlying
causes. The Affibody occludes the aggregation-prone
regions of Ab peptides, preventing their aggregation into
toxic forms, and it also acts to dissolve pre-formed Ab
aggregates. It is functional in vivo, as its co-expression with
Ab peptides in transgenic fruit flies prevents the neuronal
damage and premature death that result from expression
of Ab peptides alone. Moreover, we show that the origin of
this protection is the enhanced clearance of Ab peptides
from the brain. These findings open up new opportunities
for using engineered binding proteins to probe the origins
of Alzheimer’s disease and potentially to develop a new
class of therapeutic agents.

Eliminating Toxic Aggregates of the Ab Peptide
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represent the equilibrium levels of these two proteins, and so

would not detect any turnover in ZAb3 that may also be occurring.

We have established that the reductions in the levels of

Ab42E22G peptide in the fly brain are not due to altered gene

regulation in flies co-expressing Z, ZAb3, or (ZAb3)2, because the

levels of Ab42E22G transcription are not significantly reduced in

any case (Figure 3E).

In summary, ZAb3 causes a reduction in Ab42E22G levels by

actively promoting its clearance from the brain. The clearance

does not involve any specific antibody-mediated process, since

Drosophila lacks an adaptive immune system [23]. In order to

determine at which stages of the Ab aggregation process the ZAb3

Affibody can intervene, we analyzed the effects of ZAb3 on the

dynamic interconversion of monomeric, oligomeric, and fibrillar

Ab species in vitro.

Inhibition of Ab Amyloid Fibril Formation In Vitro
Sequestration of the hydrophobic regions of Ab40 and Ab42

(Figure 4A and Figure S1) allows ZAb3 to inhibit amyloid fibril

formation completely, even that of the extremely aggregation-

prone Ab42E22G variant, as judged by thioflavin T (ThT)

fluorescence assays indicative of amyloid fibril formation

(Figure 4B–D, Figure S2, and Figure S3). The addition of ZAb3

to Ab40 or Ab42 aggregation reactions has the same effect on the

aggregation kinetics as reducing the Ab concentration by the

equivalent amount (Figure 4C and Figure S3A), demonstrating

that inhibition of fibril formation occurs by sequestration of

Figure 2. Rescue of Drosophila eye morphology. Scanning
electron micrographs (SEM) of eyes of flies expressing Ab42E22G alone
or in combination with the Z domain control or the (ZAb3)2 Affibody at
low and high magnification. A wild-type non-transgenic fly eye is
shown for comparison. Scale bar = 100 mm in main pictures and 20 mm
in inserts.
doi:10.1371/journal.pbio.1000334.g002

Figure 1. Inhibition of neurotoxicity measured as lifespan of
transgenic Drosophila. Each curve represents 100 flies divided equally
into groups of 10. Expression of all Ab peptides and Affibody proteins
was under the control of the UAS-GAL4 system. In these experiments,
expression was driven throughout the CNS by the elavc155-GAL4 driver
line. Survival assays were performed to quantify the degree of

neurodegeneration when each different combination of Ab peptide
and Affibody proteins or Z domain control was expressed in the CNS.
(A) Ab42E22G median lifespan = 9 (60.5) days; Ab42E22G + ZAb3 = 20
(60.2) days, p,0.001 versus Ab42E22G alone; Ab42E22G + (ZAb3)2 = 31
(60.8) days, p,0.001 versus Ab42E22G alone. (B) Ab42 median life-
span = 28 (60.4) days; Ab42 + ZAb3 = 32 (60.7) days, p,0.001 versus
Ab42 alone; Ab42 + (ZAb3)2 = 40 (61.2) days, p,0.001 versus Ab42 alone.
(C) Ab40 median lifespan = 38 (62); Ab40 + ZAb3 = 41 (62) days; Ab40 +
(ZAb3)2 = 38 (62) days. (D) Control experiment: lifespan of flies
expressing only the Z domain, ZAb3, or (ZAb3)2 and non-transgenic flies
(wild-type). Median lifespan of wild-type flies = 38 (61.8) days.
Complete survival statistics are shown in Table S1.
doi:10.1371/journal.pbio.1000334.g001
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monomeric Ab. When a molar excess of ZAb3 is added at different

times during the aggregation process, it effectively inhibits all

further aggregation (Figure 4B and Figure S3B), indicating that

not only does ZAb3 effectively block aggregation even after its

initiation, but also that monomeric Ab is accessible for binding

throughout the process of fibril formation.

