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Abstract
Testing the homogeneity between two samples of functional data is an important task. While this is feasible 
for intensely measured functional data, we explain why it is challenging for sparsely measured functional data 
and show what can be done for such data. In particular, we show that testing the marginal homogeneity based 
on point-wise distributions is feasible under some mild constraints and propose a new two-sample statistic 
that works well with both intensively and sparsely measured functional data. The proposed test statistic is 
formulated upon energy distance, and the convergence rate of the test statistic to its population version 
is derived along with the consistency of the associated permutation test. The aptness of our method is 
demonstrated on both synthetic and real data sets.
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1 Introduction
Two-sample testing of equality of distributions, which is the homogeneity hypothesis, is funda-
mental in statistics and has a long history that dates back to Cramér (1928), Von Mises (1928), 
Kolmogorov (1933), and Smirnov (1939). The literature on this topic can be categorized by the 
data type considered. Classical tests designed for low-dimensional data include Bickel (1969), 
Friedman and Rafsky (1979), Bickel and Breiman (1983), Schilling (1986), Henze (1988) among 
others. For recent developments that are applicable to data of arbitrary dimension, we refer to en-
ergy distance (ED) (Székely & Rizzo, 2004) and maximum mean discrepancy (Gretton et al., 2012; 
Sejdinovic et al., 2013). To suit high-dimensional regimes (Aoshima et al., 2018; Hall et al., 2005; 
Zhong et al., 2021), extensions of ED and maximum mean discrepancy were studied in 
Chakraborty and Zhang (2021), Gao and Shao (2021), and Zhu and Shao (2021). Some other in-
teresting developments of ED for data residing in a metric space include Klebanov (2006) and 
Lyons (2013). In this paper, we focus on functional data that are random samples of functions 
on a real interval, e.g., [0, 1] (Davidian et al., 2004; Hsing & Eubank, 2015; Ramsay & 
Silverman, 2005; Wang et al., 2016).

Two-sample inference for functional data is gaining more attention due to the explosion of data 
that can be represented as functions. A substantial literature has been devoted to comparing the 
mean and covariance functions between two groups of curves or testing the nullity of model co-
efficients, see Fan and Lin (1998), Cuevas et al. (2004), Cox and Lee (2008), Panaretos et al. 
(2010), Zhang et al. (2010), Horváth and Kokoszka (2012), Zhang and Liang (2014), Staicu 
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et al. (2015), Pini and Vantini (2016), Paparoditis and Sapatinas (2016), Wang et al. (2018), Guo 
et al. (2019), Zhang et al. (2019), He et al. (2020), Yuan et al. (2020), and Wang (2021). However, 
the underlying distributions of two random functions can have the same mean and covariance 
function, but differ in other aspects. Testing homogeneity, which refers to a hypothesis testing pro-
cedure to determine the equality of the underlying distributions of any two random objects, is thus 
of particular interest and practical importance. The literature on testing the homogeneity for func-
tional data is much smaller and restricted to the two-sample case based on either fully observed 
(Benko et al., 2009; Cabaña et al., 2017; Krzyśko & Smaga, 2021; Wynne & Duncan, 2022) 
or intensively measured functional data (Hall & Keilegom, 2007; Jiang et al., 2019).

For intensively measured functional data, a presmoothing step is often adopted to each individual 
curve in order to construct a smooth curve before carrying out subsequent analysis, which may reduce 
mean square error (Ferraty et al., 2012) or, with luck, remove the noise, a.k.a. measurement error, in 
the observed discrete data. This results in a two-stage procedure, smoothing first and then testing 
homogeneity based on the presmoothed curves. For example, Hall and Keilegom (2007) and Jiang 
et al. (2019) adopted such an approach. In addition, the ED in Székely and Rizzo (2004) could be ex-
tended to the space of L2 functions to characterize the distribution differences of random functions, 
provided the functional data are fully observed without errors (Klebanov, 2006).

Specifically, the ED between two random functions X and Y is defined as

ED(X, Y) = 2E[‖X − Y‖L2 ] − E[‖X − X′‖L2 ] − E[‖Y − Y′‖L2 ] (1) 

where X′, Y′ are i.i.d copies of X, Y, respectively, and ‖X − Y‖L2 = ( ∫10 (X(t) − Y(t))2 dt)1/2. 
According to the results of Klebanov (2006) and Lyons (2013), ED(X, Y) fully characterizes the 
distributions of X and Y in the sense that ED(X, Y) ≥ 0 and ED(X, Y) = 0⇔ X =d Y, where we 
use X =d Y to indicate that X, Y are identically distributed. Given two samples of functional 
data {Xi}

n
i=1 and {Yi}

n+m
i=n+1, which are intensively measured at some discrete time points, the recon-

structed functions, denoted as {􏽢Xi}
n
i=1 and {􏽢Yi}

n+m
i=n+1, can be obtained using the aforementioned pre-

smoothing procedure. Then, ED(X, Y) can be estimated by the U-type statistic

EDn(X, Y) =
2

mn

􏽘n

i1=1

􏽘n+m

i2=n+1

‖􏽢Xi1 −􏽢Yi2‖L2

−
2

n(n − 1)

􏽘

1≤i1<i2≤n

‖􏽢Xi1 − 􏽢Xi2‖L2 −
2

m(m − 1)

􏽘

n+1≤i1<i2≤n+m

‖􏽢Yi1 −􏽢Yi2‖L2

(2) 

While the above presmoothing procedure to reconstruct the original curves may be promising for 
intensely measured functional data, it has not yet been utilized to our knowledge, perhaps due to 
the technical and practical challenges to implement this approach as the level of intensity in the meas-
urement schedule and the proper amount of smoothing are both critical. First, the distance between 
the reconstructed functional data and its target (the true curve) needs to be tracked and reflected in 
the subsequent calculations. Second, such a distance would depend on the intensity of the measure-
ments and the bandwidth used in the presmoothing stage. Neither is easy to nail down in practice.

