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Abstract
Background  Recent studies have highlighted the importance of the cell-free DNA (cfDNA) methylation profile in 
detecting breast cancer (BC) and its different subtypes. We investigated whether plasma cfDNA methylation, using 
cell-free Methylated DNA Immunoprecipitation and High-Throughput Sequencing (cfMeDIP-seq), may be informative 
in characterizing breast cancer in patients with BRCA1/2 germline mutations for early cancer detection and response 
to therapy.

Methods  We enrolled 23 BC patients with germline mutation of BRCA1 and BRCA2 genes, 19 healthy controls 
without BRCA1/2 mutation, and two healthy individuals who carried BRCA1/2 mutations. Blood samples were 
collected for all study subjects at the diagnosis, and plasma was isolated by centrifugation. Cell-free DNA was 
extracted from 1 mL of plasma, and cfMeDIP-seq was performed for each sample. Shallow whole genome sequencing 
was performed on the immuno-precipitated samples. Then, the differentially methylated 300-bp regions (DMRs) 
between 25 BRCA germline mutation carriers and 19 non-carriers were identified. DMRs were compared with tumor-
specific regions from public datasets to perform an unbiased analysis. Finally, two statistical classifiers were trained 
based on the GLMnet and random forest model to evaluate if the identified DMRs could discriminate BRCA-positive 
from healthy samples.

Results  We identified 7,095 hypermethylated and 212 hypomethylated regions in 25 BRCA germline mutation 
carriers compared to 19 controls. These regions discriminate tumors from healthy samples with high accuracy 
and sensitivity. We show that the circulating tumor DNA of BRCA1/2 mutant breast cancers is characterized by the 
hypomethylation of genes involved in DNA repair and cell cycle. We uncovered the TFs associated with these DRMs 
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Background
Breast Cancer (BC) is the most common cancer in 
women all over the world. It differs in histological and 
molecular characteristics that, in turn, influence the 
clinical outcome and response to therapy of the patients 
[1]. Genetics, carcinogen exposure, physical activity, and 
hormonal levels are the main risk factors. Most BCs arise 
from genetic and epigenetic somatic mutations, while 
approximately 5% of all BC is caused by germline muta-
tions. BRCA1 and BRCA2 are the most frequent genes 
associated with an increased risk of BC occurrence. They 
are involved in DNA homologous recombination repair 
(HRR) and, thus, crucial to repair DNA double-strand 
breaks during S/G2-Phase.

Moreover, BRCA2 is involved in maintaining the sta-
bility of stalled replication forks [2] and is necessary to 
assure genetic integrity upon chemotherapy exposure. 
The loss of function in BRCA1 and BRCA2 genes leads 
to an activation of less precise repair pathways that would 
result in more errors and accumulation of DNA damage 
[3]. The risk of developing BC arises up to 75% in women 
carriers of BRCA1 and BRCA2 mutations character-
ized also by a more aggressive phenotype if compared to 
sporadic tumors [4]. BRCA1/2 mutated BCs often have 
a triple-negative phenotype (lack of expression of estro-
gen, progesterone, and ErbB2 receptors). Patients with 
this subtype have a worse prognosis and require specific 
personalized treatments that especially involve the use 
of immune checkpoint inhibitors(ICIs) such as pembro-
lizumab and/or Poly (ADP-ribose) polymerase (PARP) 
inhibitors such as Olaparib [4]. Moreover, a germline 
mutation of BRCA1 or BRCA2 predicts a high response 
rate to platinum and its derivatives [5]. Therefore, the 
precise definition and detection of BRCA1 or 2 mutated 
BC patients should deserve particular attention for the 
best choice of therapy and the correct clinical manage-
ment of the patients.

Epigenetic modifications are considered a hallmark of 
cancer and are found in the early stages of disease, tumor 
progression, and metastasis formation. DNA methyla-
tion is a tissue- and cancer-specific modification and, in 
contrast to the heterogeneity of gene mutations, appears 
to change similarly in cancer cells of the same type and 