Kinetics of Amyloid Fibril Dissolution
We noted, however, during the course of the experiments that

the ThT fluorescence signal tends to fall after the addition of ZAb3

at advanced stages of the fibril formation reaction, suggesting that

ZAb3 may also act to reverse the aggregation process (Figure 4D

and Figure S3C). To determine the kinetics of fibril dissolution by

Figure 3. Clearance of Ab from the Drosophila brain. (A) Electrophoretic (SDS PAGE) analysis of soluble Ab in fly brain extracts. A clear Ab
immunoreactive band is seen at 8 kDa (consistent with an Ab dimer [14]) in flies expressing Ab42E22G and flies co-expressing Ab42E22G and the Z
domain. The 8 kDa Ab immunoreactive band is absent in flies co-expressing Ab42E22G and either ZAb3 or (ZAb3)2. b-actin immunodetection (bottom
row) served as a loading control. (B) ELISA analysis of total (soluble and insoluble) Ab42E22G concentration in the brains of flies expressing the
different Affibody constructs. The levels of Ab42E22G measured in the presence of the different Affibody molecules are expressed as a percentage of
the concentration in the Ab42E22G alone control. Differences between genotypes were analyzed by ANOVA and post hoc t tests. ** p,0.01. (C)
Immunohistochemistry and confocal microscopy analysis of Ab42E22G aggregates in intact brains from flies expressing Ab42E22G alone or in
combination with different Affibody constructs. Anti-Ab immunostaining is shown in red, with a nuclear counterstain (TOTO-3) shown in blue. White
boxes in brain images to the left are magnified to the right. Ab immunoreactive aggregates are observed as puncta and are abundant in the brains of
flies expressing Ab42E22G alone or in combination with the Z domain. Immunoreactive Ab deposits are sparse in brains where ZAb3 is co-expressed
with Ab42E22G and absent in brains where (ZAb3)2 is co-expressed with Ab42E22G. (D) SDS PAGE analysis of ZAb3 and (ZAb3)2 levels in the presence and
absence of Ab42E22G. Twelve kDa anti-c-Myc immunoreactive bands (consistent with a disulfide linked ZAb3 dimer) of equal intensity are detected in
ZAb3-expressing flies in the presence or absence of Ab42E22G. Twelve kDa anti-Affibody immunoreactive bands of equal intensity are also detected for
the head-to-tail linked (ZAb3)2 dimer. (E) Quantitative RT-PCR analysis of Ab mRNA levels in flies expressing Ab in combination with different Affibody
constructs or the Z domain control. The relative levels of Ab mRNA detected in flies expressing Ab42E22G in combination with Z (white), ZAb3 (red), and
(ZAb3)2 (blue) compared to that detected in flies expressing Ab42E22G alone (black) do not differ significantly (n.s., not significant).
doi:10.1371/journal.pbio.1000334.g003
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ZAb3 in vitro, we set up experiments in which Ab40 monomers

dissociating from pre-formed fibrils are captured by ZAb3. We used
15N-labelled Ab40 for these experiments so that monomeric Ab40

in complex with ZAb3 could be identified by solution nuclear

magnetic resonance (NMR) spectroscopy at low micromolar

concentrations. The large fibrillar aggregates of 15N-Ab40

(Figure 4E) did not generate an observable NMR spectrum even

after 24 h of data collection, as expected, due to slow molecular

tumbling and no highly mobile residues. The addition of ZAb3,

however, generated resonances from ZAb3-bound monomeric 15N-

Ab40, indicating a gradual dissolution of the fibrils (Figure 4F and

Figure S4). Only a small fraction of the Ab40, however, dissociates

from the fibrils over the first three weeks; thereafter the dissolution

process becomes very slow, even for fibrils fragmented by

sonication (Figure 4G). Still, under these conditions the observed

level of dissolution does not represent the equilibrium state, as the

pre-formed Ab40:ZAb3 complex is stable in the presence of Ab40

fibrils (Figure S5). Hence, even though binding of the ZAb3

Affibody to monomeric Ab40 can act to dissolve fibrils, the

dissociation kinetics are too slow, at least in vitro, for dissolution to

be achievable in practice under ambient conditions.