Furthermore, in real world applications, such as in longitudinal studies, each subject often may 
only have a few measurements, leading to sparse functional data (Yao et al., 2005a). Here, pre-
smoothing individual data no longer works and one must borrow information from all subjects 
to reconstruct the trajectory of an individual subject. The principal analysis through conditional 
estimation (PACE) approach in Yao et al. (2005a) offers such an imputation method, yet it 
does not lead to consistent estimates of the true curve for sparsely observed functional data as there 
are not enough data available for each individual. Consequently, the quantities E[‖X − 
Y‖L2 ], E[‖X − X′‖L2 ], and E[‖Y − Y′‖L2 ] in equation (1) are not consistently estimable as these 
expectations are outside the corresponding L2 norms. Pomann et al. (2016) reduced the problem 
to testing the homogeneity of the scores of the two processes by assuming that the random func-
tions are finite dimensional. Such an approach would not be consistent either as the scores still can-
not be consistently estimated for sparse functional data. To our knowledge, there exists no 
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consistent test of homogeneity for sparse functional data. In fact, it is not feasible to test full homo-
geneity based on sparsely observed functional data as there are simply not enough data for such an 
ambitious goal.

This seems disappointing, since although it has long been recognized that sparse functional data 
are much more challenging to handle than intensively measured functional data, much progress 
has been made to resolve this challenge. For instance, both the mean and covariance function 
can be estimated consistently at a certain rate (Li & Hsing, 2010; Yao et al., 2005a; Zhang & 
Wang, 2016) for sparsely observed functional data. Moreover, the regression coefficient function 
in a functional linear model can also be estimated consistently with rates (Yao et al., 2005b). This 
motivated us to explore a less stringent concept of homogeneity that can be tested consistently for 
sparse functional data. In this paper, we provide the answer by proposing a test of marginal homo-
geneity for two independent samples of functional data. For ease of presentation, we assume that 
the random functions are defined on the unit interval [0, 1].

Definition of marginal homogeneity. Two random functions X and Y defined on [0, 1] are margin-
al homogeneous if

X(t) =d Y(t) for almost all t ∈ [0, 1] 

From this definition we can see that unlike testing homogeneity that involves testing the entire dis-
tribution of functional data, testing marginal homogeneity only involves simultaneously testing 
the marginal distributions at all time points. This is a much more manageable task that works 
for all sampling designs, be it intensively or sparsely observed functional data, and it is often ad-
equate in many applications. Testing marginal homogeneity is not new in the literature and has 
been investigated by Chakraborty and Zhang (2021) and Zhu and Shao (2021) for high- 
dimensional data. They show that the marginal tests can be more powerful than their joint coun-
terparts under the high-dimensional regime. In a larger context, the idea of aggregating marginal 
information originates from Zhu et al. (2020), where they consider a related problem of testing the 
independence between two high-dimensional random vectors.

For real applications of testing marginal homogeneity, taking the analysis of biomarkers over 
time in clinical research as an example, comparing differences between marginal distributions 
of the treatment and control groups may be sufficient to establish the treatment effect. To contrast 
stocks in two different sectors, the differences between marginal distributions might be more im-
portant than the differences between joint distributions. In addition, differences between marginal 
distributions can be seen as the main effect of differences between distributions. Thus, it makes 
good sense to test marginal homogeneity, especially in situations where joint distribution testing 
is not feasible or inefficient.

Let λ be the Lebesgue measure on R. The focus of this paper is to test

H0 : X(t) =d Y(t) for almost all t ∈ [0, 1]
versus

HA : there exists a set T ⊆ [0, 1] such that λ(T) > 0 and X(t) ≠d Y(t) if t ∈ T

(3) 

This can be accomplished through the marginal energy distance (MED) defined as

MED(X, Y) = ∫ 2E[|X(t) − Y(t)|] − E[|X(t) − X′(t)|] − E[|Y(t) − Y′(t)|] dt (4) 

where X′ and Y′ are independent copies of X and Y, respectively. Indeed, MED is a metric for mar-
ginal distributions in the sense that MED(X, Y) ≥ 0 and MED(X, Y) = 0⇔ X(t) =d Y(t) for al-
most all t ∈ [0, 1]. A key feature of our approach is that it can consistently estimate 
MED(X, Y) for all types of sampling plans. Moreover, E[|X(t) − Y(t)|], E[|X(t) − X′(t)|], and 
E[|Y(t) − Y′(t)|] can all be reconstructed consistently for both intensively and sparsely observed 
functional data. Such a unified procedure for all kinds of sampling schemes may be more practical 
as the separation between intensively and sparsely observed functional data is usually unclear in 
practical applications. Moreover, it could happen that while some of the subjects are intensively 
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observed, others are sparsely observed. In the extremely sparse case, our method can still work if 
each subject only has one measurement.

