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Abstract: In this work, we first consider the discrete version of Fisher information measure and then
propose Jensen–Fisher information, to develop some associated results. Next, we consider Fisher
information and Bayes–Fisher information measures for mixing parameter vector of a finite mixture
probability mass function and establish some results. We provide some connections between these
measures with some known informational measures such as chi-square divergence, Shannon entropy,
Kullback–Leibler, Jeffreys and Jensen–Shannon divergences.
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1. Introduction

Over the last seven decades, several different criteria have been introduced in the
literature for measuring uncertainty in a probabilistic model. Shannon entropy and Fisher
information are the most important information measures that have been used rather
extensively. Information theory started with Shannon entropy, introduced in the pioneering
work of Shannon [1], based on a study of systems described by probability density (or
mass) functions. About two decades earlier, Fisher [2] had proposed another information
measure, describing the interior properties of a probabilistic model, that plays an important
role in likelihood-based inferential methods. Fisher information and Shannon entropy are
fundamental criteria in statistical inference, physics, thermodynamics and information
theory. Complex systems can be described by means of their behavior (Shannon) and their
architecture (Fisher) information. For more discussions, see Zegers [3] and Balakrishnan
and Stepanov [4].

Let X be a discrete random variable with probability mass function (PMF)
P = (p1, . . . , pn). Then, the Shannon entropy of random variable X is defined as

H(X) = H(P) = −
n

∑
i=1

pi log pi,

where “log” denotes the natural logarithm. For more details, see Shannon [1]. Following
the work of Shannon [1], considerable attention has been paid to providing some extensions
of Shannon entropy. Jensen–Shannon (JS) divergence is one such important extension of
Shannon entropy that has been widely used; see Lin [5]. The Jensen–Shannon divergence
between two probability mass functions P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn), for
0 ≤ α ≤ 1, is defined as

JS(P, Q; α) = H(αP + (1− α)Q)− αH(P)− (1− α)H(Q).
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The JS divergence is a smoothed and symmetric version of the most important di-
vergence measure of information theory, namely, Kullback–Leibler divergence. Recently,
Jensen–Fisher (JF) and Jensen–Gini (JG) divergence measures have been introduced by
Sánchez-Moreno et al. [6] and Mehrali et al. [7], respectively.

In the present paper, motivated by the idea of JS divergence, we consider discrete
versions of Fisher information (DFI) and Fisher information distance (DFID), and then
develop a new information measure associated with DFI measure. In addition, we provide
some results for the Fisher information of a finite mixture probability mass function through
a Bayesian perspective. The discrete Fisher information of a random variable X with PMF
P = (p1, p2, . . . , pn) is defined as

I(P) =
n

∑
i=1

(pi+1 − pi)
2

pi
, (1)

with pn+1 = 0.
The Fisher information in (1) has been made use of in the processing of complex and

stationary signals. For example, the discrete version of Fisher information has been used in
detecting epileptic seizures in EEG signals recorded in humans and turtles, in detecting
dynamical changes in many non-linear models such as logistic map and Lorenz model, and
also in the analysis of geoelectrical signals; see Martin et al. [8], Ramírez-Pacheco et al. [9]
and Ramírez-Pacheco et al. [10] for pertinent details.

The discrete Fisher information distance (DFID) between two probability mass func-
tions P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) is defined as

D(P, Q) =
n

∑
i=1

(
pi+1

pi
− qi+1

qi

)2
pi, (2)

where, as above, pn+1 = qn+1 = 0. For some of its properties, one may refer to Ramírez-
Pacheco et al. [10] and Johnson [11].

With regard to informational properties of finite mixture models, one may refer to
Contreras-Reyes and Cortés [12] and Abid et al. [13]. These authors have provided upper
and lower bounds for Shannon and Rényi entropies of non-gaussian finite mixtures, skew-
normal and skew-t distributions, respectively. Kolchinsky and Tracey [14] have studied
the upper and lower bounds for the entropy of Gaussian mixture distributions using the
Bhattacharyya and Kullback–Leibler divergences.