Inhibition and Dissolution of Ab Oligomers
In order to determine the critical issue of whether or not ZAb3

can prevent the formation of smaller Ab aggregates (oligomers), we

examined their formation in vitro by size exclusion chromatog-

raphy (SEC) in the presence and absence of ZAb3 (Figure 5A to 5D

and Figure S6). Oligomeric species [24] appear within hours in

solutions of Ab42, prepared by dilution from alkaline conditions

[25], where the monomeric species is initially dominant. The

partitioning between monomeric and oligomeric Ab then reaches

an interim steady state after ,10 h before the onset of the

formation of amyloid fibrils (Figure 5A). By contrast, in the

presence of the ZAb3, oligomer formation is completely inhibited

(Figure 5B), a result that can be attributed to the sequestration of

Ab42 within the complex formed with the Affibody.

Isolated Ab42 oligomers contain elements of well-defined b-

sheet structure as measured by circular dichroism (CD), but the b-

sheet content is lower than in mature fibrils (Figure 5E). Their

stability is also lower as isolated oligomers dissociate into

monomers and convert into amyloid fibrils (Figure 5C). Addition

of the ZAb3 Affibody results in dissolution of the oligomers after a

few days (Figure 5D, 5F, and 5G and Figure S7). This is because

binding of monomeric Ab acts to shift the dynamic monomer-

oligomer equilibrium such that the oligomer population is

reduced, and NMR (Figure 5H) and SEC analyses (Figure S6)

consequently also reveal monomeric Ab42 in complex with ZAb3.

Conclusion
The presence of the ZAb3 Affibody in vivo results in the effective

inhibition of Ab toxicity and the promotion of Ab degradation.

These effects can be attributed to the ability of the ZAb3 Affibody

to act in three distinct ways on the Ab aggregation process. First,

monomeric Ab will be sequestered by ZAb3, the result of which is

that toxic Ab aggregates will not be able to form in the brain.

Figure 4. Inhibition of Ab40 amyloid fibril formation. (A)
Structure of the ZAb3 Affibody (blue and cyan) in complex with an
Ab40 hairpin (residues 16 to 40; red) [16]. White spheres represent
buried nonpolar side chains (core) of ZAb3. (B–D) Kinetics of Ab40

amyloid fibril formation monitored by ThT fluorescence using 30 mM
Ab40 with addition of 36 mM ZAb3 at different times (B and D) or using
the specified concentrations of Ab40 and ZAb3 (C). Time traces of three
or four independent experiments are shown for each condition in (B)
and (D). The average of three experiments is shown in (C) with error
bars representing maximum and minimum values. Experiments in (B–D)
were repeated with Ab42 (Figure S3). (E) Transmission electron
microscopy (TEM) of fibrils prepared for the Ab40 fibril dissolution
assay. Scale bar = 200 nm. (F, top) Up-field region of the 15N HSQC NMR
spectrum of a fibril dissolution sample at 37uC starting from 300 mM
15N-Ab40 in fibrils and (middle) 24 h after addition of 325 mM ZAb3. The
Ab40 backbone resonances appear as Ab40 dissociates from fibrils and is

captured as complex with ZAb3. For reference: the assigned spectrum of
Affibody-bound monomeric Ab40 (bottom) prepared directly from
monomeric Ab40. (G) Kinetics of Ab40 fibril dissolution. The concentra-
tion of bound Ab40 was calculated from the intensities of the NMR
resonances compared to those of an internal 15N-ZAb3 standard. The
experiments were carried out using recombinantly produced Ab40 with
an N-terminal methionine residue.
doi:10.1371/journal.pbio.1000334.g004
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Second, if Ab aggregation were to occur, it can be slowed, halted,

and even reversed by the action of ZAb3 on the dynamic Ab
monomer-aggregate equilibria. Furthermore, the presence of ZAb3

not only prevents or reverses Ab aggregate formation, it also

promotes clearance from the brain. We envisage that this could

occur either by intracellular lysosomal or proteasomal degrada-

tion, or alternatively by the secretion and uptake by phagocytic

cells of the ZAb3:Ab complex.

