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Abstract

Aims By combining temporal changes in left ventricular (LV) global longitudinal strain (GLS) with LV volume, LV strain–volume 
loops can assess cardiac function across the cardiac cycle. This study compared LV strain–volume loops between bicuspid 
aortic valve (BAV) patients and controls, and investigated the loop’s prognostic value for clinical events.

Methods 
and results

From a prospective cohort of congenital heart disease patients, BAV patients were selected and compared with healthy 
volunteers, who were matched for age and sex at group level. GLS analysis from apical views was used to construct 
strain–volume loops. Associations with clinical events, i.e. a composite of all-cause mortality, heart failure, arrhythmias, 
and aortic valve replacement, were assessed by Cox regression. A total of 113 BAV patients were included (median 
age 32 years, 40% female). BAV patients demonstrated lower Sslope (0.21%/mL, [Q1–Q3: 0.17–0.28] vs. 0.27%/mL 
[0.24–0.34], P < 0.001) and ESslope (0.19%/mL [0.12–0.25] vs. 0.29%/mL [0.21–0.43], P < 0.001) compared with controls, 
but also greater uncoupling during early (0.48 ± 1.29 vs. 0.05 ± 1.21, P = 0.04) and late diastole (0.66 ± 1.02 vs. −0.07 ± 1.07, 
P < 0.001). Median follow-up duration was 9.9 [9.3–10.4] years. Peak aortic jet velocity (HR 1.22, P = 0.03), enlarged left 
atrium (HR 3.16, P = 0.003), E/e′ ratio (HR 1.17, P = 0.002), GLS (HR 1.16, P = 0.008), and ESslope (HR 0.66, P = 0.04) 
were associated with the occurrence of clinical events.

Conclusion Greater uncoupling and lower systolic and diastolic slopes were observed in BAV patients compared with healthy controls, 
suggesting presence of altered LV cardiomechanics. Moreover, lower ESslope was associated with clinical events, highlighting 
the strain–volume loop’s potential as prognostic marker.
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Introduction
Bicuspid aortic valve (BAV) is one of the most common congenital heart 
defects with a prevalence of 0.5–2% in the general population.1–3 BAV 
patients may remain asymptomatic for decades, but gradual develop-
ment of valve stenosis and regurgitation can lead to arrhythmias, heart 
failure, and sudden cardiac death at a relatively young age. In addition, 
the progression of aortic dilatation may warrant aortic surgery. The 
prevalent nature of these complications at a young adult age implies 
an important health problem, resulting in hospitalization and (re-)inter-
ventions.4,5 Unfortunately, BAV disease and its cardiac hemodynamics 
remain poorly understood.

Current guidelines mostly focus on the aortic valve itself and left ven-
tricular ejection fraction (LVEF) to assess progression of disease and 
need for intervention in asymptomatic patients.6 However, LVEF re-
mains normal for a long period, while signs of structural left ventricular 
(LV) remodelling can be present well before LVEF declines.7 Global lon-
gitudinal strain (GLS) by speckle tracking echocardiography is a more 
sensitive marker for LV dysfunction and is a well-established prognostic 
factor in a variety of cardiovascular diseases.8–11 Nonetheless, GLS is 
significantly influenced by loading conditions.12 Consequently, GLS 
may not be perceived reliable in patients in whom increased pre- 
and/or afterload is causally linked to LV dysfunction, as in aortic valve 

disease. This highlights the need for imaging modalities that provide bet-
ter insight into cardiomechanics, which subsequently may relate to fu-
ture clinical events.

Recent work has introduced the combination of LV GLS with simul-
taneously measured LV volume across the cardiac cycle, leading to a 
strain–volume loop that may provide additional insight into cardiac 
function.13,14 This study aimed to (i) compare characteristics of LV 
strain–volume loops between BAV patients with age- and sex-matched 
healthy controls and (ii) investigate the prognostic value of strain– 
volume loops with 10-year prospective clinical follow-up. We hypothe-
sized that, as functional (strain) and structural (volume) information 
of the LV is combined, strain–volume loops will provide additional in-
formation on cardiomechanics in BAV patients. Moreover, we hypothe-
sized that strain–volume loop parameters are impaired in BAV patients 
compared with controls.