tissue origin [6, 7]. The methylation profiles in BCs may 
differ according to both the diverse BC molecular sub-
type and the presence of BRCA gene mutations. Indeed, 
there are differences in the methylome of patients with 
pathogenic germline BRCA mutations compared with 
familial BC without BRCA mutation [8]. BRCA1 mutated 
patients have lower methylation abundance than those 
with sporadic tumors [9]. Moreover, it is often difficult 
to predict the pathogenicity of the so-called variants of 
unknown significance (VUS), and longer clinical observa-
tion of these individuals is needed to define their involve-
ment in the disease occurrence [10]. In these cases, the 
methylation data alone could be helpful to predict the 
pathogenicity of the BRCA variants [11]. The study of 
the circulating methylation profile in cancer patients 
can be performed due to the presence of circulating-free 
DNA(cfDNA) in the plasma. cfDNA comprises small 
fragments with a mean average size of 167 bp released in 
the bloodstream by both normal and tumor cells through 
different processes, including apoptosis, necrosis, and 
active secretion. The study of cfDNA methylation allows 
the detection of different cancer types at various stages 
[12], including BC. Genome-wide methylation analysis by 
the bisulfite conversion method of cfDNA was used for 
the early detection of BC [13]. However, this method is 
expensive, time-consuming, and requires large amounts 
of cfDNA from plasma. An innovative and highly sensi-
tive alternative arises from utilizing cell-free methylated 
DNA immunoprecipitation by anti-5mC antibodies and 
subsequent high-throughput sequencing (cfMeDIP-
seq) [14] to assess the methylation profile despite low 
cfDNA input. Differentially methylated regions (DMRs) 
have been used to construct classifiers that can iden-
tify patients with renal cell carcinoma [14], discriminate 
between patients with localized and metastatic prostate 
cancers [15], and diagnose BC [16]. Although different 
previous papers report the role of cfDNA methylation 
in different subtypes of BC, it remains unclear how the 
methylation profile varies in the cfDNA of patients carry-
ing BRCA1 and BRCA2 gene variants.

In the present study, through a minimally invasive, 
inexpensive, and highly sensitive method, We exam-
ined the cfDNA methylation profile in BC patients 

and identified that proteins of the Erythroblast Transformation Specific (ETS) family are particularly active in the 
hypermethylated regions. Finally, we assessed that these regions could discriminate between BRCA positives from 
healthy samples with an AUC of 0.95, a sensitivity of 88%, and a specificity of 94.74%.

Conclusions  Our study emphasizes the importance of tumor cell-derived DNA methylation in BC, reporting a 
different methylation profile between patients carrying mutations in BRCA1, BRCA2, and wild-type controls. Our 
minimally invasive approach could allow early cancer diagnosis, assessment of minimal residual disease, and 
monitoring of response to therapy.
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with germline BRCA1/2 mutations and BRCA1/2wt, 
tumor-free, and healthy individuals as reference. Thus, 
we applied cfMeDIP-seq using plasma-derived cell-free 
DNA, identified differential methylation profiles in our 
BRCA1/2mut BC patients, and contextualized these 
hypo- and hypermethylated regions to publicly available 
TCGA-BRCA data. Lastly, we translated our findings to 
establish classifiers to discriminate BRCA1/2mut BC 
patients from BRCA1/2wt healthy references.

Methods
Samples collection
Samples were collected from Azienda Ospedaliera Uni-
versitaria Vanvitelli of the University of Campania “L. 
Vanvitelli,” Presidio Ospedaliero of San Felice a Can-
cello (Caserta), and “San Giovanni di Dio” Hospital of 
Frattamaggiore (ASL Napoli 2 Nord). The study was 
in accordance with the Institutional Ethics Committee 
guidelines, Italian law, and the Declaration of Helsinki 
and was approved by the Ethics Committee of Univer-
sity of Campania “Luigi Vanvitelli” - Azienda Ospedaliera 
Universitaria “Luigi Vanvitelli” - AORN “Ospedali dei 
Colli” (Approval number: 133449 on 29th April 2021). 
Informed consent was obtained from all patients. We 
included 23 BC patients with germline mutation of 
BRCA1 and BRCA2 genes, 19 healthy controls without 
BRCA1/2 mutation, and 2 healthy individuals who car-
ried BRCA1/2 mutations (Table 1). Ten mL of peripheral 
blood was collected in EDTA-containing tubes at the 
moment of BC diagnosis. Plasma was isolated by cen-
trifugation at 1200 x g for 20 min, followed by a second 

centrifugation at 21,300 x g for 20 min, and the superna-
tant was stored at -80 °C until processing.