The results furthermore demonstrate how engineered binding

proteins, such as Affibody molecules, that target specific protein

conformations can be used to gain important insights into the

dynamics of the Ab aggregation process and its toxic consequences

both in vivo and in vitro.

Materials and Methods

Fly Genetics
Drosophila melanogaster transgenic for Ab40, Ab42, and Ab42E22G

have been described previously [20]. Drosophila transgenic for the Z

domain, ZAb3, and the (ZAb3)2 head-to-tail dimer were created by

standard p element mediated germ line transformation using pUAST

(Brand and Perrimon) as the expression vector. Affibody cDNA was

inserted into the multiple cloning site of pUAST using EcoR1 and

Xho1, except for (ZAb3)2, which was cloned between EcoR1 and

Xba1 sites. Each transgene was preceded by the same secretion signal

peptide (MASKVSILLLLTVHLLAAQTFAQ), derived from the

Drosophila necrotic gene, in order to target its expression to the

secretory pathway. Transgenes were injected into w1118 embryos.

Drosophila transgenic for Ab40, Ab42, and Ab42E22G were each

crossed with Drosophila transgenic for Z, ZAb3, and (ZAb3)2 to create

stable double transgenic stocks. Expression of the transgenes was

achieved using the UAS-Gal4 system. UAS-Tg flies were crossed

with flies expressing Gal4 under the control of either a neuronal

promoter (elavc155 or OK107) or eye specific promoter (gmr). All

fly crosses were maintained on standard cornmeal/agar fly food in

humidified incubators. Crosses to generate flies expressing

Affibody molecules or Ab were performed at 29uC.

Survival Assays
Survival assays were performed as described previously [20].

Briefly, 100 flies of each genotype were collected, divided into

tubes of 10 flies, and kept at 29uC. The number of live flies was

counted every 2–3 days and recorded. Survival curves were

calculated using the Kaplan-Meier method, and differences

between genotypes were assessed using the log-rank test.

Rough Eye Phenotype
Transgenes were expressed in the eye by crossing with gmr-Gal4

flies. Crosses were performed at 29uC. Flies were collected on the

day of eclosion and sputter coated using 20 nM of Au/Pd in a

Polaron E5000. SEM images were collected using a Philips XL30

Microscope.

Protein Extraction and Western Blotting
Fifty flies were snap frozen in liquid nitrogen and decapitated

for each genotype. Fly heads were homogenized in PBS/1% SDS

Figure 5. Dissolution of Ab oligomers. (A–D) Oligomer formation
(A and B; 100 mM total Ab42) and oligomer dissolution (C and D; 20 mM
total Ab42) monitored by SEC in the absence or presence of 1.2-fold
excess of ZAb3. SEC elution profiles were integrated and normalized (see
Figure S6 and Materials and Methods). The fraction of high molecular
weight (HMW) aggregates was calculated as the difference between
unity and the sum of the monomer and oligomer fractions. (E)
Normalized CD spectra (MRE, mean residue elliptictiy) of monomeric
Ab42 (black), oligomers (red), and fibrils (blue). b-sheet secondary
structure is identified by a distinct minimum at ,215 nm in the
spectrum. (F,G) TEM images of oligomeric Ab42 solutions after isolation
and at the endpoint of the dissolution experiment. Scale bar = 100 nm.
(H) 15N HSQC NMR spectrum of an Ab42 oligomer sample, which has
dissociated as a result of the sequestering of monomeric Ab42 by ZAb3

(black). Starting from 11 mM 15N-Ab42 in oligomeric form (such as

shown in F), this spectrum was recorded 2 days after the addition of
13 mM ZAb3. The fraction of Ab42 bound to ZAb3 after 5 days of
incubation was estimated by NMR to be 92% (69%). A spectrum of
ZAb3:Ab42 prepared from monomer solutions is shown for reference
(green). The experiments were carried out using recombinantly
produced Ab40 or Ab42 with N-terminal methionines.
doi:10.1371/journal.pbio.1000334.g005
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containing protease inhibitors (Complete, Roche Applied Science,

