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Abstract: Liver disease due to metabolic dysfunction constitute a worldwide growing health issue.
Severe obesity is a particularly strong risk factor for non-alcoholic fatty liver disease, which affects
up to 93% of these patients. Current diagnostic markers focus on the detection of advanced fibrosis
as the major predictor of liver-related morbidity and mortality. The most accurate diagnostic tools
use elastography to measure liver stiffness, with diagnostic accuracies similar in normal-weight and
severely obese patients. The effectiveness of elastography tools are however hampered by limitations
to equipment and measurement quality in patients with very large abdominal circumference and
subcutaneous fat. Blood-based biomarkers are therefore attractive, but those available to date
have only moderate diagnostic accuracy. Ongoing technological advances in omics technologies
such as genomics, transcriptomics, and proteomics hold great promise for discovery of biomarkers
and increased pathophysiological understanding of non-alcoholic liver disease and steatohepatitis.
Very recent developments have allowed for single-cell sequencing and cell-type resolution of gene
expression and function. In the near future, we will therefore likely see a multitude of breakthrough
biomarkers, developed from a deepened understanding of the biological function of individual cell
types in the healthy and injured liver.
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1. Non-Alcoholic Fatty Liver Disease in Severely Obese Patients

Obesity is a worldwide growing epidemic. A 2019 Lancet Commission declared
obesity as one out of three epidemics that needs to be addressed due to their preeminent
threat to human health [1]. Nearly one-quarter of U.S. citizens are predicted to be severely
obese (body mass index, BMI, >35 kg/m2) by 2030, and it is estimated that the most frequent
BMI-group among women in general will be ‘severely obese’ [2]. Non-alcoholic fatty liver
disease (NAFLD) is a common manifestation of obesity, and the most common chronic
liver disease worldwide, with a prevalence of 25% among adults [3]. NAFLD is a particular
problem for severely obese patients, evidenced by observations in patients eligible for
bariatric surgery. Up to 93% of these patients have NAFLD, one-fourth to two-thirds have
non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD, and 9–25% have
fibrosis, scarring of the liver, which ultimately may lead to cirrhosis (Table 1) [4,5].
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Table 1. Histological staging and grading of non-alcoholic fatty liver disease 1.

Histological Characterisation Description

Steatosis

When more than five percent of hepatocytes contain fat
vacuoles. Scored according to degree of fat infiltration:
S1: Minimal, 5–33% hepatocytes infiltrated by fat.
S2: Moderate, >33–66% hepatocytes infiltrated by fat.
S3: Severe, >66% hepatocytes infiltrated by fat.

Non-alcoholic steatohepatitis

Defined by presence of both steatosis, ballooning, and lobular
inflammation. Activity is scored according to severity:
Few ballooned hepatocytes versus prominent ballooning; and
<2 inflammatory foci per 200Xfield, 2–4 foci, or >4 foci.

Fibrosis

In NAFLD, fibrosis begins by pericellular deposition of fibrillar
collagen fibers; gradually expanding to form large fibrotic
septae. Fibrosis is staged according to distribution and
magnitude:
F1: Mild, perisinusoidal or periportal fibrosis.
F2: Moderate, perisinusoidal and portal/periportal.
F3: Severe, bridging fibrosis.
F4: Cirrhosis, characterised by regeneration nodules.

1: Described according to the most commonly used histology score for grading and staging of NAFLD, the NAS-CRN system and the
Kleiner fibrosis score (Nonalcoholic Steatohepatitis Clinical Research Network) [6].