Cell-free DNA isolation and quantification
cfDNA was isolated from 1mL of plasma for each sample 
by using the Qiamp Circulating Nucleic Acid Kit (Qia-
gen) and eluted with 50 µL of Qiagen Elution Buffer. The 
extracted cfDNA was stored at -20 °C. The concentration 
of cfDNA was evaluated using Qubit flex fluorometer 
(ThermoFisher) with Qubit 1X dsDNA High Sensitivity 
(HS) kit. cfDNA was examined by capillary electropho-
resis utilizing a 2100 Bioanalyzer Biosystem (Agilent) and 
dsDNA High sensitivity kit and chips.

cfMeDIP-seq
cfMeDIP-seq was conducted following previously pub-
lished protocols [14]. In short, cfDNA libraries were 
generated using the Kapa Hyper Prep Kit (Roche) accord-
ing to the manufacturer’s guidelines. After performing 
end-repair and A-tailing, adaptors from the NEBNext 
Multiplex Oligos for Illumina (NEB) were ligated to the 
samples, followed by purification using AMPure XP 
beads. To achieve a final quantity of 100 ng, Lambda 
DNA—comprising both methylated and unmethylated 
amplicons with varying CpG content—was added to the 
libraries. 0.3 ng of methylated and unmethylated Arabi-
dopsis thaliana DNA was added for quality control pur-
poses (Diagenode). One small part of the library was 
kept aside for input control (IC), and the remaining was 
used for immunoprecipitation (IP). MeDIP was carried 
out with the MagMeDIP Kit (Diagenode), Antibody anti-
5mC* (33D3 clone) as per the manufacturer’s protocol. 
The efficiency of the immunoprecipitation was verified 
via qPCR by detecting the recovery of the spiked-in Ara-
bidopsis thaliana DNA (both methylated and unmethyl-
ated), following Diagenode’s instructions, and all samples 
with a specificity of reaction < 99% were excluded from 
the study. All final libraries(IC and IP) were amplified 
using between 9 and 15 cycles assessed by qPCR fol-
lowing the cfMeDIP-seq protocol, with the following 
protocol: 98 °C for 3 min, 98 °C for 20s, Anneal at 65 °C 
for 15s and Extension at 72  °C for 30s. After amplifica-
tion, libraries were purified, leading to a dual-size selec-
tion with AMPure XP beads (Beckman Coulter). Library 
quality was examined by capillary electrophoresis utiliz-
ing a 2100 Bioanalyzer Biosystem (Agilent) and dsDNA 
High-sensitivity kit and chips.

Sequencing
Whole genome sequencing (WGS) was performed for 
pre-made libraries at Novogene Company (Cambridge) 
on Novaseq6000 (Illumina) with a 150PE. The mean 
total reads for the IP samples were 32.8 million per sam-
ple resulting in ~ 3X depth per sample. IC samples were 

Table 1  Clinical pathological characteristics of the patient’s 
cohort
Clinical pathological
characteristic

Tumoral
BRCA+
(n:23)

Controls
BRCA-
(n:19)

Controls
BRCA+
(n:2)

Age
(mean)

50.1 45.5 34.5

Sex
   F
   M

23
-

19
-

1
1

BRCA status
   BRCA1
   BRCA2

10
13

-
-

1
1

Stage
   Localized (I-III)
   Metastatic

16
7

-
-

-
-

Grade
   I
   II
   III

1
10
12

-
-
-

-
-
-

Breast Cancer Subtype
   Luminal-Like
   TNBC
   HER2

13
9
1

-
-
-

-
-
-
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sequenced at the resolution with a mean of 54.7 million 
per sample resulting in ~ 5.1X depth per sample.

Processing of cfMeDIP-seq data
The quality of raw reads was evaluated using FastQC 
version 0.11.9 (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc)  and MultiQC version 1.11 [17]. 
Then, low-quality reads and adaptors were removed with 
Trim Galore version 0.6.6 (https://www.bioinformat-
ics.babraham.ac.uk/projects/trim_galore). The trimmed 
reads were aligned to hg38 with Bowtie2 version 2.3.4.3 
[18]. SAMTools version 1.9 [19] was used to convert the 
SAM alignment files to BAM files, sort and index reads, 
and remove duplicates. Samples with < 10  M mapped 
reads were excluded. Tumor fraction was estimated using 
IchorCNA [20] on the low-pass WGS of IC samples.

Identification and annotation of differentially methylated 
regions (DMRs)
The filtered BAM files were processed using MEDIPS 
[21] to identify the Differentially Methylated Regions 
(DMRs) between BRCA1/2mut breast cancer patients 
and healthy non-carriers. The enrichment scores relH 
and GoGe were estimated for each sample to express the 
grade of CpG enrichment in the DNA fragments com-
pared to the reference genome. The enrichment score 
relH is the ratio between the relative frequency of CpGs 
within the regions and the reference genome. The enrich-
ment score GoGe is the observed/expected ratio of CpGs 
within the regions and the reference genome. Samples 
with relH less than 2.7 and/or GoGe less than 1.75 were 
excluded. Then, the genome of each sample was binned 
into 300-bp windows, and the methylation status of each 
bin was compared between the two groups. Regions with 
an absolute value of log2 fold change (FC) greater than 
or equal to 2 and a p-value less than 0.01 were selected 
as differentially methylated. The identified DMRs were 
annotated with the annotatr [22] R package. Gene set 
enrichment with DAVID [23] and gene ontologies with a 
p-value less than 0.05 were selected.