UK). Homogenates were then centrifuged at 12,100 g for 1 min to

remove insoluble material, and the supernatants were collected for

analysis. Protein concentration in each supernatant was deter-

mined using the DC Protein Assay (Biorad). Equal quantities of

protein for each genotype were loaded on to 4%–12% Bis/Tris

SDS PAGE gels (Invitrogen) for detection of Affibody molecules

and 4%–12% Tris/glycine SDS PAGE gels (Invitrogen) for

detection of Ab. Electrophoresis was performed under non-

reducing conditions, and protein was transferred to nitrocellulose

membranes for Western blotting. ZAb3 was detected using a mouse

monoclonal anti-c-Myc antibody (clone 9E10, Abcam), and

(ZAb3)2 was detected using a goat anti-Affibody antibody (Abcam).

Ab was detected using a mouse monoclonal anti-Ab antibody

directed against the N terminus of Ab (6E10, Signet). All blots

were developed using Supersignal West Femto Maximum

Sensitivity ECL substrate (Pierce).

Total Ab ELISA
Heads from flies expressing Ab42E22G with or without Affibody

domains were subjected to mechanical homogenization in 5 M

GdmCl, 50 mM Hepes, and 5 mM EDTA followed by 4 min of

sonication in a water bath. Homogenates were centrifuged for

7 min at 12,100 g to pellet any GdmCl insoluble material.

Supernatants were diluted in 50 mM Hepes and 5 mM EDTA

with protease inhibitors to a final concentration of 1 M GdmCl. A

sandwich ELISA was performed on the supernatants using

biotinylated 6E10 (Signet) and a C terminal Abx-42-specific

antibody 21F12 (kind gift of D. Schenk, Elan). Protein levels were

measured using a Sector Imager (Meso Scale Discovery) and

normalized to a percentage of the level obtained for flies

expressing Ab42E22G alone.

Immunohistochemistry
Flies of all genotypes were crossed with OK107-Gal4 flies

(Bloomington Stock No. 854) to drive expression in a subset of

neurons that includes, but is not limited to, the mushroom bodies.

For each genotype fly brains were dissected in PBS with 0.05%

Triton X-100 and fixed in 4% paraformaldehyde for 1 h at room

temperature. The brains were then washed three times in PBS/

0.05% Triton X-100 and blocked in 5% w/v bovine serum

albumin in PBS for 1 h at room temperature. Fly brains were

incubated overnight in mouse anti-Ab (6E10, Signet) diluted

1:1000 in blocking buffer. After three further washes in PBS/

0.05% Triton X-100, brains were then incubated in goat anti-

mouse IgG Alexa 546 (Invitrogen) and counterstained with

TOTO-3 (Invitrogen) to detect nuclei before mounting in

Vectashield (Vectorlabs) anti-fade mounting medium.

Confocal Microscopy
Confocal serial scanning images were acquired at 2 or 4 mm

intervals (for high magnification and low magnification images,

respectively) using a Nikon Eclipse C1si on Nikon E90i upright

stand (Nikon). The image stacks were projected using ImageJ

(version 1.42k), and the resulting composite images were processed

using Photoshop CS4 software (Adobe Systems).

Transcription Assay
Concentrations of mRNA were determined using quantitative

real time PCR (RT-PCR). Twenty-five flies per genotype were

collected and snap frozen in liquid N2. RNA was extracted from

each group of 25 fly heads using TriZol followed by DNAse

treatment to remove residual genomic DNA and reverse

transcription to produce cDNA. Each sample was subjected to

two separate quantitative PCR reactions to detect Ab mRNA and

the control gene Actin5c. Real time amplification of cDNA was

monitored using SYBR Green fluorescence in a Bio-Rad iQ

Cycler.

Protein Samples for Biophysical Analysis
ZAb3 was produced in Escherichia coli and purified as described

elsewhere [16]. Ab peptides were obtained from a commercial

source (rpeptide, Bogart, GA, USA), synthesized in-house, or

produced (with an N-terminal methionine) by recombinant co-

expression of Ab and ZAb3 in E. coli [26]. Experiments were

carried out in 20 mM sodium phosphate, 50 mM NaCl, except for

the NMR experiments where NaCl was not included, and pH 7.2.