We do not have a complete overview of the molecular mechanisms that drive NAFLD
towards NASH and liver fibrosis, but believe that NASH marks a high risk of fibrosis
formation, when the inflammatory activity leads to hepatic stellate cell activation, with
subsequent deposition of fibrillar collagens in the extracellular matrix [7]. However, fibrosis
progression in NAFLD is asymptomatic and takes place over several decades, with an
estimated one-third of NAFLD patients exhibiting fibrosis progression, and progression
rates of 14 years per one fibrosis stage for patients with simple steatosis, versus 7 years for
patients with NASH [8]. This demonstrates that NAFLD is a complex trait, where the inter-
individual variation in disease phenotype likely arises from an interplay between genetic
predisposition, environmental factors, and components of the metabolic syndrome [9,10].
For this reason, we still lack valid non-invasive alternatives to a liver biopsy. Fortunately,
emerging technologies have made it possible to explore the complex biological systems in
the liver during chronic liver injury [11,12]. Consequently, we are rapidly deepening our
understanding of the pathways that drive NASH and liver fibrosis, while revealing new
biomarkers and drug targets.

This review focuses on NAFLD in severely obese patients. We consider three main
topics: Current state-of-the-art diagnostic tools, upcoming biomarkers in the form of new
omics technologies, and finally, a probable new era in our understanding of liver disease
aided by cutting edge technologies such as single cell sequencing.

2. Existing Diagnostic Tools for NAFLD in Severely Obese Patients

The diagnosis of liver fibrosis is central to risk stratification and management of
NAFLD in severely obese patients, with advanced fibrosis (≥F3) being the major prognos-
tic predictor [13]. Underdiagnosis of advanced fibrosis may lead to delayed treatment, with
excess liver-related morbidity and mortality; while overdiagnosis causes futile investiga-
tions and patient concern [14,15]. The association between NASH and fibrosis progression
makes it highly desirable to also identify NASH non-invasively. However, there are no
currently well validated tools for NASH diagnosis, which today can only be diagnosed
by a liver biopsy. Steatosis is not of prognostic value, but diagnosis and monitoring of
steatosis may be valuable for evaluating the efficacy of interventions [16].

Liver biopsy remains the gold standard to stage fibrosis, grade hepatic inflammatory
activity, and score steatosis. Liver biopsy is however prone to complications, sampling error,
and observer-variance. In severely obese patients, liver biopsy is particularly problematic,
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because it may be difficult to obtain sufficient material with a standard percutaneous
approach due to a large subcutaneous fat layer. Therefore, non-invasive diagnostic tests are
highly needed, to replace liver biopsy as the regulatory surrogate endpoint in treatment
trials [17].

Current non-invasive diagnostic tests can be divided into imaging, elastography, and
blood-based markers (Table 2).

Table 2. Advantages and disadvantages of diagnostic markers for the assessment of steatosis and advanced fibrosis in
severely obese patient with non-alcoholic fatty liver disease (NAFLD).

Fibrosis Steatosis

Advantages Disadvantages Advantages Disadvantages

Imaging

Ultrasound Low cost, widely
available in primary
and secondary care

Poor quality in severely
obese patients. Only
accurate in case of
late-stage cirrhosis

Low cost, widely
available in primary
and secondary care

Poor quality in severely
obese patients. Only
accurate if >20%
fat-infiltrated
hepatocytes

CT Widely available in
hospital care

Radiation. Only
accurate in case of
cirrhosis

Widely available in
hospital care

Radiation. Only
accurate if >20%
fat-infiltrated
hepatocytes

MRI No radiation in
contrast to CT

Low availability. Only
accurate in case of
cirrhosis

MRI-PDFF is the most
accurate non-invasive
marker of steatosis
with AUROC’s > 0.90

Low availability.
Severely obese patients
may need special
scanner

Elastography

TE Available in most
hepatology clinics. The
XL probe is developed
for obese patients

Moderate accuracy
with AUROC’s
0.80–0.85

Controlled attenuation
paramenter, a
non-invasive steatosis
measure, is available
together with TE