Validation of DMRs with the TCGA-BRCA cohort
Methylation data of The Cancer Genome Atlas (TCGA) 
BRCA cohort were downloaded with the TCGABiolinks 
R package [23]. The primary tissue profiled for BRCA and 
solid tissue normal were downloaded. We referred to the 
cBioPortal for Cancer Genomics (http://www.cbioportal.
org, accessed on 23 October 2023) to assess the TCGA-
BRCA samples profiled for germline BRCA1/2 mutations. 
The probes of Infinium HumanMethylation450K Bead-
Chip array that overlapped with the previously identified 
DMRs were selected to perform a Principal Component 
Analysis (PCA). Overlapping probes were identified with 
findOverlaps of R package GenomicAlignments [25].

Motif finding
Motif enrichment analysis was performed with the 
HOMER tool [24] on two sets of DMRs: (1) hypermeth-
ylated DMRs and (2) hypomethylated DMRs. A BED file 
for each set was built. The motifs with a p-value lower 
than 0.05 were selected for downstream analysis.

Transcription factor enrichment analysis
We inferred the protein activities using VIPER [25]. We 
used the expression data of 82 samples of the TCGA-
BRCA cohort, of these 41 primary tissue samples harbor-
ing germline BRCA1/2 mutations and 41 normal tissue 
samples randomly selected, and the BC transcriptional 
regulatory network generated by ARACNe-AP [26]. We 
used the aracne.networks R package to download the BC 
interactome. Then, we estimated the differential activity 
of regulatory proteins between primary and normal tis-
sue samples by applying the Student’s t-test to the values 
of protein activities inferred from their expression level 
and selected as dysregulated transcription factors with 
false discovery rate less than 0.05 and an absolute value 
of delta greater or equal than 1.

Classification of the samples by using the DMRs
Identified DMRs were used to train two different clas-
sifiers, one based on the GLMnet model and the other 
one on a random forest machine learning algorithm. In 
both cases, the adopted cross-validation method was the 
leave-one-out cross validation (LOOCV). Caret was used 
for sample classification, while the ROCR [27] was used 
to estimate the area under the curve (AUC). We esti-
mated the optimal cut-off for each classifier by applying 
the Youden Index (J) method [28].

Results
Cell-free DNA quantification in BRCA mutation carriers
As a first quality check, we evaluated the detectable 
cfDNA quantity from plasma in our cohort. For each 
sample, cfDNA isolation was performed starting from 1 
mL of plasma, and the final elution of cfDNA was made 
in 50µL of AVE buffer to have the same starting condi-
tions. Fluorometric quantification was performed by a 
spectrofluorometer that automatically releases the con-
centration of dsDNA based on the fluorescence emitted 
by a specific DNA-binding dye. The mean concentration 
of cfDNA in patients with BRCA1/2 germline muta-
tions was 0.344 ng/µL, while the mean concentration 
of cfDNA from healthy controls without mutations was 
0.198 ng/µL. There was a statistically significant differ-
ence between the two groups (p-value 0.032, two tails 
t-test) (Supplementary Figure S1). These results show 
that tumor samples of BRCA1/2 carriers tend to have 
a higher amount of detectable cfDNA with respect to 
healthy controls.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
http://www.cbioportal.org
http://www.cbioportal.org
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Identification of differences in methylation profile between 
BRCA1/2 germline mutation carriers and non-carriers 
healthy patients
We investigated the differences in the methylation profile 
extracted from the cfDNA using the cfMeDIP-Seq proto-
col between 25 BRCA germline mutation carriers and 19 
healthy non-carriers. These samples were selected after 
quality checking on the basis of the number of mapped 
reads and enrichment scores. We performed low-pass 

whole genome sequencing on immuno-precipitated sam-
ples as described in the Methods. The average number 
of the mapped reads was 28.7  million, with a standard 
deviation 15.3. We identified 7,095 hypermethylated and 
212 hypomethylated 300-bp regions (|log2 FC| >= 2 and 
p-value < 0.01) and observed a more significant propor-
tion of DMRs in hypermethylated regions with respect to 
hypomethylated regions (97% vs. 3%, p-value < 2.2e-16) 
(Fig. 1A).