Measurement errors (or noise) are common for functional data, so it is important to accommo-
date them. If noise is left unattended, there will be bias in the estimates of MED as the observed 
distributions are no longer the true distributions of X and Y. One might hope that the measure-
ment errors can be averaged out during the estimation of the function E[|X(t) − Y(t)|] in 
MED(X, Y) in analogy to estimating the mean function μ(t) = E[X(t)] or covariance function 
C(s, t) = E[(X(t) − μ(t))(X(s) − μ(s))] (Yao et al., 2005a). However, this is not the case. To see 
why, let e1, e′1, e2, and e′2 be independent white noise. When estimating mean or covariance func-
tion at any fixed time t, s ∈ [0, 1], it holds that μ(t) = E[X(t) + e1] and C(s, t) = E[(X(t) − μ(t) + 
e1)(X(s) − μ(s) + e′1)] for t ≠ s. But E[|X(t) − Y(s) + e1 − e2|] ≠ E[|X(t) − Y(s)|]. Likewise, we can 
see that the ED in (1) would have the same challenge to handle measurement errors unless these 
errors were removed in a presmoothing step before carrying out the test. So the challenges with 
measurement errors is not triggered by the use of the L1 norm in MED. The L2 norm in ED 
will face the same challenge.

For intensely measured functional data, a presmoothing step is often used to handle measurement 
errors in the observed data in the hope that smoothing will remove the error. However, this is a deli-
cate issue, as it is difficult to know the amount of smoothing needed in order for the subsequent ana-
lysis to retain the same convergence rate as if the true functional data were fully observed without 
errors. For instance, Zhang and Chen (2007) study the effects of smoothing to obtained recon-
structed curves and show that in order to retain the same convergence rate of mean estimation 
for fully observed functional data, the number of measurements per subject that generates the curves 
must be of higher order than the number of independent subjects. This requires functional data that 
are intensively sampled well beyond ultra-dense (or dense) functional data that have been studied in 
the literature (Zhang & Wang, 2016).

In this paper, we propose a new way of handling measurement errors so that the MED-based 
testing procedure is still consistent in the presence of measurement errors. The key idea is to 
show that when the measurement errors e1 and e2 of X and Y, respectively, are identically distrib-
uted, i.e., e1 =d e2, the MED(X, Y)-based approach can still be applied to the contaminated data 
with consistency guaranteed under mild assumptions (cf. Corollary 3). When e1 ≠d e2, we propose 
an error-augmentation approach, which can be applied jointly with our unified estimation 
procedure.

To conduct hypothesis testing, MED(X, Y)-based approaches can be implemented as per-
mutation tests. We refer the book by Lehmann and Romano (2005) for an extensive introduc-
tion to permutation test. The use of permutation test for distance/kernel-based tests is not 
new in the literature. The consistency of permutation test for distance covariance (Székely 
et al., 2007) or Hilbert–Schmidt independence criterion (Gretton et al., 2007) has been inves-
tigated by Pfister et al. (2018), Rindt et al. (2021), and Kim et al. (2022) for low-dimensional 
data, where distance covariance and Hilbert–Schmidt independence criterion are distance- 
based and kernel-based independence measures, respectively. Under the high dimension, 
low sample size setting (Hall et al., 2005; Zhu & Shao, 2021) studied the size and power be-
haviours of permutation test for ED. The difference in the proof of consistency of permuta-
tion test between longitudinal data and vector-valued data is substantial. For instance, MED 
estimated from longitudinal data is an integration of local weighted averages, where the 
measurement time points in the weights are also random and hence requires special handling 
in the proof.

The rest of the paper is organized as follows. Section 2 contains the main methodology and sup-
porting theory about testing marginal homogeneity. Numerical studies are presented in Section 3. 
The conclusion is in Section 4. All technical details are postponed to Section 5.

2 Testing marginal homogeneity
We first consider the case where there are no measurement errors and postpone the discus-
sion of measurement errors to the end of this section. Let {Xi}

n
i=1 and {Yi}

n+m
i=n+1 be i.i.d copies 

of X and Y, respectively. In practice, the functions are only observed at some discrete 
points:
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xij = Xi(Tij) if i = 1, 2, . . ., n, j = 1, 2, . . ., Ni

yij = Yi(Tij) if i = n + 1, . . ., n + m, j = 1, 2, . . ., Ni 

This sampling plan allows the two samples to be measured at different schedules and additionally 
each subject within the sample has its own measurement schedule. This is a realistic assumption 
but the consequence is that two-dimensional smoothers will be needed to estimate the targets. 
Fortunately, the convergence rate of our estimator attains the same convergence rate as that of 
a one-dimensional smoothing method. This intriguing phenomenon will be explained later.

For notational convenience, denote Zi = Xi, if i = 1, 2, . . ., n and 
Zi = Yi, if i = n + 1, . . .,n + m. Let Z = (z1; . . .; zn+m) be the combined observations, where for 
i = 1, 2, . . ., n + m, zi is a vector of length Ni,

zi = (zi1, zi2, . . ., zi,Ni )
T =

(xi1, xi2, . . ., xi,Ni )
T if 1 ≤ i ≤ n

(yi1, yi2, . . ., yi,Ni )
T if n + 1 ≤ i ≤ n + m

􏼨

The observations corresponding to X and Y are defined as X = (z1; . . .; zn) and Y = (zn+1; . . .; zn+m), 
respectively.