Poor diagnostic
accuracies with
AUROC’s < 0.80

pSWE Available as
complementary
software on many
ultrasound equipment

High risk of unreliable
measures in severely
obese patients

- -

2D-SWE Measures liver stiffness
in a larger region of
interest than pSWE and
TE

High failure rate in
severely obese patients

- -

MRE Most accurate
non-invasive marker of
fibrosis, with
AUROC’s > 0.90

Low availability.
Severely obese patients
may need special
scanner

- -

Blood based

ELF Can be sampled in
primary care

Patented test. Moderate
accuracy with
AUROC’s 0.80–0.85

- -

FIB-4, APRI and NFS Can be measured from
routine liver blood tests

Insufficient diagnostic
accuracy with
AUROC’s < 0.80

- -

Abbreviations and explanation. 2D-SWE: Two-dimensional shear-wave elastography, an ultrasound-based technique. AUROC: Area under
the receiver operating characteristics curve. CT: Computer tomography. ELF: Enhanced liver fibrosis test, an algorithm of hyaluronic
acid, propeptide of type III collagen, and tissue inhibitor of metalloproteinase-1. FIB-4: Fibrosis-4 test, an algorithm of age, aspartate
transaminase, alanine transaminase, and platelet count. NFS: NAFLD Fibrosis Score, an algorithm of age, body mass index, presence
of diabetes, aspartate transaminase, alanine transaminase, platelet count, and albumin. MRE: Magnetic resonance elastography. MRI:
Magnetic resonance imaging; PDFF: Proton density fat fraction. pSWE: Point shear-wave elastography, an ultrasound-based technique. TE:
Vibration controlled transient elastography, an ultrasound-based technique.
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2.1. MR-Based Techniques

Magnetic resonance elastography (MRE) is the most accurate non-invasive fibrosis
marker in NAFLD, with areas under the receiver operating characteristics curve (AUROCs)
above 0.90 for both significant (≥F2) and advanced fibrosis (≥F3) [18]. During MRE, an
acoustic driver placed on the patient’s abdominal right upper quadrant induces shear
waves in the liver. The velocity of these waves can be converted to an elastogram, mea-
suring liver stiffness [19]. MRE is not influenced by a large subcutaneous layer, and the
method retains an AUROC exceeding 0.90 in severely obese patients [20]. However, most
MR equipment has weight restrictions (140–180 kg/300–400 Ibs) and the diameter of the
scanner, need for physical breath holding, and psychological challenges of cramp spaces
can be a hindrance for morbidly obese patients. Another obvious limitation of MRE is
restricted availability, reserved for tertiary centers and research settings. As all elastog-
raphy techniques, MRE is also limited by false positives in case of hepatic inflammation,
congestion, or obstructive cholestasis. Finally, diagnostic cut-offs may vary due to spectrum
bias in various studies, and differences in the hardware and software used.

Magnetic resonance imaging proton density fat fraction (PDFF) is highly accurate for
non-invasive assessment of hepatic steatosis, also in obese patients (AUROCs > 0.95) [21,22].
However, most diagnostic studies report mean BMI’s around 35 kg/m2 and only investigate
per protocol diagnostic accuracies, discounting failed measurements. In contrast, a study
specifically in patients undergoing bariatric surgery with a mean BMI of 45 kg/m2 reported
failed measurements in more than one-third of patients with resulting poor accuracies in
intention-to-diagnose analyses [23].

2.2. Ultrasound and Computer Tomography

Neither ultrasonography or computed tomography can be used to stage fibrosis [24].
Both modalities can detect cirrhosis in case of definite, radiological signs such as lob-
ulized liver surface, irregular parenchymal structure and signs of portal hypertension,
but ultrasonography will often be the preferred first-line imaging modality, because it is
radiation-free and have Doppler.

Ultrasound also remains the most common way of diagnosing moderate and severe
hepatic steatosis; it is accessible, safe, low cost, and has a good accuracy for detecting
steatosis if ≥20% of hepatocytes contain fat vacuoles [25]. However, ultrasound has limited
quality in patients with high BMI, leading to poor sensitivities and specificities in NAFLD
cohorts of bariatric surgery patients, between 49–65% and 75–90%, respectively [26,27].