Fig. 1  Identification and annotation of Differentially Methylated Regions (DMRs). (A) The volcano plot shows the DMRs. The x-axis represents the log2 
fold change (FC) of methylation, and the y-axis represents the -log10(p-value). The regions with a p-value < 0.01 and |log2(FC)| >= 2 were selected as 
differentially methylated. The yellow points represent the hypermethylated regions (7,095), the blue points represent the hypomethylated regions (212), 
the dark gray points represent the not significant regions. (B) Principal Component Analysis of TCGA-BRCA methylation data overlapping the DMRs. The 
red points represent the primary tissue samples, while the blue ones represent the solid tissue normal samples. (C) Proportion of DMRs according to 
Genic Annotations. The distribution of DMRs across the 3UTRs (3’ untranslated regions), CDS (coding DNA sequences), enhancers_fantom (enhancers 
from FANTOM5), 5UTRs (5’ untranslated regions), 1to5kb (1 to 5 kb regions upstream of transcription start site, TSS), promoters (regions with a length of 
less than 1 kb upstream of TSS) were explored. (D) Proportion of DMRs according to CpG Annotations
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To understand if the identified DRMs are cancer-
related, we used the methylation status of a group of sam-
ples from the TCGA dataset over the identified DMRs. 
We selected normal solid tissues and primary BC tis-
sue samples profiled for BRCA germline mutations. We 
selected the probes of the Infinium Human Methyla-
tion 450  K BeadChip array in the TCGA-BRCA cohort 
that overlapped with the identified DMRs in cfMeDIP-
seq experiments and performed a principal component 
analysis (PCA) on this set of probes. We observed that 
the PC1 over the identified DMRs was able to separate 
the primary BC samples from normal solid breast tissue 
samples (Fig. 1B). This result confirms that patients with 
BRCA mutations show an altered methylation profile that 
correlates with BC occurrence [8]. Interestingly, the same 
BRCA-specific methylation phenotype can be detected 
even in cfDNA.

To explore the biological effects of the identified DMRs, 
we evaluated the percentages of specific genetic loci 
affected by methylation changes. According to the genic 
annotation, we explored the distribution of the DMRs 
across the 3’ untranslated regions (3UTRs), the coding 
DNA sequences (CDS), the enhancers from FANTOM5, 
the 5’ untranslated regions (5UTRs), the 1 to 5 kb regions 
upstream of transcription start site (TSS), the promoters 
(regions with a length of less than 1 kb upstream of TSS). 
We observed that hypermethylated and hypomethylated 
regions were mainly located in 1 to 5Kb upstream of the 
TSS and promoter regions and higher than expected with 
respect to the set of considered regions (Fig.  1C). We 
found 52% of hypermethylated regions (p-value < 2.2e-
16, proportion test) and 37% of hypomethylated regions 
(p-value 6.769e-06, proportion test) were located in 1 to 
5Kb upstream of the TSS compared to 21% of consid-
ered regions of the genome. In addition, we observed 
that the proportions of both hypermethylated and hypo-
methylated regions in the CDS and 5’UTRs were reduced 
compared to the expected proportions. 5% of both 
hypermethylated (p-value < 2.2e-16, proportion test) and 
hypomethylated regions (p-value 0.03446, proportion 
test) were located at 5’UTR regions compared to the 11% 
expected by chance. The proportion of regions in CDS 
was 8% for the hypermethylated regions (p-value < 2.2e-
16, proportion test) and 11% for the hypomethylated 
regions (p-value 3.509e-05, proportion test) compared 
to 27% of the regions in the whole genome. In contrast, 
the proportion of the regions at 3’UTRs was almost simi-
lar (p-value 0.9163, proportion test) in the hypomethyl-
ated regions (12%) versus the expected (13%), while the 
proportion observed across the hypermethylated regions 
was 7% (p-value < 2.2e-16, proportion test).

We also observed that both hypermethylated and hypo-
methylated regions were preferentially located in inter-
genic regions in contrast with the expected proportion 

observed in the whole genome (Fig.  1D). In particu-
lar, 90% of hypomethylated regions were in intergenic 
regions with respect to an expected 14% (p-value < 2.2e-
16, proportion test). Overall, this analysis shows that 
differential methylation of cfDNA between BRCA1/2 
patients and healthy controls is not random but rather, it 
is enriched in regulatory regions of the genome.

Biological mechanisms of differential methylation in 
BRCA1/2 mutation carriers
Biological Process (BP) enrichment analysis of genes 
annotated in the hypermethylated and hypomethylated 
regions was performed, resulting in 25 significant cat-
egories (FDR < 0.05, Fisher’s Exact test) activated in the 
hypermethylated regions. In contrast, no BP was signifi-
cantly enriched in hypomethylated regions (Supplemen-
tary Table S1).