To estimate MED(X, Y) in (4), note that we actually have no observations for the one-dimensional 
functions E[|X(t) − Y(t)|], E[|X(t) − X′(t)|], and E[|Y(t) − Y′(t)|], due to the longitudinal design 
where X and Y are observed at different time points. Thus, the sampling schedule for X and Y are 
not synchronized. A consequence of such asynchronized functional/longitudinal data is that a one- 
dimensional smoothing method that has typically been employed to estimate a one-dimensional target 
function, e.g., E[|X(t) − Y(t)|], does not work here because X(t) − Y(t) cannot be observed at any 
point t. However, a workaround is to estimate the following two-dimensional functions first:

G1(t1, t2) := E[|X(t1) − Y(t2)|]

G2(t1, t2) := E[|X(t1) − X′(t2)|]

G3(t1, t2) := E[|Y(t1) − Y′(t2)|] 

then set t1 = t2 = t in all three estimators. Since G1, G2, G3 can all be recovered by some local linear 
smoother, MED(X, Y) admits consistent estimates for both intensively and sparsely observed func-

tional data. For instance, G1(t1, t2) can be estimated by 􏽢G1(t1, t2) = β̂0, where

(β̂0, β̂1, β̂2) = argmin
β0,β1,β2

1
nm

􏽘

1≤i1≤n

􏽘

n+1≤i2≤n+m

1
Ni1

1
Ni2

􏽘Ni1

j1=1

􏽘Ni2

j2=1

Khx
(Ti1j1 − t1)

× Khy
(Ti2j2 − t2) zi1j1 − zi2j2

􏼌
􏼌

􏼌
􏼌 − β0 − β1(Ti1j1 − t1) − β2(Ti2j2 − t2)

􏼂 􏼃2

(5) 

and G2(t1, t2) can be estimated by 􏽢G2(t1, t2) = α̂0, where

(α̂0, α̂1, α̂2) = argmin
α0,α1,α2

2
n(n − 1)

􏽘

1≤i1<i2≤n

1
Ni1

1
Ni2

􏽘Ni1

j1=1

􏽘Ni2

j2=1

Khx
(Ti1j1 − t1)Khx

(Ti2j2 − t2)

[ zi1j1 − zi2j2

􏼌
􏼌

􏼌
􏼌 − α0 − α1(Ti1j1 − t1) − α2(Ti2 j2 − t2)]2

(6) 

G3(t1, t2) can be estimated similarly as G2(t1, t2) by an estimator 􏽢G3(t1, t2). In the above, Ni1 and 
Ni2 should be understood as the respective length of the vector zi1 and zi2 and Kh(·) = K(· /h)/h is 
a one-dimensional kernel with bandwidth h. The sample estimate of MED(X, Y) can then be 
constructed as

MEDn(Z) : = ∫10 2􏽢G1(t, t) − 􏽢G2(t, t) − 􏽢G3(t, t) dt (7) 
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For hypothesis testing, the critical value or p-value can be determined by permutations 
(Lehmann & Romano, 2005). To be more specific, let π : {1, 2, . . ., n + m}→ {1, 2, . . ., n + m} 
be a permutation. There are (n + m)! number of permutations in total and we denote the set 
of permutations as Pn+m = {πl : l = 1, 2, . . ., (n + m)!}. For l = 1, 2, . . ., (n + m)!, define the permu-
tation of πl on Z as

πl · Z = (zπl(1); zπl(2); . . .; zπl(n+m)) (8) 

Write the statistic that is based on the permuted sample πl · Z as MEDn(πl · Z) and let Π1, . . ., ΠS−1 

be i.i.d and uniformly sampled from Pn+m, we define the permutation-based p-value as

􏽢p =
1
S

1 +
􏽘S−1

l=1

I MEDn(Πl·Z)≥MEDn(Z)
􏼈 􏼉

􏼨 􏼩

Then, the level-α permutation test w.r.t. MEDn(Z) can be defined as

Reject H0 if 􏽢p ≤ α 

2.1 Convergence theory
In this subsection, we show that MEDn(Z) is a consistent estimator and develop its convergence 
rate.

Assumption 1 (A.1) The kernel function K(·) ≥ 0 is symmetric, Lipschitz continuous, 
supported on [ − 1, 1], and satisfies

∫ K(u) du = 1, ∫10 u2K(u) du < ∞, and ∫10 K(u)2 du < ∞ 

(A.2) Let {Tij : 1 ≤ i ≤ n, 1 ≤ j ≤ Ni} ∼i.i.d Tx, {Tij : n + 1 ≤ i ≤ n + m, 1 ≤ 

j ≤ Ni} ∼i.i.d Ty and denote the density functions of Tx, Ty by gx, gy, 
respectively. There exists constants c and C such that 0 < c ≤ 
gx(s), gy(t) ≤ C < ∞ for any s, t ∈ [0, 1].

(A.3) {Xi1 , Yi2 , Tij :1 ≤ i1 ≤ n, n +1 ≤ i2 ≤ n+ m, 1 ≤ i ≤ n+ m, 1 ≤ j ≤ Ni} 
are mutually independent.

(A.4) The second-order partial derivatives of G1, G2, G3 are bounded on 
[0, 1].

(A.5) supt E|X(t)|2 < ∞ and supt E|Y(t)|2 < ∞. 

Remark 1 Conditions (A.1)–(A.3) and (A.5) are fairly standard and also used in Li and Hsing 
(2010). Condition (A.4) may seem a bit problematic at first, as the absolute value 
function | · | is not differentiable at 0. However, its expectation can easily be dif-
ferentiable. For instance, if the density functions of X(t), Y(t) are fx(·|t), fy(·|t), 
respectively, then we have G1(s, t) = ∫∫ |u − v|fx(u|s)fy(v|t) du dv. Assuming the 
conditions of the Leibniz integral rule, we can interchange the partial derivatives 
and integration, i.e.,

∂2

∂s∂t
G1(s, t) = ∫∫ |u − v|

∂
∂s

fx(u|s)
∂
∂t

fy(v|t) du dv 

Thus, the partial derivatives of G1(s, t) are bounded if the second-order partial de-
rivatives of fx(u|s), fy(v|t) w.r.t. s, t exist for all u, v and

sup
u

∂2

∂s∂s
fx(u|s)