2.3. Ultrasound Elastography and Controlled Attenuation Parameter

Ultrasound elastography can be either vibration-controlled transient elastography (TE)
with the equipment FibroScan (Echosens, Paris, France), point shear-wave elastography
(pSWE), or 2-dimensional shear-wave elastography (2D-SWE) [28]. All techniques estimate
liver stiffness by measuring the velocity of shear-waves induced in the liver by either a
mechanical push-pulse (TE) or by the ultrasound beam (pSWE, 2D-SWE). The diagnostic
accuracies for fibrosis in NAFLD patients are almost similar across the three techniques,
with pSWE having slightly lower AUROCs than TE or 2D-SWE (AUROCs just above 0.80
for significant fibrosis, and above 0.85 for advanced fibrosis) [29]. However, reported
diagnostic accuracies may be falsely high in the population of NAFLD patients because the
quality and success rate of ultrasound elastography is hampered by a thick subcutaneous
layer, and most studies report per-protocol, not intention-to-diagnose analyses [29]. The Fi-
broscan equipment has partially solved the problem of failed measurements by introducing
the XL-probe for TE in patients with BMI > 30 kg/m2 or a skin-capsule distance exceeding
25 mm. Liver stiffness measurements with XL probe is approximately 20% lower than with
the M probe in direct comparisons, but when using the M and XL probes as recommended,
liver stiffness measures are comparable across fibrosis stages [30,31]. Consequently, the
same diagnostic cut-offs can be used with both probes. A highly accurate cut-off to rule



J. Clin. Med. 2021, 10, 930 5 of 15

out advanced fibrosis in NAFLD is 8 kPa, while 12–15 kPa rules in advanced fibrosis with
good accuracy, if causes of false positive measurements can be excluded [19,32].

Controlled attenuation parameter (CAP) is a tool for diagnosing steatosis only avail-
able with FibroScan. However, a recent individual-patient data meta-analysis found poor
diagnostic accuracies for CAP to detect steatosis, with AUROCs well below 0.80 [33]. In the
subpopulation of bariatric surgery patients, diagnostic accuracies were marginally better,
but remained <0.80, with sensitivities and specificities below 80% and wide confidence
intervals for the optimal cut-off points.

2.4. Blood-Based Markers

Diagnostic serum markers have an applicability advantage over imaging-based meth-
ods, in that it is almost always feasible to sample blood. The enhanced liver fibrosis test
(ELF, Siemens Healthcare, Erlangen, Germany) is the most extensively investigated of the
commercial serum markers [34]. ELF appears to have a slightly higher AUROC, than other
commercial markers, but a direct comparison with FibroMeterV2G did not show a difference
in diagnostic accuracy [35]. ELF has slightly lower diagnostic accuracies (AUROC of 0.83
for advanced fibrosis) than TE when comparing studies using per-protocol analyses, while
a diagnostic study in alcohol-related liver disease found comparable diagnostic accuracies
of ELF versus elastography techniques in intention-to-diagnose analyses [36]. ELF seem
to be equally accurate in patients with severe obesity, though existing studies are scarce
and underpowered [37,38]. Other available commercial biomarkers like FibroMeterV2G,
FibroTest/Fibrosure, Hepascore, and ProC3 may be good alternatives to ELF [39,40].

Non-patented biomarkers are algorithms from routine liver blood tests and clinical
parameters [39]. They may be useful as first line testing for screening strategies, but
has insufficient accuracy as diagnostic tools for significant and advanced fibrosis [41].
Similarly, a number of algorithms for steatosis assessment have been developed, utilizing
biochemistry and clinical variables, but none of them perform with adequate diagnostic
accuracy [19].

Since none of the available blood-based biomarkers are highly accurate, there is still
an unmet need for biomarkers to diagnose advanced fibrosis. Current efforts focus on
combining biomarkers, either in parallel or sequential [19]. Further, we need biomarkers to
detect NASH, prognosticate, and to assess efficacy of interventions. For the latter, several
candidate biomarkers are under evaluation [42,43]. Patients listed for bariatric surgery
also constitute a particularly interesting cohort for evaluation of novel biomarkers, due
to the easy access to peroperative liver tissue, and their massive, sustained weight loss
post-surgery [44].