Methods
Study population and design
BAV patients were selected from a prospective cohort of patients with a 
congenital heart disease who visited the outpatient clinic of our tertiary cen-
ter between 2011 and 2013 (BioCon study). All included patients within the 
BioCon study underwent clinical examination, electrocardiogram and 
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transthoracic echocardiography at baseline. The study protocol has been 
described in more detail previously.15 Data of all BAV patients were ex-
tracted, excluding patients with concomitant supravalvular aortic stenosis 
and patients in whom strain measurements were not feasible in all three ap-
ical views. Moreover, patients with severe aortic regurgitation (AR) were 
excluded, to mainly assess the effect of pressure overload on the LV. 
Data of BAV patients were compared with selected data from healthy vo-
lunteers included between 2014 and 201516 and matched for age and sex 
on a group level. The study complied with the principles of the 
Declaration of Helsinki and was approved by the local medical ethical com-
mittee. Written informed consent was provided by all participants.

Image acquisition
All echocardiographic examinations were performed by two dedicated so-
nographers. Two-dimensional greyscale harmonic images were obtained in 
the left lateral decubitus position using an iE33 or EPIC7 ultrasound system 
(Philips Medical Systems, Best, The Netherlands) equipped with a trans-
thoracic broadband X5-1 matrix transducer. Chamber quantification was 
performed according to the guidelines from the European Association of 
Cardiovascular Imaging.17 Peak aortic jet velocity was measured in apical 
three-chamber view with spectral Doppler.

Speckle tracking analysis
Speckle tracking analysis was performed with dedicated software (TomTec, 
2D Cardiac Performance Analysis; Image Arena version 4.6) by two re-
searchers. All measurements were performed blinded for clinical character-
istics and outcome. Cardiac cycles were defined based on R-waves. LV 
endocardial strain analysis was performed in the apical two-, three-, and 
four-chamber (A2CH, A3CH, and A4CH) views. The width of the seg-
ments was set to line up with the endocardial border and tracked on a 
frame-by-frame basis. When tracking was considered suboptimal, borders 
were adjusted manually.

LV strain–volume loops
LV endocardial GLS and volume data were exported from TomTec soft-
ware to text-files. Dedicated software developed in MATLAB (The 
MathWorks Inc., version 2019a, MA, USA) was used to combine strain 
and volume data from the text-files and generate strain–volume loops, 
without further interference of observers, as described elsewhere.18 The 
script constructed all strain–volume loops within a minute, and parameters 
were automatically exported to a database. On both systolic and diastolic 
parts of the temporal GLS and volume curves, 300-point cubic spline inter-
polation was used. Moreover, markers for end-systole and end-diastole 
were based on the minimum and maximum values of the LV volume curve 
respectively. The following parameters were obtained within the strain– 
volume loops to assess systolic function: 

(a) Linear slope of the strain–volume relation during systole (Sslope);
(b) Early linear slope during the first 5% of volume change during systole 

(ESslope); and
(c) End-systolic peak longitudinal strain (peak strain).

For the assessment of diastolic function, the following parameters were 
assessed: 

(d) Early linear slope during the first 5% of volume change during diastole 
(EDslope);

(e) Late linear slope during the last 5% of volume change during diastole 
(LDslope); and

(f) The mean difference between systolic and diastolic strain for any given 
volume (UNCOUP).

Uncoupling was further divided into early uncoupling (UNCOUP ED), dur-
ing the first two-thirds of volume increase in diastole, and late uncoupling 
(UNCOUP LD), during the last one-third of volume increase in diastole. 
(Figure 1) Individual strain–volume plots were manually assessed blinded 
for other study results, to evaluate the temporal strain and volume curves 
and detect incorrect interpolation. In case a drift in the temporal volume 
curve was seen, the concerning strain–volume parameters were excluded 
(N = 4).