The first purpose of this paper is to propose Jensen–Fisher information for discrete
random variables X1, . . . , Xn, with probability mass functions P1, . . . , Pn, respectively. For
this purpose, we first define discrete version of Jensen–Fisher information for two PMFs P
and Q, and then provide some results concerning this new information measure. Then,
this idea is extended to the general case of PMFs P1, . . . , Pn.

The second purpose of this work is to study Fisher and Bayes–Fisher information
measures for the mixing parameter of a finite mixture probability mass function. Let
P1, . . . , Pn be n probability mass functions, where Pj = (pj1, . . . , pjk). Then, a finite mixture
probability mass function with mixing parameter vector θ = (θ1, . . . , θn−1), for n ≥ 2, is
given by Pθ = (p1

θ, . . . , pk
θ), where

pj
θ =

1
n− 1

n−1

∑
i=1

θi pij +

(
1− ∑n−1

i=1 θi

n− 1

)
pnj, j = 1, . . . , k, (3)

0 ≤ θi ≤ 1, i = 1, . . . , n− 1 and ∑n−1
i=1 θi ≤ 1.

Let X and Y be two discrete random variables with PMFs P = (p1, . . . , pn) and
Q = (q1, . . . , qn), respectively. Then, the Kullback–Leibler (KL) distance between X and Y
(or P and Q) is defined as



Entropy 2021, 23, 363 3 of 10

KL(X||Y) = KL(P, Q) =
n

∑
i=1

pi log
(

pi
qi

)
.

The Kullback–Leibler discrimination between Y and X can be defined similarly. For more
details, see Kullback and Leibler [15]. The chi-square divergence between PMFs P and Q
is defined by

χ2(P, Q) =
n

∑
i=1

(pi − qi)
2

pi
.

For pertinent details, see Broniatowski [16] and Cover and Thomas [17].
The rest of this paper is organized as follows. In Section 2, we first consider discrete

version of Fisher information and then propose the discrete Jensen–Fisher information
(DJFI) measure. We show that DJFI measure can be represented based on the mixture of
discrete Fisher information distance measures. In Section 3, we consider a finite mixture
probability mass function and establish some results for the Fisher information measure of
the mixing parameter vector. We show that the Fisher information of the mixing parameter
vector is connected to chi-square divergence. Next, in Section 4, we discuss the Bayes–
Fisher information for the mixing parameter vector of probability mass functions under
some prior distributions for the mixing parameter. We then show that this measure is
connected to Shannon entropy, Jensen–Shannon entropy, Kullback–Leibler and Jeffreys
divergence measures. Finally, we present some concluding remarks in Section 5.

2. Discrete Version of Jensen-Fisher Information

In this section, we first give a result for the DFI measure based on the log-convex
and log-concave property of the probability mass function. Then, we define the discrete
Jensen–Fisher information measure, and establish some interesting properties of it.

Theorem 1. Let P = (p1, p2, . . . , pn) be a probability mass function.

(i) If P is log-concave, then I(P) ≤ p1;
(ii) If P is log-convex, then I(P) ≥ p1.

Proof. P is log-convex (log-concave) if p2
i ≥ (≤)pi−1 pi+1 ∀i. So, from the definition of DFI

in (1), we have

I(P) =
n

∑
i=1

(pi+1 − pi)
2

pi
≥ (≤)p1.

2.1. Discrete Jensen–Fisher Information Based on Two Probability Mass Functions P and Q

We first define a symmetric version of DFID measure in (2), and then propose the
discrete Jensen–Fisher information measure involving two probability mass functions.