We found enriched categories related to signal trans-
duction, polymerase II promoter, cell adhesion, neuronal 
development, vasculogenesis, and potassium by using the 
hypermethylated regions in the BRCA mutation carriers 
(Fig. 2). Among the GTPases we found hypermethylation 
of tumor suppressors related to Rho and RAS GTPase 
activities such as DLC1 and STARD13, which play key 
roles in the regulation of Rho signaling and cytoskeleton 
remodeling [29], and RASA1 whose gene product stimu-
lates the GTPase activity of normal RAS [30]. Several 
genes enriching the pathway of regulation of signal trans-
duction mediated by small GTPases had hypermethyl-
ated regions in their promoters (Supplementary Table 
S2). They include ARHGAP21, ARHGAP40, ARHGAP5, 
the G protein subunit beta 5 GNB5, and the Ras asso-
ciation domain family member 1 RASSF1. These results 
implied that GTPase activity, and, in particular, related to 
RHO/RAS activity, could be highly significant in BC with 
BRCA mutations.

To better characterize the difference between BC and 
healthy controls, a focused analysis was performed, 
selecting patients with the highest tumor fraction (n = 10, 
range 0.01–0.1) and comparing them with a sample of 
control cases of the same size. The analyses were per-
formed in the same way as previously described. The 
results were almost similar to the previous ones with 
the whole cohort but with some differences. There was 
a greater difference in the overall methylation, as we 
found 11,0575 of hypermethylated DMRs and 3384 of 
hypomethylated DMRs in 300-bp regions (77% vs. 23% 
respectively) (Supplementary Figure S2A). We also 
observed that the first two principal components could 
separate primary BC samples from normal solid breast 
tissue samples more accurately (Supplementary Figure 
S2B). In addition, like the previous analysis, we observed 
that hypermethylated and hypomethylated regions 
were mainly located 1 to 5Kb upstream of the TSS and 
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promoter regions, higher than expected compared with 
the set of regions considered previously. Furthermore, 
the proportions of hypermethylated and hypomethylated 
regions in the CDS, 5’UTR and 3’UTR, were reduced 
compared to the expected proportions (Supplementary 
Figure S2C). Finally, we observed that both hypermeth-
ylated and hypomethylated regions were preferentially 
located in intergenic regions, in contrast to the expected 
proportion observed in the whole genome (Supplemen-
tary Figure S2D).

Biological Process (BP) enrichment analysis of genes 
annotated in the hypermethylated (Supplementary 
Table S3) and hypomethylated (Supplementary Table S4) 
regions was performed, as before. The top categories cor-
responding enriched by the Hyper-methylated regions 
overlapped the previous findings (Supplementary Figure 
S3), whereas the BP categories enriched by the hypo-
methylated regions included immune response signaling 
pathway, DNA repair, cell cycle and estrogen receptor 
signaling pathway (Supplementary Figure S3, Supple-
mentary Table 4). Among genes involved in DNA repair 
mechanisms we found: RFC3, PARP4, RFC1, EYA4, 
ACTL6A, FANCA, TFPT, UBE2W, RAD50, SUMO1, 
RRM2B, ERCC4, UBR5, SHLD1, ERCC6, ATR. Collec-
tively, these results show that the circulating tumor DNA 
of BRCA1/2 mutant breast cancers is characterized by 
the hypomethylation of genes involved in DNA repair 
and cell cycle.

Regulatory role of differentially methylated regions
To uncover the effect of the BRCA mutation on gene 
regulation, we performed an enrichment motif anal-
ysis using the identified DMRs to evaluate which 

transcription factors (TFs) could be affected by the dif-
ferential methylation. We analyzed the hyper-DMRs 
and hypo-DMRs separately. In the first case, we found 
the motifs for 14 TFs enriched (p-value lower than 0.05) 
(Fig. 3A), while we did not find motifs in the hypomethyl-
ated (Supplementary Table S5). To evaluate the potential 
functional effect of the TF activity, we used Viper [25] 
to infer the TF activity by their expression levels in 82 
samples from the TCGA-BRCA cohort (see Methods). Of 
these, 41 tumor samples carried germline BRCA muta-
tions and 41 solid tissue normal samples. Supervised 
analysis between the two groups resulted in 610 TFs with 
an increased activity and 766 TFs with a decreased activ-
ity. We selected as dysregulated the TFs with an absolute 
value of delta greater or equal to 1 and False Discovery 
Rate (FDR) lower than 0.05 (Fig.  3B, Supplementary 
Table S6). We found that DMRs enriched binding motifs 
of 4 dysregulated TFs (ERG, FLI1, ETS1, RUNX1) with a 
decreased activity.