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌 < ∞ and sup

v

∂2

∂t∂t
fy(v|t)

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌 < ∞ (9) 
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A more specific example is when X(t) is Gaussian and Y(t) is a mixture of 
Gaussians with density functions

fx(u|t) =
1

σ1(t)
���
2π
√ e−(1/2) (u−μ1(t))/σ1(t)( )

2

fy(u|t) =
1
2

1

σ2(t)
���
2π
√ e−(1/2) (u−μ2(t))/σ2(t)( )

2

+
1
2

1

σ2(t)
���
2π
√ e−(1/2) (u+μ2(t))/σ2(t)( )

2 

Then (A.4) holds if we assume σ1(s), σ2(t) are bounded from below by a positive 
constant, μ1(s), μ2(t), σ1(s), σ2(t) are bounded and have bounded second-order 
derivatives. Similar conclusions can be drawn for G2 and G3. Therefore, 
Condition (A.4) is not restrictive as it is customary to assume that the mean 
and covariance functions for functional data are differentiable.

The next assumption specifies the relationship of the number of observations per subject and the 
decay rate of the bandwidth parameters hx, hy.

Assumption 2 Suppose hx := hx(n), hy := hy(m)→ 0 and

log
n

􏽐n
i=1 N−1

i /n

􏼒 􏼓
max1≤i≤n N−1

i

hx

max1≤i≤n N−1
i􏽐n

i=1 N−1
i /n

1
n
→ 0

log
m

􏽐n+m
i=n+1 N−1

i /m

􏼠 􏼡
maxn+1≤i≤n+m N−1

i

hy

maxn+1≤i≤n+m N−1
i􏽐n+m

i=n+1 N−1
i /m

1
m
→ 0 

The following theorem states that we can consistently estimate MED(X, Y) with sparse 
observations.

Theorem 1 Under Assumptions 1 and 2,

MEDn(Z) − MED(X, Y)
􏼌
􏼌

􏼌
􏼌 = Op h2

x +

����������
1
n2

􏽘n

i=1

ϕi

􏽳

+ h2
y +

������������

1
m2

􏽘n+m

i=n+1

ϕi

􏽶
􏽵
􏽵
􏽴

⎛

⎝

⎞

⎠

where {ϕi : i = 1, 2, . . ., n + m} are defined as

ϕi =

Nihx + Ni(Ni − 1)h2
x

N2
i h2

x
, 1 ≤ i ≤ n

Nihy + Ni(Ni − 1)h2
y

N2
i h2

y
, n + 1 ≤ i ≤ n + m

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Remark 2 For any two-dimensional function F ∈ L2([0, 1]2), define the L2-norm as 
‖F‖2 := ( ∫t1 ∫t2 [F(t1, t2)]2 dt1 dt2)1/2. The above theorem is a consequence of

GI(t1, t2) − 􏽢GI(t1, t2)
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍

2
=Op h2

x +

����������
1
n2

􏽘n

i=1

ϕi

􏽳

+ h2
y +

������������

1
m2

􏽘n+m

i=n+1

ϕi

􏽶
􏽵
􏽵
􏽴

⎛

⎝

⎞

⎠

where I = 1, 2, 3. Compared with the mean function μ(t) = E[X(t)] and the co-
variance function CX(s, t) = E[(X(s) − μ(s))(X(t) − μ(t))], G1, G2, G3 are func-
tions involving two independent stochastic processes. An intriguing 
phenomenon is that even though G1, G2, G3 are two-dimensional functions, 
the convergence rate of their linearly smoothed estimates is the same as for a 
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one-dimensional function, such as the mean function. This is because the ex-
pectation G1(s, t) = E[|X(s) − Y(t)|] involves two independent stochastic proc-
esses and n × m pairs {(Xi1 , Yi2 ) : i1 = 1, . . ., n, i2 = n + 1, . . ., n + m} are used 
in the linear smoother, leading to a faster convergence rate. Therefore, this 
situation is different from the standard estimation of a bivariate function. 
For instance, if the goal is to estimate E[|X(s) − X(t)|], the convergence rate 
would be slower and would be the same as that for a two-dimensional smooth-
er. We further point out that even though a two-dimensional smoothing meth-
od is used to estimate GI(s, t), we only need to evaluate its values at the 
diagonal where s = t. Therefore, the computational effort, which is equivalent 
to a one-dimensional smoother, is manageable.

Given two sequences of positive real numbers an and bn, we say that an and bn are of the same 
order as n→∞ (denoted as an ≍ bn) if there exists constants 0 < c1 < c2 < ∞ such that c1 ≤ 
limn→∞ an/bn ≤ c2 and c1 ≤ limn→∞ bn/an ≤ c2. The convergence rates of MEDn(Z) for different 
sampling plans are provided in the following corollary.

Corollary 1 Under Assumptions 1 and 2, and further assume m(n) ≍ n. 

(i) When Ni ≍ C for all i = 1, 2, . . ., n + m, where 0 < C < ∞ is a constant, 
and hx ≍ hy ≍ n−1/5, we have

MEDn(Z) − MED(X, Y)
􏼌
􏼌

􏼌
􏼌 = Op

1
n2/5

􏼒 􏼓

(ii) When Ni ≍ n1/4 for all i = 1, 2, . . ., n + m and hx ≍ hy ≍ n−1/4, we have

MEDn(Z) − MED(X, Y)
􏼌
􏼌

􏼌
􏼌 = Op

1
��
n
√

􏼒 􏼓

2.2 Validity of the permutation test and power analysis
We now justify the permutation-based test for sparsely observed functional data. Under the null 
hypothesis and the mild assumption that {Ni} are i.i.d across subjects, the size of the test can be 
guaranteed by the fact that the distribution of the sample is invariant under permutation. For a 
rigorous argument, see Theorem 15.2.1 in Lehmann and Romano (2005). Thus, the permutation 
test based on the test statistic (7) produces a legitimate size of the test. The power analysis is much 
more challenging and will be presented below.