Definition 1. Let P and Q be two probability mass functions given by P = (p1, p2, . . . , pn) and
Q = (q1, q2, . . . , qn). Then, a symmetric version of discrete Fisher information distance in (2) is
defined as

SD(P, Q) =
1
2
D
(

P,
P + Q

2

)
+

1
2
D
(

Q,
P + Q

2

)
.
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Definition 2. Let P and Q be two probability mass functions given by P = (p1, p2, . . . , pn) and
Q = (q1, q2, . . . , qn). Then, the discrete Jensen–Fisher information is defined as

JFI(P, Q) =
I(P) + I(Q)

2
− I

(
P + Q

2

)
. (4)

In the following theorem, we show that the discrete Jensen–Fisher information mea-
sure can be obtained based on mixtures of Fisher information distances.

Theorem 2. Let P and Q be two probability mass functions given by P = (p1, p2, . . . , pn) and
Q = (q1, q2, . . . , qn). Then,

JFI(P, Q) =
1
2
D
(

P,
P + Q

2

)
+

1
2
D
(

Q,
P + Q

2

)

= SD(P, Q).

Proof. From the definition of DFID in (2), we get

D
(

P,
P + Q

2

)
=

n

∑
i=1

(
pi+1

pi
− pi+1 + qi+1

pi + qi

)2
pi

=
n

∑
i=1

{(
pi+1

pi
− 1
)
−
(

pi+1 + qi+1

pi + qi
− 1
)}2

pi

=
n

∑
i=1

(
pi+1

pi
− 1
)2

pi − 2
n

∑
i=1

(
pi+1

pi
− 1
)(

pi+1 + qi+1

pi + qi
− 1
)

pi

+
n

∑
i=1

(
pi+1 + qi+1

pi + qi
− 1
)2

pi

=
n

∑
i=1

(pi+1 − pi)
2

pi
− 2

n

∑
i=1

(pi+1 − pi)

(
pi+1 + qi+1 − (pi + qi)

)

pi + qi

+
n

∑
i=1

(
pi+1 + qi+1 − (pi + qi)

)2

(pi + qi)2 pi.

In a similar way, we get

D
(

Q,
P + Q

2

)
=

n

∑
i=1

(qi+1 − qi)
2

qi
− 2

n

∑
i=1

(qi+1 − qi)
(pi+1 + qi+1 − (pi + qi))

pi + qi

+
n

∑
i=1

(pi+1 + qi+1 − (pi + qi))
2

(pi + qi)2 qi.

Upon adding the above two expressions, we obtain

D
(

P,
P + Q

2

)
+D

(
Q,

P + Q
2

)
=

n

∑
i=1

(pi+1 − pi)
2

pi
+

n

∑
i=1

(qi+1 − qi)
2

qi

−
n

∑
i=1

(pi+1 + qi+1 − (pi + qi))
2

pi + qi

= I(P) + I(Q)− 2I
(

P + Q
2

)

= 2JFI(P, Q),

as required.
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Example 1. Let

X =

{
1, with probability p,
0, with probability 1− p,

and

Y =

{
1, with probability q,
0, with probability 1− q.

The corresponding PMFs of variables X and Y are given by P = (p, 1 − p) and
Q = (q, 1− q), respectively. From Theorem 2, we then have

JFI(P, Q) =
p + q

2

(
1− p

p
− 1− q

q

)2

.

A 3D-plot of this JFI(P, Q) is presented in Figure 1.
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Figure 1. 3D-plot of the DJFI divergence between the PMFs P = (p, 1− p) and Q = (q, 1− q).
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2.2. Discrete Jensen–Fisher Information Based on n Probability Mass Functions P1, . . . , Pn

Let P1, . . . , Pn be n probability mass functions, where Pi = (pi1, . . . , pik). In the
following definition, we extend the discrete Jensen–Fisher information measure in (4) to
the case of n probability mass functions.

Definition 3. Let P1, . . . , Pn be n probability mass functions given by Pi = (pi1, pi2, . . . , pik),
i = 1, 2, . . . , n, with ∑k

j=1 pij = 1, and α1, . . . , αn be non-negative real numbers such that
∑n

i=1 αi = 1. Then, the discrete Jensen–Fisher information (DJFI) based on the n probability mass
functions is defined as

JFI(P1, . . . , Pn; α) = ∑n
i=1 αiI(Pi)− I

(
∑n

i=1 αiPi

)

= ∑n
i=1 αi ∑k

j=1
(pij+1−pij)

2

pij
−∑k

j=1
(∑n

i=1 αi pij+1−∑n
i=1 αi pij)

2

∑n
i=1 αi pij

,
(5)

where α = (α1, . . . , αn).