3. Omics Technologies as Upcoming Biomarkers

‘Omics’ refer to global disciplines in biological research such as genomics, transcrip-
tomics, proteomics, or metabolomics. The goal of omics is to extract patterns and biological
meaning from large-scale, high-dimensional data [45]. Today, several omics disciplines are
well-established. In this section, we will discuss three omics disciplines that have already
contributed significantly to our understanding of NAFLD (Figure 1).
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Figure 1. Omics technologies which may mature into implementable biomarkers in the near future;
with examples of signals from genomics, transcriptomics, and proteomics that have been associated
with NAFLD disease severity.

3.1. Genomics

The disposition for NAFLD has been excessively investigated in genome-wide associa-
tion studies (GWAS), whereby hundreds of thousands of single nucleotide polymorphisms
(SNPs) are paired with information on liver diagnoses, liver enzymes, or other measurable
traits [10,46,47]. Since GWAS study associations, they may inform NAFLD patient risk
assessment and stratification, whereas use of genetic information for NAFLD treatment
or pathophysiological understanding will require further functional analyses. Moving
beyond simple associations, current challenges are the multifactorial nature of NAFLD
pathogenesis, limited linkage between the traits investigated, and the causative SNPs,
as well as the incomplete characterization of the 98.8% non-coding part of the human
genome [48].

The strongest genetic risk factor for NAFLD is found in the PNPLA3 (patatin-like
phospholipase domain-containing protein 3) gene. The PNPLA3 rs738409[G] allele (causing
an I148M substitution) associates with both steatosis, NASH, cirrhosis, and hepatocellular
carcinoma, and predicts an earlier age at NAFLD diagnosis [46,49–51]. Homozygous
carriers of PNPLA3 rs738409[G] have a three-fold risk of steatohepatitis, and a four-fold
risk of cirrhosis relative to non-carriers. Its association is most pronounced in Hispanics,
indicating interactions with other genomic loci, and more than 20% of the population
carries the risk allele, so the collective effect of PNPLA3 on NAFLD is high [51].

To date, further >10 genetic variants have been associated with NAFLD [46,52]. The
best validated are TM6SF2 (transmembrane 6 superfamily member 2), which may be
required for normal VLDL secretion, while GCKR (glucokinase-regulator) regulates hepato-
cyte glucose metabolism. Impaired TM6SF2 and GCKR function associates with fibrosis and
NAFLD, but not NASH [46]. HSD17B13 [TA] (hydroxysteroid 17-beta dehydrogenase 13)
encodes a hepatic lipid droplet protein and is associated with a protective effect against
cirrhosis in fatty liver diseases due to NAFLD or alcohol [53].

Adiposity amplifies the effects of the PNPLA3 allele along the entire spectrum of
NAFLD severity [10], but it is unknown whether severe adiposity amplifies or attenuates
the effect of the other SNPs. In subjects eligible for bariatric surgery, PNPLA3 and GCKR
were associated with steatosis and fibrosis [54,55]. However, both studies included patients
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without advanced fibrosis, and used surgical biopsies, which are obtained preoperatively
after weight loss, when steatosis has regressed.

From a biomarker perspective, attempts have been made to incorporate the validated
genetic risk alleles in genetic risk scores, for use as risk stratification tools [56]. So far, none
have passed to clinical implementation, and their cost–benefit, utility, and context of use as
required by regulators are still up for debate. However, with diminishing costs for targeted
SNP sequencing, we expect that genetics may be an integrated part of patient management
in few years.