Previous studies from our group described good intra-observer agree-
ment for strain–volume loop parameters.14,19 For the left ventricular mea-
surements, intraclass correlation coefficient (ICC) for Sslope and ESslope 
were 0.945 and 0.950, respectively. For uncoupling ICC was 0.779 
(UNCOUP ED) and 0.737 (UNCOUP LD).14

Clinical outcome
As different predictors are expected for events in patients with and without 
a native valve, occurrence of clinical events was assessed in a subgroup of 
patients without prior AVR. The primary endpoint was occurrence of clin-
ical events and defined as a composite endpoint of all-cause mortality, su-
praventricular and ventricular arrhythmias (symptomatic and recorded, 
or requiring treatment), heart failure (requiring initiation or change in diure-
tics or hospital admission), and aortic valve replacement. When performed 
on clinical indication, Holter recordings were assessed for occurrence of ar-
rhythmias. Premature ventricular and atrial complexes were not considered 
an arrhythmia. The Municipal Population Register was checked for survival 
status until 1 April 2022.

Statistical analysis
Distribution of continuous data was examined using histograms and 
Shapiro–Wilk test. When normally distributed, continuous variables were 
expressed as mean ± standard deviation and compared using a Student’s 
t-test. Non-parametric variables were presented as median with quartiles 
[Q1–Q3] and compared using a Mann–Whitney U test. Categorical vari-
ables were presented as frequencies with percentages and compared using 
a χ2 test. A one-way analysis of variance was used to assess differences be-
tween patients with varying degrees of AS in case of a normal distribution, 
and a Kruskal–Wallis test was used in case data was skewed. When 
the P-value of one-way analysis was <0.05, a post hoc analysis using 
Bonferroni correction was applied. Associations between clinical and echo-
cardiographic variables and events were identified with a Cox proportional 
hazard model adjusted for age. A P-value of <0.05 was considered to 
be statistically significant. All statistical analyses were performed using 
SPSS (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, 
Version 28.0. Armonk, NY: IBM Corp) or R (R Foundation for Statistical 
Computing, Vienna, Austria. Version 4.1.2).

Results
Patient characteristics
A total of 113 patients who met the inclusion criteria were identified 
(median age 32 years, 40% female). Sixty healthy controls matched 
for age and sex on a group level were included. Table 1 displays the 
baseline characteristics. Severe AS was identified in 12 patients 
(11%). Thirty-three patients (29%) had a prior AVR, and 14 patients 
(12%) had prior Ross surgery. BAV patients had a significant lower 
GLS than healthy volunteers (−16.8% ± 2.9 vs. −20.5% ± 2.3, P <  
0.001) whereas LVEF did not differ significantly (60%, [Q1–Q3: 56– 
63] vs. 61%, [Q1–Q3: 58–65], P = 0.06). Regarding diastolic LV func-
tion, E/e′ ratio was significantly higher in BAV patients (10.6 [Q1–Q3: 
8.4–13.3] vs. 6.9 [Q1–Q3: 6.2–7.7]) and E/A ratio was significantly low-
er (1.5 [Q1–Q3: 1.2–2.0] vs. 1.9 [Q1–Q3: 1.4–2.2]). Signs of LV hyper-
trophy were present in 18 patients (18%).

Strain–volume loops
An overview of the average strain–volume loop for healthy controls 
and BAV patients is displayed in Figure 2. In four BAV patients, uncoup-
ling could not be reliably calculated due to variation in temporal LV 
volumes or error in interpolation and were therefore excluded. 
Differences in systolic parameters (Sslope, ESslope) were observed be-
tween BAV patients and healthy controls, with significant lower values 
in BAV patients (Table 2). Moreover EDslope was significantly lower in 
our BAV population compared with controls (0.21%/mL, [Q1–Q3: 
0.11–0.32] vs. 0.30%/mL, [Q1–Q3: 0.15–0.46], P = 0.005), whereas 
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uncoupling was higher in BAV patients, both in early (0.48 ± 1.29 
vs. 0.05 ± 1.21, P = 0.04) and late diastole (0.66 ± 1.02 vs. –0.07 ±  
1.07, P < 0.001). Within the BAV population, significantly lower 
Sslope and ESslope were found in patients with moderate–severe stenosis 
compared with patients with no–mild stenosis. Moreover, significant dif-
ferences were found in Sslope, ESslope, and UNCOUP between healthy 
controls and BAV patients with no or mild AS (Figure 3).