Let π ∈ Pn+m be a fixed permutation and 􏽢Gπ,I(t1, t2), I = 1, 2, 3, be the estimated functions from 
algorithms (5) and (6) using permuted samples π · Z. The conditions on the decay rate of band-
width parameters hx, hy that ensure the convergence of 􏽢Gπ,I for any fixed permutation π are sum-
marized below.

Assumption 3 Suppose hx := hx(n), hy := hy(m)→ 0 and

sup
π∈Pn+m

log
n2

􏽐n
i=1 N−1

π(i)

􏼠 􏼡
max1≤i≤n N−1

π(i)

min {hx, hy}

max1≤i≤n N−1
π(i)

􏽐n
i=1 N−1

π(i)/n
1
n
→ 0

sup
π∈Pn+m

log
m2

􏽐n+m
i=n+1 N−1

π(i)

􏼠 􏼡
maxn+1≤i≤n+m N−1

π(i)

min {hx, hy}

maxn+1≤i≤n+m N−1
π(i)

􏽐n+m
i=n+1 N−1

π(i)/m
1
m
→ 0 

Let Π be a random permutation uniformly sampled from Pn+m. If the sample is randomly 
shuffled, it holds that ZΠ(i) =d ZΠ(j) and MED(ZΠ(i), ZΠ(j)) = 0 for any i, j = 1, 2, . . ., n + m. For 
the sample estimate MEDn(Π · Z) based on the permuted sparse observations, we show that 
MEDn(Π · Z) converges to 0 in probability.
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Theorem 2 Under Assumptions 1 and 3,

MEDn(Π · Z)
􏼌
􏼌

􏼌
􏼌 = Op sup

π∈Pn+m

������������
1
n2

􏽘n

i=1

ϕπ(i)

􏽳

+ sup
π∈Pn+m

��������������

1
m2

􏽘n+m

i=n+1

ϕπ(i)

􏽶
􏽵
􏽵
􏽴

⎛

⎝

⎞

⎠

where Π ∼ Uniform(Pn+m) and is independent of the data, and {ϕi}
n
i=1 are de-

fined in Theorem 1.

For the original data that have not been permuted, MEDn(Z)→p MED(X, Y), which is strictly 
positive under the alternative hypothesis. On the other hand, we know from Theorem 2 that the 
permuted statistics converges to 0 in probability. This suggests that under mild assumptions, the 
probability of rejecting the null approaches 1 as n, m→∞. We make this idea rigorous in the fol-
lowing theorem.

Theorem 3 Under Assumptions 1 and 3, for any fixed S > 1/α, we have

PHA
􏽢p ≤ α
( 􏼁

→ 1 

Remark 3 Since Assumption 3 implies Assumption 2, Theorem 1 holds under the assump-
tion of Theorem 3 and it facilitates the proof of Theorem 3.

2.3 Handling of measurement errors
With the presence of measurement errors, the actual observed data are

􏽥xij = Xi(Tij) + eij, i = 1, 2, . . ., n, j = 1, 2, . . ., Ni

􏽥yij = Yi(Tij) + eij, i = n + 1, . . ., n + m, j = 1, 2, . . ., Ni 

where {eij : i = 1, 2, . . ., n, j = 1, 2, . . ., Ni} ∼i.i.d e1, {eij : i = n + 1, . . ., n + m, j = 1, 2, . . ., Ni} ∼i.i.d e2, 
and e1, e2 are mean 0 independent univariate random variables. Denote the combined noisy obser-

vations by 􏽥Z = (􏽥z1; . . .;􏽥zn+m), where

􏽥zi = (􏽥zi1,􏽥zi2, . . .,􏽥zi,Ni )
T =

(􏽥xi1,􏽥xi2, . . .,􏽥xi,Ni )
T if 1 ≤ i ≤ n

(􏽥yi1,􏽥yi2, . . .,􏽥yi,Ni )
T if n + 1 ≤ i ≤ n + m

􏼨

The local linear smoothers described in equations (5) and (6) are then applied with the input data 
{zi1j1 } and {zi2j2 } replaced, respectively, by {􏽥zi1j1 } and {􏽥zi2j2 }. The resulting outputs are denoted as 
􏽢H1, 􏽢H2, 􏽢H3, leading to the estimator

MEDn(􏽥Z) = ∫ 2􏽢H1(t, t) − 􏽢H2(t, t) − 􏽢H3(t, t) dt (10) 

Correspondingly, the proposed test with contaminated data 􏽥Z is

Reject H0 if 􏽥p ≤ α 

where 􏽥p = (1/S){1 +
􏽐S−1

l=1 I
{MEDn(Πl·

􏽥Z)≥MEDn(􏽥Z)}
}. To study the convergence of MEDn(􏽥Z), define the 

two-dimensional functions H1(s, t), H2(s, t), and H3(s, t) as

H1(s, t) = E[|X(s) + e1 − Y(t) − e2|]

H2(s, t) = E[|X(s) + e1 − X′(t) − e′1|]

H3(s, t) = E[|Y(s) + e2 − Y′(t) − e′2|]

(11) 
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where e′1 and e′2 are independent and identical copies of e1 and e2, respectively. The target of 

MEDn(􏽥Z) is shown to be

􏽧MED(X, Y) = ∫ 2H1(t, t) − H2(t, t) − H3(t, t) dt (12) 

Remark 4 An unpleasant fact is that 􏽧MED(X, Y) involves errors, which cannot be easily 
removed due to the presence of the absolute error function in (11). The hand-
ling of measurement errors in both method and theory is thus very different 
here from conventional approaches for functional data, where one does not 
deal with the absolute function. The ED with L2-norm in equation (2) also 
has this issue. Thus, measurement errors would also be a challenge for the 
full homogeneity test even if we can approximate the L2 norm in the ED well.