3.2. Transcriptomics

Transcriptomics is the quantitative assessment of all RNA, coding as well as non-
coding, and it offer insights into differential gene expression and gene regulatory mecha-
nisms in a cell population or tissue. Bulk liver transcriptomics were the first to investigate
NAFLD, and are still the most common, but are disproportionately dominated by the
parenchymal hepatocytes, which make up 60–70% of the cells in the healthy liver (Figure 2).
Bulk transcriptomics therefore has limited value for the analysis of less abundant cell
types [57].
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Bulk transcriptomics studies in human NAFLD and steatohepatitis have described
changes to genes involved in lipid handling, inflammation, cell migration, extracellular
matrix turnover, and regenerative processes [58,59]. Genes linked to core hepatocyte
functions—the metabolism of lipids, glucose, amino acid, and xenobiotics—appear down-
regulated [59–61], while up-regulated genes in severe NAFLD are associated with tissue
remodeling, progenitor cells, cancer, and cardiovascular disease [58]. A recent study of
620 severely obese patients compared transcriptomes of biopsy-validated simple steatosis
versus NASH, and revealed distinct gene sets indicative of sexual dimorphism, implicat-
ing that novel NASH drug targets could be gender dependent [62]. Immune activation
can also be observed on a transcriptional level: A study in severely obese patients with
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NASH and/or significant fibrosis found interleukin 32 to be the most heavily upregulated
transcript, and circulating interleukin 32 levels corresponded to the expression in the
liver tissue [63]. This finding was replicated in a recent multicenter study of 206 NAFLD
patients, together with an additional 24 gene signatures, most of whom could be trans-
lated to circulating protein levels [61]. These findings underline the particular strength of
transcriptomics, linking changes in gene expression to serum markers.

3.3. Proteomics

The proteome reflects immediate cellular processes, and therefore holds obvious
potential for biomarker and drug-target discovery. Mass spectroscopy-based proteomics
now makes it possible to identify and quantify thousands of proteins from liver tissue and
the circulation [64]. This is in contrast to prior biomarker-finding studies, which targeted a
limited number of specific proteins [34].

The first proteomics study in NAFLD determined hepatic protein abundance in liver
samples from obese subjects in four groups: Obese without NAFLD, simple steatosis,
and NASH with or without fibrosis [65]. They identified nine proteins that were differen-
tially expressed across the four groups, many with probable pathophysiological functions:
Hepatic lipid content, inflammation, and fibrosis. Lumican was one of the overexpressed
proteins in NASH, an extracellular matrix proteoglycan that regulates collagen fibril-
formation. Another case-control study even found elevated serum levels of lumican in
NASH [66]. They found additional differences in 55 circulating proteins between simple
steatosis and NASH, and differences in 15 proteins between NASH without versus with
advanced fibrosis. Proteins involved in platelet aggregation and coagulation were elevated
in NAFLD and NASH patients, while fibrinogens were significantly reduced. Finally, a
case control study of the plasma proteome described nine candidate biomarker proteins, of
which polymeric immunoglobulin receptor increased in persons with NAFLD, and further
with cirrhosis. [67]. This highlights the potential for proteome analysis to discover new
biomarkers in liver disease.

Another highly promising omics field is metabolomics, including circulating, urine or
stool lipids, and metabolites [68–70]. This field is particularly interesting due to the causal
role of metabolic dysfunction for the progression liver fibrosis in NAFLD patients. As a
consequence, diagnostic molecules may also yield pathophysiological understanding and
be druggable targets [71]. However, both the proteomics and metabolomics fields need to
validate candidate biomarkers in biopsy-verified, diagnostic test cohorts that represent the
full spectrum of disease in consecutively recruited NAFLD patients.

4. Single-Cell and Cell Type-Resolved Omics Approaches to NAFLD

The liver tissue has a complex lobular architecture and is composed of multiple cell types
that interact with one another and communicate with surrounding tissues (Figures 2 and 3).
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Figure 3. The structure of a liver lobule, its zonation and different cell types highlights the advantage of single-cell analysis.
Healthy hepatic lobules are zonated from the portal triads (portal vein, hepatic artery, and bile duct) towards the central
vein. Oxygenated, arterial blood and nutrient-rich portal venous blood enters the lobule from the portal triad, and is
transported back to the circulation via a central vein.