10 mM ThT was added prior to fluorescence measurements.

Ab Fibril Formation
Fibril formation assays were carried out as described previously

[16]. TEM images were obtained using a LEO 912 AB Omega

microscope. CD spectra were recorded on a JASCO J-810

spectropolarimeter.

Ab Fibril Dissolution
Fibrils were prepared from Ab40 at a concentration of 100 mM

with the same set-up and conditions as for the fibril formation

assays, but in the absence of ThT. After 3 days of incubation at

37uC, fibrils were isolated by centrifugation at 16,000 g. To

remove any residual soluble peptide, fibrils were washed by

resuspension in buffer F [20 mM sodium phosphate, pH 7.2,

0.1% sodium azide, complete protease inhibitor (Roche; at the

concentration recommended by the manufacturer)], followed by

centrifugation. Fibrils were resuspended in buffer F supplemented

with 10% D2O to a final concentration of 300 mM Ab40 and

investigated by 15N HSQC NMR with 24 h of data collection on a

Varian Inova 900 MHz NMR spectrometer (equipped with a

cryogenic probe) or on a Varian Inova 800 MHz spectrometer.

The intensity of resonances originating from bound Ab40 detected

in the presence of 325 mM of unlabeled ZAb3 was followed over

time by recording a series of 24 h 15N HSQC NMR spectra. Five

mM of 15N-ZAb3 served as an internal concentration reference,

assuming identical NMR-sensitivities of the intense resonances of

the three C-terminal residues of bound Ab40 and free ZAb3.

Sonication was achieved by placing the NMR tube with the fibril

sample into a Misonix water bath sonicator for 2 min before

acquisition of NMR data.

Ab Oligomer Formation and Dissolution
Oligomer formation was induced by adjusting the pH of

alkaline (pH,10.5) solutions of Ab42 (concentration #100 mM) in

20 mM sodium phosphate and 50 mM sodium chloride to pH 7.2

(with 1 M HCl) [25]. The samples were incubated at 21uC and

oligomer formation was monitored with SEC and ThT fluores-

cence. Fifty ml (for analytical runs) or 1 ml (for preparative

oligomer isolation) aliquots were injected onto an ÄKTA Explorer

system (GE Healthcare, Uppsala, Sweden) equipped with a

Superdex 75 10/300 column, and the elution was monitored by

UV absorbance at 220 nm. Preparative oligomer isolation was

carried out 4–20 h after induction of oligomer formation and

yielded oligomer solutions at 10–20 mM total Ab42 concentration.

The elution volumes of the ZAb3:Ab42 complex and free ZAb3 were

determined in separate runs of the isolated complex or free

Affibody, respectively, and conformed to previous SEC studies

[19]. The amounts of Ab42 in the monomeric, oligomeric, or ZAb3-
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bound fraction were determined from the elution peak areas

obtained by integration using the Unicorn software provided with

the chromatography system. The data were normalized by setting

to unity the sum of the oligomer and monomer peak areas in the

first SEC profiles (at t = 0.2 h for oligomer formation in Figure

S6A, and at t = 0.5 h for oligomer dissolution in Figure S6C). The

fraction of high molecular weight aggregates that did not enter the

column bed was calculated as the difference between unity and the

sum of the monomer and oligomer fractions. The fraction of ZAb3-

bound Ab42 shown in Figure 5D was obtained by comparison of

the integrated ZAb3:Ab42/free ZAb3 peak area with those obtained

in calibration runs of free ZAb3 (set to 0) and ZAb3:Ab42 complex

(set to 1) using the same protein concentrations as in the

dissolution experiment. The fraction of Ab42 bound to ZAb3 was

determined by 15N HSQC NMR employing an internal

concentration standard.

Supporting Information

Figure S1 The ZAb3-binding modes of Ab40 and Ab42 are

identical. 15N-HSQC NMR spectra of Ab40 (red) and Ab42

(blue) in the ZAb3-bound state. The backbone amide resonances

for residues 1 to 39, including all those assigned to the b-hairpin in

the core of the complex, coincide. This demonstrates that the

mode of binding is identical for Ab40 and Ab42. Buffer, 20 mM

sodium phosphate, pH 7.2. Temperature, 21uC.