Clinical outcome
For our survival analysis, 33 patients with prior AVR were excluded. 
Characteristics of the patients with a native valve and prior AVR are de-
scribed in Supplementary data online, Table S1. Follow-up data were 
complete for all patients. The median follow-up duration was 9.9 years 
[Q1–Q3: 9.3–10.4], during which 30 patients (38%) experienced a clin-
ical event. One patient died during follow-up (1%), 13 patients experi-
enced an arrhythmia (16%), 5 developed heart failure (6%), and 21 
patients underwent aortic valve replacement (26%). An overview of 
the events can be found in Supplementary data online, Table S2. 
Event-free survival at 5 and 10 years was 81.0% and 62.5%, respectively. 
In multivariable Cox regression higher E/e′ ratio and presence of an en-
larged left atrium (LA) were associated with clinical events (HR 1.17, 
95% CI 1.06–1.29 and HR 3.16, 95% CI 1.37–7.29, respectively) 
when adjusted for age. Regarding the strain–volume loop characteris-
tics, lower ESslope was significantly associated with event-free survival 
(HR 0.66, 95% CI 0.43–0.99). Moreover, decreased GLS (HR 1.16, 95% 
CI 1.04–1.29) and increased AV peak velocity (HR 1.22, 95% CI 1.02– 
1.46) increased the risk for clinical events (Table 3).

Discussion
The aim of this study was to compare LV strain–volume loops between 
patients with BAV and an age- and sex-matched control group, and in-
vestigate its prognostic value. First, we found significant differences in 
LV strain–volume loop characteristics, both related to systole and 

diastole, compared with healthy controls. Secondly, we found that low-
er early systolic slope was significantly associated with occurrence of 
clinical events during a 10-year follow-up period. Our observations 
provide better insight into alterations in cardiac dynamics in BAV pa-
tients and suggest potential prognostic value of LV strain–volume 
loop characteristics.

Systolic function
Strain–volume loops may provide additional insight into cardiac 
dynamics to better understand the impact of a variety of cardiac 
diseases.18,20,21 Previous exploratory studies showed that LV strain– 
volume loops differ from healthy controls in the presence of severe 
AS and AR14 and following AVR in AS patients.22 However, patient 
numbers were low and data on the strain–volume loops in patients 
with congenital heart diseases was lacking. In our BAV population, a 
clear rightward shift in the strain–volume loops was observed com-
pared with age- and sex-matched healthy controls, caused by larger 
end-diastolic and end-systolic volumes in BAV patients. The Sslope, re-
presenting the linear relation between LV longitudinal strain increase 
and LV volume decrease during systole, was lower in BAV patients. 
This seems, at least partly, explained by the lower peak strain that 
was observed for BAV patients. It is hypothesized that a lower peak 
strain may relate to LV hypertrophy in AS, that causes a diminished cor-
onary blood flow reserve in the subendocardial layers,23,24 eventually 
causing interstitial fibrosis that starts in the subendocardium and there-
by affects the longitudinal myocardial fibres.25–27 Despite the lower lon-
gitudinal strain, we found that LVEF was not significantly decreased 
in our BAV population. Possibly, an increase in circumferential strain 
compensated for the decrease in GLS and contributed to maintaining 
LVEF.28,29 Interestingly, BAV patients also demonstrated a significantly 
lower ESslope, which represents the initial change in strain early 
in systole. This lower ESslope suggest that cardiac dynamics at the 
start of systole are altered, which may be related to the presence of 
an increased afterload or presence of LV remodelling. Impairment 
in both Sslope and ESslope was more profound in patients with a 

Figure 1 Average LV longitudinal strain (A) and LV volume (B) from A2CH, A3CH, A4CH views during one cardiac cycle. (C ) Schematic overview of 
strain–volume loop characteristics. Black lines represent the strain–volume curve with the bold line representing systole and the dashed line represent-
ing diastole. UNCOUP is the mean difference between systolic and diastolic strain for the same volume, and can be divided in early diastolic (UNCOUP 
ED) and late diastolic (UNCOUP LD) based on the first two-thirds and last one-third of LV volume increase in diastole.
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moderate–severe stenosis than patients with no–mild stenosis, sug-
gesting a greater alteration in cardiomechanics alongside an increase 
in aortic valve peak velocity.