By enabling the characterization of individual cell types during NAFLD progression,
single-cell approaches have already offered novel insights into hepatocellular dynamics
that could not be obtained from conventional bulk assays [61,72]. The techniques are
still reserved for basic science, with few translational studies, but further technological
developments and cost-reductions will likely spread the use of single-cell and cell type-
resolved omics approaches, for deepened understanding of the cellular processes during
NAFLD progression and regression, and eventual biomarker development.
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4.1. Single-Cell Transcriptomics

Single-cell RNA sequencing and single-nucleus RNA sequencing allowed scientists to
characterize transcriptomes of individual cells in human and rodent liver, to establish a
cell-atlas of the human liver, and to understand the functions and crosstalk of hepatic cell
types [73]. Though most evidence is from murine models, and study normal liver, liver
cancer, or cirrhosis, transcriptomic studies of liver biopsies from NAFLD patients have
already offered a number of promising biomarkers [74].

In a study of healthy liver tissue, MacParland et al. described 20 discrete cell pop-
ulations of hepatocytes, endothelial cells, cholangiocytes, hepatic stellate cells, B cells,
conventional and non-conventional T cells, NK-like cells, and distinct intrahepatic mono-
cyte/macrophage populations [75]. They showed with single-cell resolution that the
gene expression of human hepatocytes, as well as non-paranchymal cells, reflect their
position along the porto-central axis in keeping with functional zonation of the lobule.
Another single-cell study of human liver further refined the concept of hepatocyte and
endothelial cell co-zonation, to suggest cooperation across cell types around essential liver
functions [76].

In the first single-cell-resolved study of human liver cirrhosis, Ramachandran et al.
compared five healthy liver tissue patients with five cirrhosis patients. The authors iden-
tified TREM2+/CD9+ scar-associated macrophages, ACKR1+/PLVAP+ endothelial cells,
and PDGFRα+ collagen-producing myofibroblasts specifically associated with cirrhosis
and spatially restricted to the fibrotic niche [12]. A later study confirmed that PLVAP
(plasmalemma vesicle-associated protein) is expressed by hepatic stellate cells, and its
expression suppressed upon liver injury in NASH [77]. The same study identified core
hepatic stellate cell genes, whose expression proved highly predictive of advanced fi-
brosis in NASH patients. This highlights the importance of biomarkers that focus on
non-parenchymal liver cells, as they are the main actors in the fibrogenic response to liver
injury. Similarly, a number of recent single-cell studies of murine NASH models have shed
light on hepatic macrophage dynamics and the inflammatory response in NASH livers
where macrophages gradually populate the hepatic niche replacing Kupffer cells upon
NASH progression, and some assume the scar-associated TREM2+ phenotype described
above [78].

4.2. Cell-Type Resolved Proteomics

Improvements in mass spectroscopy have made it possible to obtain comprehensive
proteome descriptions of individual cell types, stopping short of actual single-cell pro-
teomics [79]. Azimifar et al. purified hepatic cell types from male mice and identified
11,520 proteins to construct a cell-type-resolved atlas of the mammalian liver proteome [80].
They showed that the 100 most abundant proteins comprise over 40% of the total mass of
the proteomes. Many of these proteins were metabolic enzymes, stressing that the liver is a
metabolic hub of the body. However, one of the first cell-resolved studies of the human liver
proteome revealed large discrepancies between human and murine proteomes [81]. They
used three healthy liver transplant donors to perform quantitative proteomics analysis on
the major cell lines: Hepatocytes, endothelial cells, Kupfer cells, and hepatic stellate cells.
From >9700 identified proteins, 53% (>5100) were found in all cell types, indicating mutual
basal cellular processes.

While actual single-cell proteomics of human livers have not been done yet, recent
technological advances has opened up for large-scale proteomics in formalin-fixed, paraffin-
embedded liver biopsy tissue, with great promise for further understanding of hepatic
cells’ functional contributions to liver biology [82].

5. Conclusions

Current diagnostic tools in NAFLD are of limited use for patients with severe obesity
due to lack of technical applicability, moderate diagnostic accuracies for advanced fibrosis,
and absence of validated biomarkers for other important indications such as diagnosis of
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NASH, prognostication, monitoring, and efficacy-of-intervention. Fortunately, technolog-
ical advances progressively allow for large-scale, high-throughput omics analyses. As a
consequence, genomics, transcriptomics, and proteomics will, in the coming years, move
from basic and translational science into biomarker development and validation.
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