To show the approximation error of MEDn(􏽥Z), we need the following assumptions.

Assumption 4 (D.1) E[e2
1] < ∞ and E[e2

2] < ∞.
(D.2) {Xi1 , Yi2 , Tij, eij :1 ≤ i1 ≤ n, n+ 1 ≤ i2 ≤ n +m, 1 ≤ i ≤ n +m, 1 ≤ j ≤ Ni} 

are mutually independent.
(D.3) The second-order partial derivatives of H1, H2, H3 are bounded on 

[0, 1].

Remark 5 Using the notations fx(·|t) and fy(·|t) in Remark 1, let the density functions of e1 

and e2 be η1(·) and η2(·), respectively. Under the conditions of the Leibniz inte-
gral rule

∂2

∂s∂t
H1(s, t) = ∫ |u − v + a − b|

∂
∂s

fx(u|s)
∂
∂t

fy(v|t)η1(a)η2(b) du dv da db 

which admits bounded second-order partial derivatives if (9) holds. Similar 
conclusions can be drawn for H2 and H3. Therefore, Assumption (D.3) is mild.

Corollary 2 Under Assumptions 1, 2, and 4, we have

MEDn(􏽥Z) − 􏽧MED(X, Y)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 = Op h2

x +

����������
1
n2

􏽘n

i=1

ϕi

􏽳

+ h2
y +

������������

1
m2

􏽘n+m

i=n+1

ϕi

􏽶
􏽵
􏽵
􏽴

⎛

⎝

⎞

⎠

By the property of ED, it holds that 􏽧MED(X, Y) ≥ 0 and 􏽧MED(X, Y) = 0⇔ X(t) + e1 =d Y(t) + 
e2 for almost all t ∈ [0, 1]. Then, we show that under the following assumptions, the condition 
that X(t) + e1 =d Y(t) + e2 would imply the homogeneity of X(t) and Y(t).

Assumption 5 Suppose that for any t ∈ [0, 1] 

(E.1) X(t), Y(t) are continuous random variables with density functions 
fx(·|t), fy(·|t), respectively.

(E.2) e1, e2 are i.i.d continuous random variables with characteristic func-
tion ϕ(·) and the real zeros of ϕ(·) have Lebesgue measure 0.

(E.3) {X(t), Y(t), e1, e2} are mutually independent.

For common distributions, such as Gaussian and Cauchy, their characteristic functions are of 
exponential form and have no real zeros. Some other random variables, such as exponential, 
Chi-square, and gamma, have characteristic functions of the form ψ(t) = (1 − itθ)−k with only a 
finite number of real zeros. Since it is common to assume Gaussian measurement errors, the restric-
tion on the real zeros of the characteristic function in Assumption 5(E.2) is very mild.
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Theorem 4 Under Assumption 5, for any t ∈ [0, 1],

X(t) + e1 =d Y(t) + e2 ⇔ X(t) =d Y(t) 

Based on the above theorem, we have the important property that 􏽧MED(X, Y) = 0⇔
X(t) =d Y(t) for almost all t ∈ [0, 1]. As discussed before, 􏽧MED(X, Y) can be consistently esti-
mated by MEDn(􏽥Z) and the test can be conducted via permutations. Consequently, the data con-
taminated with measurement errors can still be used to test marginal homogeneity as long as 
e1 =d e2. We make this statement rigorous below.

Corollary 3 Under Assumptions 1, 3–5, for any fixed S > 1/α,

PHA
􏽥p ≤ α
( 􏼁

→ 1 

The circumstance of identically distributed errors among the two samples is a strong assumption 
that nevertheless can be satisfied in many real situations, for example, when the curves {Xi} and 
{Yj} are measured by the same instrument. The primary biliary cirrhosis (PBC) data in Section 
3.2 underscore this phenomenon.

When e1 ≠d e2, not all is lost and we show that some workarounds exist. In particular, we pro-
pose an error-augmentation method that raises the noise of one sample to the same level as that of 
the other sample.

For instance, suppose that e1 ∼ N(0, σ2
1) and e2 ∼ N(0, σ2

2). Then the variances σ2
1 and σ2

2 can be 
estimated consistently using the R package ‘fdapace’ (Carroll et al., 2021) under both intensive 
and sparse designs with estimates 􏽢σ2

1 and 􏽢σ2
2, respectively. Yao et al. (2005a) showed that

􏽢σ1 − σ1
􏼌
􏼌

􏼌
􏼌 = Op

1
��
n
√

1
h2

Gx

+
1

hVx

􏼠 􏼡􏼠 􏼡

where hGx and hVx are the bandwidth parameters for estimating the covariance function 
cov(X(s), X(t)) and the diagonal function cov(X(t), X(t)) + σ2