Found at: doi:10.1371/journal.pbio.1000334.s001 (0.23 MB TIF)

Figure S2 ZAb3 inhibits fibril formation of Ab42 and

Ab42E22G. (A,B) Aggregation time courses of Ab42 and

Ab42E22G in the absence (blue) and presence (green and red) of

increasing molar equivalents of ZAb3 monitored by thioflavin T

fluorescence. (C) TEM images of the end stage aggregates of Ab42

in the absence (left) or presence (right) of an equivalent amount of

ZAb3. Scale bar = 200 nm. Peptides were purchased from Bachem

and dissolved in 5 mM NaOH followed by filtration using

Centricon YM-10. Solutions were then divided into aliquots and

lyophilized. The quantity of peptide in the aliquots was

determined by amino acid analysis. Aggregation assay samples

in (A) and (B) contained 40 ml of 20 mM Ab42 or 10 mM Ab42E22G

in 50 mM Na-phosphate, pH 7.4, and 10 mM Thioflavin T,

supplemented with the indicated amount of disulfide linked ZAb3.

Samples were incubated at 37uC and data points were recorded

every 4 min (Ab42) or 2 min (Ab42 E22G) with 10 s of orbital

shaking preceding the measurement using a FLUOstar OPTIMA

reader (BMG) equipped with 440 nm excitation and 480 nm

emission filters. Samples analyzed by TEM (in C) were applied to

formvar/carbon coated copper grids, stained with 2% (w/v)

uranyl acetate, and viewed in a Philips CEM100 transmission

electron microscope.

Found at: doi:10.1371/journal.pbio.1000334.s002 (0.80 MB TIF)

Figure S3 The ZAb3 Affibody inhibits fibril formation of Ab42

by sequestration of monomeric peptide. (A) Aggregation

time course of Ab42 at the specified concentrations of Ab42 and

ZAb3. Averages of four experiments are shown with error bars

representing estimated standard deviations. (B) Aggregation time

course of Ab42 using 30 mM Ab42 without (black) or with addition

of 36 mM ZAb3 at the times indicated by the arrows. Averages of

four experiments are shown with error bars representing estimated

standard deviations. (C) The four individual time traces resulting

in the magenta time course in (B). Aggregation was monitored by

thioflavin T fluorescence on a FarCyte reader (Tecan) equipped

with 440 nm excitation and 480 nm emission filters. The samples

contained ,100 ml of the peptide/protein solution in 20 mM Na-

phosphate (pH 7.2), 50 mM NaCl, and 10 mM thioflavin T. Plates

were sealed with polyolefin tape (Nunc) and incubated at 37uC.

Data points were recorded every 5 min with 2 min of linear

shaking before the measurement. The experiments were carried

out using recombinantly produced Ab42 with an N-terminal

methionine.

Found at: doi:10.1371/journal.pbio.1000334.s003 (0.31 MB TIF)

Figure S4 Dissolution of 15N-Ab40 from fibrils by ZAb3

monitored by NMR. 15N HSQC NMR spectrum of a fibril

dissolution sample (black), starting from 300 mM 15N-Ab40 in

fibrils, recorded during the first 24 h after addition of 325 mM

ZAb3 and 5 mM 15N-ZAb3. For reference, the spectra of bound

Ab40 (red; assigned) and free ZAb3 (green) are shown. (The

spectrum of fibrillar Ab40 before ZAb3 addition shows no

resonances at this contour levelling). Buffer, 20 mM sodium

phosphate, pH 7.2. Temperature, 37uC. Recombinantly produced

Ab40 with an N-terminal methionine was used.