Diastolic function
During diastole, filling of the LV is associated with a concomitant de-
crease in longitudinal strain. In healthy individuals, this relationship be-
tween volume and strain during diastole follows a path that is largely 
similar to the relationship between both parameters during systole.14

This ‘coupling’ between volume and strain during systole vs. diastole 

was also observed in our control group of healthy volunteers. In BAV 
patients however, we observed ‘uncoupling’ between the systolic and 
diastolic relation between strain and volume, with a relatively larger 
(i.e. more negative) strain during diastole than systole for any given vol-
ume. Early in diastole, untwisting of the LV is the driving force behind LV 
filling.30 Presence of uncoupling in early diastole, further accompanied 
by a lower EDslope, may suggest altered untwisting of the LV in our pa-
tient group. In support of this hypothesis, altered untwisting has been 
described before in AS patients,31–34 but further research to LV twist 
dynamics in BAV patients is necessary. Opposed to early diastole, LV 
compliance and atrial contraction are drivers for volume inflow in the 
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Table 1 Baseline characteristics

Controls 
(N = 60)

BAV patients 
(N = 113)

P-value

Baseline characteristics
Age, years 33 (28–41) 32 (23–40) 0.21

Sex, female (%) 24 (40) 45 (40) 0.98

BSA, m2 1.9 ± 0.19 1.9 ± 0.23 0.24
Heart rate, bpm 69 ± 12 71 ± 13 0.21

Systolic blood pressure, mmHg 126 (115–130) 125 (115–136) 0.85

Diastolic blood pressure, mmHg 78 (74–82) 79 (74–85) 0.62
NYHA ≥ 2, n (%) 0 (0) 4 (4) 0.14

Sinus rhythm, n (%) 60 (100) 107 (95) 0.07

Aortic coarctation, n (%) 0 (0) 40 (35) <0.001
Coarctation repair 39 (35)

Prior AV intervention, n (%) 0 (0) 57 (50) <0.001

Balloon valvuloplasty 7 (6)
Surgical valve repair 3 (3)

AVR 33 (29)

Ross procedure 14 (12)
Echocardiographic parameters

LVEF, % 61 (58–65) 60 (56–63) 0.06

LV GLS, % −20.5 ± 2.3 −16.8 ± 2.9 <0.001
LV end-diastolic volume, mL 117 (100–136) 121 (97–150) 0.56

LV end-systolic volume, mL 44 (37–55) 51 (37–62) 0.14

E-wave, m/s 0.75 (0.62–0.86) 0.88 (0.74–1.05) <0.001
A-wave, m/s 0.42 (0.33–0.51) 0.59 (0.46–0.69) <0.001

Deceleration time, ms 183 ± 32 204 ± 48 0.002

E/A ratio 1.9 (1.4–2.2) 1.5 (1.2–2.0) 0.009
e′ wave, cm/s 10.9 ± 2.3 8.6 ± 2.5 <0.001

E/e′ ratio 6.9 (6.2–7.7) 10.6 (8.4–13.3) <0.001

LA volume index > 34 mL/m2, n (%) 11 (19) 22 (20) 0.92
LV mass index, g/m2 — 88 (72–102)

LV remodelling, (%) — 35 (35)

Concentric remodelling — 17 (17)
Concentric hypertrophy — 6 (6)

Eccentric hypertrophy — 12 (12)

Peak aortic jet velocity, m/s — 2.3 (1.6–3.3)
Peak aortic jet velocity > 4.0 m/s, n (%) — 12 (11)

Aortic regurgitation grade, n (%)

None — 38 (34)
Mild — 54 (48)

Moderate — 21 (19)

AV, aortic valve; AVR, aortic valve replacement; BSA, body surface area; LA, left atrium; LVEF, left ventricular ejection fraction; LV GLS, left ventricular global longitudinal strain.
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late diastolic phase. We hypothesized that the presence of late diastolic 
uncoupling reflects a decrease in compliance of the LV, suggesting an 
increased LV stiffness. Taken together, the presence of early and late 
diastolic uncoupling and the decrease in EDslope seem to reflect early 
stages of remodelling in BAV patients.