Theorem 3. Let P1, . . . , Pn be n probability mass functions given by Pi = (pi1, pi2, . . . , pik),
i = 1, 2, . . . , n, and ∑k

j=1 pij = 1. Then, the DJFI measure can be expressed as a mixture of DFID
measures in (2) as follows:

JFI(P1, . . . , Pn, α) =
n

∑
i=1

αiD(Pi, PT),

where PT = ∑n
i=1 αiPi is the weighted PMF.
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Proof. From the definition in (5), we get

n

∑
i=1

αiD(Pi, PT) =
n

∑
i=1

αi

k

∑
j=1

(
pij+1

pij
− ∑n

i=1 αi pij+1

∑n
i=1 αi pij

)2

pij

=
n

∑
i=1

αi

k

∑
j=1

{ pij+1

pij
− 1−

(
∑n

i=1 αi pij+1

∑n
i=1 αi pij

− 1
)}2

pij

=
n

∑
i=1

αi

k

∑
j=1

(pij+1 − pij)
2

pij
− 2

k

∑
j=1

(∑n
i=1 αi pij+1 −∑n

i=1 αi pij)
2

∑n
i=1 αi pij

+
k

∑
j=1

(∑n
i=1 αi pij+1 −∑n

i=1 αi pij)
2

∑n
i=1 αi pij

=
n

∑
i=1

αi

k

∑
j=1

(pij+1 − pij)
2

pij
−

k

∑
j=1

(∑n
i=1 αi pij+1 −∑n

i=1 αi pij)
2

∑n
i=1 αi pij

=
n

∑
i=1

αiI(Pi)− I
( n

∑
i=1

αiPi

)

= JFI(P1, . . . , Pn, α),

as required.

3. Fisher Information of a Finite Mixture Probability Mass Function

In this section, we discuss Fisher information for parameter θ of a finite mixture
probability mass function.

Theorem 4. The Fisher information of PMF in (3) about parameter θi, i = 1, . . . , n− 1, is given by

I(θi) =
1

(
θi − (n− 1)

)2 χ2(Pθ−i , Pθ), i = 1, . . . , n− 1, (6)

where Pθ−i = (p1
θ−i

, . . . , pk
θ−i

),

pj
θ−i

=
n− 2
n− 1

pij +
1

n− 1

n−1

∑
ł=1,ł 6=i

θł płj +
1

n− 1

(
1−

n−1

∑
ł=1,ł 6=i

θł

)
pnj, j = 1, . . . , k,

and θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn−1).

Proof. From the definition of Fisher information in (1) and for i = 1, . . . , n− 1, we have

I(θi) = ∑k
j=1

[
∂ log Pθ

∂θi

]2

pj
θ

=
1

(
n− 1

)2 ∑k
j=1

(
pij − pnj

)2

(
pj

θ

)2 pj
θ

=
1

(
θi − (n− 2)

)2 ∑k
j=1

(
pj

θ−i
− pj

θ

)2

pj
θ

=
1

(
θi − (n− 1)

)2 χ2(Pθ−i , Pθ), i = 1, . . . , n− 1,

(7)

where the third equation follows from the fact that, for i = 1, . . . , n− 1,
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pij − pnj =
n− 1

θi − (n− 2)
(

pj
θ− pj

θ−i

)
.