Overall, our results identified TFs belonging to the ETS 
and RUNX transcription factor family and in particu-
lar, ETS1, ERG, and FL1 are associated with BRCA1/2 
mutated breast cancer.

Development of classifiers based on DMRs
To explore the potential clinical application of our data, 
we trained statistical classifiers to check if the identi-
fied DMRs can discriminate between BRCA1/2mut BC 
patients and BRCA1/2wt tumor-free patients based on 
the cfDNA methylation status. The identified DMRs were 
used to train statistical classifiers (Fig. 4).

We developed two classifiers. The first was based on 
the GLMnet model and exhibited high accuracy in cancer 

Fig. 2  Functional annotation of hyper- DMRs in BRCA-carriers Top 20 biological processes enriched by the genes overlapping hypermethylated regions 
in BRCA-carriers and selected according to p-value. The x axis corresponds to − Log10 (p-value), and the Y axis corresponds to the gene ontology terms
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detection, with an AUC of 0.92, a sensitivity of 92%, and 
a specificity of 94.74%. The second one was based on 
the random forest model and achieved an AUC of 0.95, 
with a sensitivity of 88% and a specificity of 94.74%. In 
both cases, we were able to correctly assign the samples 
to their group using the optimal cut-off by applying the 
Youden index (J) method, reporting a value of 0.26 for 
the first model and 0.51 for the second.

Discussion
Tissue biopsies and the following pathological exami-
nation of the tissues are consolidated procedures for 
histologic and molecular characterization of tumors. 
However, they are invasive and often induce discomfort 
in the patients. Based on these considerations, the rele-
vance of liquid biopsy in both the detection and molec-
ular definition of cancer, including BC, is continuously 
rising [31]. In fact, liquid biopsy is easy, induces minimal 
risks for the patients, and can be repeated at different 
times, allowing the continuous monitoring of the dis-
ease over time, determining the changes of the molecu-
lar characteristics of the cancer during the treatment of 
the patient [33, 34]. Epigenetic modifications occur in the 
earliest stages of the disease in breast cancer [32]. DNA 
methylation is cancer-and tissue-specific and, therefore, 
enables the identification of the target tissue origin of 

tumors. So, when paired with other biomarker or imag-
ing-based methods, methylation patterns can provide 
high predictive accuracy for detecting cancer [33]. Sev-
eral studies have been conducted on cfDNA methyla-
tion for early detection of breast cancer [34, 35] and in 
samples collected prior to clinical detection [36] also 
through the cfMeDIP-seq (16). This methodology was 
also used for the detection and discrimination of intra-
cranial tumors [37], to distinguish localized and meta-
static prostate tumors [15] and for the molecular residual 
disease (MRD) detection in head and neck cancer (HNC) 
[38] The presence of mutations in the BRCA1 and 
BRCA2 genes, essential for maintaining genomic stability 
through their function in DNA repair, increases the risk 
of breast cancer presenting very early and with increased 
aggressiveness. In this study, we investigate, by cfMeDIP-
seq, the characteristics of the methylome in breast cancer 
patients carrying mutations in BRCA genes, suggesting 
blood-based DNA methylation markers serving as poten-
tial novel screening markers. As a validation of the differ-
entially methylated regions identified in cfDNA, we have 
reported that those regions can distinguish TCGA BRCA 
breast tissues from healthy controls with high accuracy in 
an unsupervised way.

Among the dysregulated signaling pathways, we iden-
tified the role of small GTPase, including some tumor 

Fig. 3  Transcription factor enrichment analysis. (A) Barplot of enriched binding motifs (y-axis), ordered based on -log10 p-value (x-axis), encoded by 
the hyperDMRs (B) Volcano plot shows the differentially active TFs estimated comparing 41 BRCA + tumor samples versus 41 solid tissue normal tissue 
samples of the TCGA-BRCA cohort. The positively dysregulated TFs are shown in red while the negatively dysregulated TFs are shown in green. The TFs 
with an absolute value of delta greater or equal to 1 and False Discovery Rate (FDR) < 0.05 were selected as dysregulated. The dysregulated TFs identified 
with VIPER and HOMER were labeled in the volcano plot
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suppressors related to Rho and RAS GTPase activities, 
such as the hypermethylation of promoter of tumor sup-
pressor gene RASSF1, involved in cancer-related path-
ways such as the Rho/Ras GTPase and Hippo pathway 
[39]. Moreover, the activity of the transcription factors 
in 82 samples from the TCGA-BRCA cohort, 41 carried 
germline BRCA mutations and the remaining 41 adjacent 
solid tissue normal samples. We identified TFs belong-
ing to the ETS family. Several studies have shown the role 
of ETS family’s member (ETS1, FLI1, and ERG) in DNA 
damage repair mechanisms [40–42]. Specifically, ETS1 

interacts with two DNA repair enzymes, PARP-1 (Poly 
[ADP-ribose] polymerase 1) and DNA-PK (DNA-depen-
dent protein kinase), and its expression levels appear to 
be regulated by PARP1. PARP1 inhibition, indeed, leads 
to increased ETS1 expression with accumulation of DNA 
damage and cancer cell death [43].