Prognostic factors
In support of previous work, E/e′ ratio and LA volume were associated 
with clinical events across a 10-year follow-up period.35,36 However, 
these previous studies focused on valve intervention and mortality as 
endpoint and did not take occurrence of arrhythmias or heart failure 
into account. Our finding that E/e′ ratio and enlarged LA can also be 
of prognostic value for these important clinical events, underlines the 

importance to not only monitor systolic LV function in BAV patients, 
but also focus on diastolic LV function. Moreover, lower ESslope 
showed to be of prognostic value for event-free survival. A decrease 
in ESslope suggests altered LV cardiomechanics right after aortic valve 
opening, which can be an indicator of LV remodelling.

Limitations
There are a few limitations to our study that should be considered. 
First, in our study population volume and pressure overload both influ-
ence the LV. This makes it more difficult to identify which processes 
cause the alterations in LV cardiomechanics. However, a study popula-
tion in which both AR and AS are present is representative for the gen-
eral BAV population. To limit the influence of volume overload, patients 

Figure 2 Average strain–volume loops for healthy controls and BAV patients. Bold lines represent systole, and dashed lines represent diastole.
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Table 2 Strain–volume loop characteristics in BAV patients and healthy controls

Controls (N = 60) BAV patients (N = 113) P-value

Sslope, %/mL 0.27 (0.24–0.34) 0.21 (0.17–0.28) <0.001
ESslope, %/mL 0.29 (0.21–0.43) 0.19 (0.12–0.25) <0.001

EDslope, %/mL 0.30 (0.16–0.46) 0.21 (0.11–0.32) 0.004

LDslope, %/mL 0.23 (0.14–0.32) 0.24 (0.17–0.36) 0.30
UNCOUP, % 0.01 ± 1.08 0.54 ± 1.13 0.004

UNCOUP ED, % 0.05 ± 1.21 0.48 ± 1.29 0.04

UNCOUP LD, % −0.07 ± 1.07 0.66 ± 1.02 <0.001

ES, early systolic; ED, early diastolic; LD, late diastolic; S, systolic; UNCOUP, uncoupling.
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with severe AR were excluded. Secondly, the BAV patients included in 
our study were recruited from a tertiary centre, with a relatively high 
rate of prior aortic valve interventions and comorbidities such as aortic 
coarctation. Therefore, caution should be taken when generalizing our 
findings to other BAV populations. Lastly, for our results regarding sur-
vival analysis, the low number of events must be taken into account. 
Our data suggest that strain–volume loop parameters may hold prog-
nostic information, but these findings must be further investigated in 

larger cohorts of BAV patients to be able to assess the additive value 
beside the more common echocardiographic parameters.

Clinical implications
It is known that systolic and diastolic dysfunction can be present well 
before a decline in LVEF is visible.7 With the strain–volume loops, 
data on cardiac contraction are combined with volume during the 

Figure 3 Distribution of strain–volume loop characteristics in healthy controls and BAV patients with no–mild stenosis or moderate–severe stenosis. 
The horizontal black line represents the median (Sslope, ESslope, EDslope) or mean (UNCOUP) value. Significant differences between groups are dis-
played with respective P-values.
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entire cardiac cycle. This study suggests that strain–volume loops 
may provide additional insight into altered LV cardiomechanics in 
BAV patients in both systole and diastole. The non-invasive nature 
and limited time needed to construct strain–volume loops, sup-
ported by our observations, make the strain–volume loop potential-
ly suitable and relatively easy to implement in clinical practice. 
Moreover, early systolic slope may also be an interesting new prog-
nostic marker, but future studies are warranted to better under-
stand the potential clinical value in BAV patients.

Conclusion
This study demonstrates significant differences between BAV pa-
tients and healthy controls for systolic and diastolic strain–volume 
loop parameters, supporting the hypothesis of altered cardiomecha-
nics in BAV patients compared with healthy controls. Moreover, 
early change in the relation between strain and volume during sys-
tole (ESslope) was associated with the occurrence of clinical events 
during a 10-year follow-up period and can be an interesting new 
prognostic marker.
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Supplementary data are available at European Heart Journal – Imaging 
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