4. Bayes–Fisher Information of a Finite Mixture Probability Mass Function

In this section, we discuss Bayes–Fisher information for the mixing parameter vector
θ of the finite mixture probability mass function in (3) under some prior distributions
for the mixing parameter vector. We now introduce two notations that will be used in
the sequel. Consider the parameter vector θ = (θ1, . . . , θn−1), and then define (0i, θ) =
(θ1, . . . , θi−1, 0, θi+1, . . . , θn−1) and (1i, θ) = (θ1, . . . , θi−1, 1, θi+1, . . . , θn−1).

Theorem 5. The Bayes–Fisher information for parameter θi, i = 1, . . . , n− 1, of the finite mixture
PMF in (3), under the uniform prior on [0, 1], is given by

Ĩ(θi) = KL
(
P(1i ,θ), P(0i ,θ)

)
+ KL

(
P(0i ,θ), P(1i ,θ)

)

= J
(
P(0i ,θ), P(1i ,θ)

)
,

where P(1i ,θ) = (p1
(1i ,θ)

, . . . , pn
(1i ,θ)

), with

pj
(1i ,θ)

=
1

n− 1
pij +

1
n− 1

n−1

∑
ł=1,ł 6=i

θł +

(
1− 1

n− 1

(
1 +

n−1

∑
ł=1,ł 6=i

θł

))
pnj, (8)

and P(0i ,θ) = (p1
(0i ,θ)

, . . . , pn
(0i ,θ)

), with

pj
(0i ,θ)

=
1

n− 1

n−1

∑
ł=1,ł 6=i

θł płj +

(
1− 1

n− 1

n−1

∑
ł=1,ł 6=i

θł

)
pnj, (9)

and J corresponds to Jeffreys’ divergence.

Proof. By definition and from (7), for i = 1, . . . , n− 1, we have

Ĩ(θi) = E[I(Θi)] =
1(

n−1
)2

∫ 1
0

{
∑k

j=1

(
pij−pnj

)2

pj
θ

}
dθi

= 1
n−1 ∑k

j=1
(

pij − pnj
){ ∫ 1

0
1

n−1
pij−pnj

pj
θ

dθi

}

= 1
n−1 ∑k

j=1
(

pij − pnj
){

log
(

pj
θ

)∣∣1
0

}
.

(10)

On the other hand, we have

p(1i ,θ) − p(0i ,θ) =
1

n− 1
(

pij − pnj
)
. (11)

Hence, upon substituting (11) into (10), we obtain

Ĩ(θi) =
1

n− 1

k

∑
j=1

(
pij − pnj

)
log
{ pj

(1i ,θ)

pj
(0i ,θ)

}

=
k

∑
j=1

(
p(1i ,θ) − p(0i ,θ)

)
log
{ pj

(1i ,θ)

pj
(0i ,θ)

}

= KL
(
P(1i ,θ), P(0i ,θ)

)
+ KL

(
P(0i ,θ), P(1i ,θ)

)

= J
(
P(0i ,θ), P(1i ,θ)

)
,
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as required.

Theorem 6. For the mixture model with PMF in (3), we have the following:

(i) The Bayes–Fisher information for θi, i = 1, . . . , n − 1, under Beta(2, 1) prior with PMF
π(θi) = 2θi, θi ∈ [0, 1], is

Ĩ(θi) = 2KL(P(0i ,θ), P(1i ,θ)), i = 1, . . . , n− 1;

(ii) The Bayes-Fisher information for parameter θi, i = 1, . . . , n− 1, under Beta(1, 2) prior with
PMF π(θi) = 2(1− θi), θi ∈ [0, 1], is

Ĩ(θi) = 2KL(P(1i ,θ), P(0i ,θ)), i = 1, . . . , n− 1.