From a focused analysis of differentially methylated 
regions (DMRs) in samples with the highest tumor frac-
tion we found genes in the hypomethylated regions 
enriched pathways associated with DNA repair pathway 
and cell cycle regulation. Among the genes that enriched 

Fig. 4  Performance of classifiers built using the DMRs as selected features. (A) Performance of the classifier based on the GLMnet model (B) Performance 
of the classifier based on the random forest model
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these pathways we identified: ATR, ATM, RAD50, 
PARP4, FANCA. These genes control genomic stability 
and participate in processes of DNA damage response 
(DDR), damage tolerance process, and cell cycle check-
point [44].

The (MRE11-RAD50-NBS) MRN complex, of which 
RAD50 is an essential component, plays a key role in the 
DNA damage response (DDR). It primarily recognizes 
DNA double-strand breaks (DSBs), interacts with ATM 
(ataxia-telangiectasia mutated) and ATR (ATM- and 
Rad3-Related) kinases, and forms a complex with BRCA1 
to promote the resection of 5’ ends in the early stages of 
the homologous recombination (HR) process [45]. ATM 
and ATR instead are the most upstream DDR kinase and 
are involved in phosphorylating several effector proteins 
downstream of DDR, including histone H2AX and the 
cell cycle checkpoint proteins p53, CHK1, and CHK2, 
which promote cycle arrest to prevent replication of 
damaged DNA [46].

The kinase ATR is often activated by oncogenic stresses 
and may also have unique targets particularly those func-
tioning in pathways connected to replication fork repair 
as the Fanconi anemia (FA) pathway. The differential 
methylation analysis also revealed other components of 
FA such as FANCA which is involved in the monoubiq-
uitination process, which allows FANCD2 to localize to 
nuclear foci and interact with other sheltering proteins 
such as BRCA1, playing a crucial role in homologous 
recombination [47]. In tumors with increased levels of 
replicative stress, such as those with BRCA1/BRCA2 
defeats, the ATR inhibition not only leads to the col-
lapse of replication forks, but also the loss of the G2-M 
checkpoint, promoting cell death [48, 49]. ATR inhibition 
has shown promising antitumor activity in preclinical 
models, and several ATR inhibitors (ATRi) are in clinical 
development as antitumor agents, especially in combina-
tion with PARP (PARPi-ATR) in BRCA1/2 deficiency [50, 
51]. 

Finally, we found the hypomethylation of PARP4 which 
could be involved in the DNA repair pathway [52], but 
little is known about its biological function. In a recent 
study, however, significantly increased expression of 
PARP4 was observed in cisplatin-resistant ovarian cancer 
cell lines compared with susceptible ones. The increased 
expression of PARP4 in cisplatin-resistant cell lines was 
associated with hypomethylation of specific CpG sites in 
the PARP4 promoter (cg18582260 and cg17117459) and 
could be so an effective diagnostic biomarker to predict 
the response to cisplatin in ovarian cancer patients [53].

Some limitations must be considered. Although the 
small amount of starting plasma is efficient for classify-
ing tumors from healthy controls, an increase in plasma 
amount would lead to a higher content of circulating 
tumor DNA that can be more informative. Moreover, our 

sample size was limited which probably led to breast can-
cer subtype-based analyses that were not significant. An 
increase of the cohort of patients especially in patients 
with breast cancers not carrying mutations in BRCA1/2 
genes is underway to perform not only a description of 
the methylation profile in BRCA germline breast cancer 
but to perform a comparative analysis with breast cancer 
patients without mutations.

Conclusions
We focused on identifying a methylation profile in 
patients with breast cancers characterized by the pres-
ence of germline mutations in BRCA1 or BRCA2. DMRs 
were most related to genes involved in the process of sig-
nal transduction mediated by Rho/Ras GTPase activity 
and dysregulated RNA polymerase II promoter-proximal 
pausing and DNA repair mechanisms.

Finally, the classifier based on these differentially meth-
ylated regions was able to classify breast cancers carry-
ing BRCA germline mutations from healthy controls with 
high accuracy and sensitivity.
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