Found at: doi:10.1371/journal.pbio.1000334.s004 (0.32 MB TIF)

Figure S5 Stability of the Ab40:ZAb3 complex in the presence

of Ab40 amyloid fibrils. (A) 15N-HSQC NMR spectrum of

100 mM 15N-ZAb3 bound to 100 mM unlabeled Ab40 before

addition and (B) after addition of 100 mM 15N-Ab40 in amyloid

fibrils and incubation for 5 days at 37uC. Buffer, 20 mM sodium

phosphate, pH 7.2, 0.1% sodium azide. Fibrillar 15N-Ab40 is not

detected by solution NMR because of its large size, for which slow

tumbling results in line broadening. The spectrum of 15N-ZAb3 in

the bound state (A) is retained in (B), and resonances of 15N-ZAb3

in the free state do not appear. This demonstrates that Ab40 does

not leave the complex to be incorporated into the fibrils, i.e. the

complex is stable in the presence of Ab40 amyloid fibrils.

Moreover, resonances of 15N-Ab40 bound to ZAb3 do not appear

in (B), i.e. 15N-Ab40 monomers do not dissociate from the fibrils to

exchange with unlabeled Ab40 monomers in the ZAb3 complex.

This finding is in agreement with the high kinetic stability of Ab
amyloid fibrils reported in this study. The lifetime of the Ab40:ZAb3

complex was determined as 2.6 (60.3) h at 21uC. Dissociation of

the complex cannot therefore be rate-limiting in this experiment.

Lifetime determination was carried out by successive recording of

the 15N-HSQC NMR spectrum of 15N-ZAb3:15N-Ab40 complex

after addition of an excess of unlabeled ZAb3 and monitoring the

decrease in the intensity of the resonances assigned to bound 15N-

ZAb3. Recombinantly produced Ab40 with an N-terminal

methionine was used.

Found at: doi:10.1371/journal.pbio.1000334.s005 (0.20 MB TIF)

Figure S6 Ab42 oligomer formation and dissolution analyzed

by SEC. Elution volumes of monomeric and oligomeric Ab42,

free ZAb3 Affibody, and the ZAb3:Ab42 complex on a Superdex 75

10/300 column, with a nominal resolution of 3,000 to 70,000 Da,

are indicated. Ab42 oligomers elute at the void volume (8.3 ml)

and Ab42 fibrils cannot enter the column. (A) A solution of

100 mM Ab42 was incubated without stirring at 20uC. SEC

analysis of samples removed at different times reveals the decrease

in concentration of monomeric Ab42 with time and the transient

formation of oligomeric species, followed by formation of HMW

aggregates (fibrils). (B) Analysis of an equivalent Ab42 solution also

containing a 1.2-fold excess of the ZAb3 Affibody shows that the

ZAb3:Ab42 remains stable without oligomer or HMW aggregate

formation. (C,D) Oligomer dissolution: isolated oligomer Ab42

fractions isolated subjected to a second incubation followed by

SEC analysis. In the absence of ZAb3 (C), these dissolve on a

timescale of several hours and monomeric Ab42 appears

transiently prior to fibril formation. Oligomer dissolution in the

presence of an 1.2-fold excess of ZAb3 (D) results in ZAb3:Ab42
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complex formation manifested in a small but significant shift in the

elution volume of the ZAb3 Affibody. Recombinantly produced

Ab42 with an N-terminal methionine was used.

Found at: doi:10.1371/journal.pbio.1000334.s006 (0.18 MB TIF)

Figure S7 Ab42 oligomer dissolution analyzed by ThT

fluorescence. Ab42 oligomer fractions were isolated by SEC

and incubated at 20uC. The initial fluorescence (red bar)

associated with ThT binding to oligomeric Ab42 increases upon

formation of fibrils (blue) or decreases as oligomers dissolve in the

presence of an excess of ZAb3 (grey). ThT fluorescence was

recorded on a Varian Cary Eclipse spectrofluorometer at 480 nm,

with excitation at 446 nm. Samples were diluted to final Ab42

concentrations of 1 mM into 20 mM sodium phosphate, 50 mM

NaCl, pH 7.2, supplemented with 10 mM ThT. The intensity of

the fibril sample was set to unity. Error bars give the estimated

standard deviation of four independent oligomer dissolution

experiments. Recombinantly produced Ab42 with an N-terminal

methionine was used.

Found at: doi:10.1371/journal.pbio.1000334.s007 (0.09 MB TIF)

Table S1 Transgenic fly survival (median life span).

Found at: doi:10.1371/journal.pbio.1000334.s008 (0.05 MB PDF)
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