Proof. By definition, and from (7), for i = 1, . . . , n− 1, we have

Ĩ(θi) = E[I(Θi)] =
1

(
n− 1

)2

∫ 1

0

{ k

∑
j=1

(
pij − pnj

)2

pj
θ

}
π(θi)dθi

=
2

n− 1

k

∑
j=1

(
pij − pnj

){ ∫ 1

0

θi
n− 1

pij − pnj

pj
θ

dθi

}

=
2

n− 1

k

∑
j=1

(
pij − pnj

){ ∫ 1

0

pj
θ− pj

(0i ,θ)

pθ(x)
dθi

}

=
2

n− 1

k

∑
j=1

(
pij − pnj

){
1−

(n− 1)pj
(0i ,θ)

pij − pnj
log
(

pj
θ

)∣∣1
0

}

= −2
k

∑
j=1

pj
(0i ,θ)

log
{ pj

(1i ,θ)

pj
(0i ,θ)

}

= 2
k

∑
j=1

pj
(0i ,θ)

log
{ pj

(0i ,θ)

pj
(1i ,θ)

}

= 2KL(P(0i ,θ), P(1i ,θ)),

as required for Part (i). Part (ii) can be proved in an analogous manner.

Let us now consider the following general triangular prior for the parameter
θi, i = 1, . . . , n− 1:

πα(θi) =

{
2θi
α , 0 < θi ≤ α,

2(1−θi)
1−α , α ≤ θi < 1,

(12)

for some α ∈ (0, 1).

Theorem 7. The Bayes–Fisher information for parameter θi, i = 1, . . . , n− 1, with the general
triangular prior with density πα(θi) in (12), is given by

Ĩ(θi) =
2

α(1− α)

[
αKL(P(1i ,θ), Pα) + (1− α)KL(P(0i ,θ), Pα)

]

=
2

α(1− α)
JS
(
P(0i ,θ), P(1i ,θ); α

)
,
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where Pα = (p1
α, . . . , pk

α) is a finite mixture PMF, with

pj
α =

α

n− 1
pij +

1
n− 1

n−1

∑
l=1,l 6=i

θl pl j +

(
1− 1

n− 1

(
α +

n−1

∑
l=1,l 6=i

θl

))
pnj

and P(1i ,θ) and P(0i ,θ) are as defined in (8) and (9), respectively.

Proof. From the assumptions made, for i = 1, . . . , n− 1, we have

Ĩ(θi) = E[I(Θi)] =
∫ α

0
I(θi)παdθi +

∫ 1

α
I(θi)παdθi

=
2

(n− 1)α

k

∑
j=1

(pij − pnj)

[∫ α

0

θi
n− 1

pij − pnj

pj
θ

dθi

]

+
2

(n− 1)(1− α)

k

∑
j=1

(pij − pnj)

[∫ 1

α

1− θi
n− 1

(pij − pnj)

pj
θ

dθi

]

=
2

(n− 1)α

k

∑
j=1

(pij − pnj)



∫ α

0

(
1−

pj
(0i ,θ)

pj
θ

)
dθi




− 2
(n− 1)(1− α)

k

∑
j=1

(
pij − pnj

)


∫ α

0

(
1−

pj
(1i ,θ)

pj
θ

)
dθi




=
2
α

k

∑
j=1

pj
(0i ,θ)

log
{

pj
α

pj
(0i ,θ)

}
+

2
1− α

k

∑
j=1

pj
(1i ,θ)

log
{ pj

(1i ,θ)

pj
α

}

=
2

α(1− α)

[
αKL(P(1i ,θ), Pα) + (1− α)KL(P(0i ,θ), Pα)

]

=
2

α(1− α)
JS
(
P(0i ,θ), P(1i ,θ); α

)
,

as required.

5. Concluding Remarks

In this paper, we have introduced the discrete version of Jensen–Fisher information
measure, and have shown that this information measure can be expressed as a mixture
of discrete Fisher information distance measures. Further, we have considered a finite
mixture probability mass function and have derived Fisher information and Bayes–Fisher
information for the mixing parameter vector. We have shown that the Fisher information
for the mixing parameter is connected to chi-square divergence. We have also studied
the Bayes–Fisher information for the mixing parameter of a finite mixture model under
some prior distributions. These results have provided connections between the Bayes–
Fisher information and some known informational measures such as Shannon entropy,
Kullback–Leibler, Jeffreys and Jensen–Shannon divergence measures.
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