1, respectively. A different estimator 
for 􏽢σ1 that has a better convergence rate is provided in Lin and Wang (2022). An analogous result 
holds for 􏽢σ2. Then, by adding additional Gaussian white noise, we obtain the error-augmented 
data {x̆ij}, {y̆ij} as follows:

x̆ij =􏽥xij + ϵij for i = 1, 2, . . ., n, j = 1, . . ., Ni

y̆ij =􏽥yij for i = n + 1, . . ., n + m, j = 1, . . ., Ni

􏼛

if 􏽢σ2
1 <􏽢σ2

2

x̆ij =􏽥xij for i = 1, 2, . . ., n, j = 1, . . ., Ni

y̆ij =􏽥yij + ϵij for i = n + 1, . . ., n + m, j = 1, . . ., Ni

􏼛

if 􏽢σ2
1 >􏽢σ2

2

⎧
⎪⎪⎨

⎪⎪⎩

where {ϵij} ∼i.i.d N(0, |􏽢σ2
2 −􏽢σ2

1|). With Z̆ being the combined error-augmented data, the proposed 
test is

Reject H0 if p̆ ≤ α 

where p̆ = (1/S){1 +
􏽐S−1

l=1 I{MEDn(Πl·Z̆)≥MEDn(Z̆)}}.
The normal error assumption is common in practice. The variance augmentation approach also 

works for any parametric family of distributions that is close under convolution (i.e., the sum of 
two independent distributions from this family is also a member of the family) and that has the 
property that the first two moments of a distribution determine the distribution.

3 Numerical studies
In this section, we examine the proposed testing procedure for both synthetic and real data sets.
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3.1 Performance on simulated data
For simulations, we set α = 0.05 and perform 500 Monte Carlo replications with 200 permuta-
tions for each test. We select the bandwidth parameters as hx = hy = 0.1 in estimating MED. 
Commonly used methods in the literature such as cross-validation and generalized cross- 
validation could be used. But they require more computing resources and their success is not guar-
anteed. Therefore, we adopted a simple default bandwidth, which uses 10% of the data range as 
specified in the R package fdapace (Carroll et al., 2021). This choice performed satisfactorily. For 
real data, the best practice is to explore various bandwidths, including subjective ones based on 
visual inspection of the data, and decide which one fits the data best without evidence of under 
or over fitting. The following example is used to examine the size of our test.

Example 1 The stochastic processes {Xi}
n
i=1 are i.i.d copies of X and {Yi}

n+m
i=n+1 are i.i.d cop-

ies of Y, where for t ∈ [0, 1],

X(t) = ξ1 − cos (2πt)
( 􏼁

+ ξ2 sin (2πt)
( 􏼁

Y(t) = ς1 − cos (2πt)
( 􏼁

+ ς2 sin (2πt)
( 􏼁

and ξ1, ξ2, ς1, ς2, ∼i.i.d N(0, 1). These curves are observed at discrete time 
points

􏽥xij = Xi(Tij) + eij, i = 1, 2, . . ., n, j = 1, 2, . . ., Ni

􏽥yij = Yi(Tij) + eij, i = n + 1, . . ., n + m, j = 1, 2, . . ., Ni 

where {Tij : i = 1, 2, . . ., n + m, j = 1, 2, . . ., Ni} ∼i.i.d Uniform[0, 1] and the 
measurement errors are sampled from Gaussian distributions or scaled 
Student’s t-distributions

{eij : i = 1, 2, . . ., n, j = 1, 2, . . ., Ni} ∼i.i.d N(0, σ2
1) or c1t4

{eij : i = n + 1, . . ., n + m, j = 1, 2, . . ., Ni} ∼i.i.d N(0, σ2
2) or c2t4 

where t4 follows Student’s t-distribution with four degrees-of-freedom and 
c1, c2 are scaling constants such that var(c1t4) = σ2

1 and var(c2t4) = σ2
2.

The quantities {Ni} are used to control the sparsity level. We consider three designs with differ-
ent sparsity levels: Ni are uniformly selected from {1, 2} (extremely sparse), {4, 5, 6} (medium 
sparse), or {8, 9, 10} (not so sparse) for all i = 1, 2, . . ., n + m. The variances σ2

1 and σ2
2 quantify 

the magnitude of the measurement errors. We set σ2
1 = σ2

2 = 0.2 when σ1 = σ2 and σ2
1 = 0.05, σ2

2 = 
0.25 when σ1 ≠ σ2. If σ1 ≠ σ2, the error augmentation method described in Section 2.3 is used. To 
examine whether our test works for noise-contaminated situations, we add Gaussian white noises 
when applying the error augmentation method regardless of whether or not the measurement er-
rors follow a Gaussian distribution.

Table 1 contains the size comparison results under the sparse designs. As a baseline method for 
comparison, the functional principal component analysis (FPCA) approach is also included, where 
we first impute the principal scores and then apply the ED on the imputed scores. To be more spe-
cific, the first step is to reconstruct the principal scores using the R package ‘fdapace’ (Carroll et al., 
2021). Then, a two-sample tests for multivariate data are applied on the recovered scores. For this, 
we choose the ED-based procedure and conduct the hypothesis testing via the R package ‘energy’ 
(Rizzo & Szekely, 2021). The FPCA approach has two drawbacks. First, the scores cannot be esti-
mated consistently; second, the infinite dimensional vector of scores has to be truncated for compu-
tational purposes, which causes information loss. When the Gaussian errors have different 
variances, the same error-augmentation method is applied to the FPCA approach. From Table 1, 
we see that the MED-based methods have satisfactory size for all cases, while the FPCA approach 
leads to sizes larger than the nominal level for the very sparse case and sizes smaller than the nominal 
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level for the less sparse case, meaning that the size of the FPCA approach is often different from the 
nominal level. This may be due to the inherent inaccuracy in the imputed scores. When σ1 ≠ σ2, we 
apply the error-augmentation approach and add additional Gaussian noises, even when the meas-
urement errors follow scaled Student t-distributions. The closeness of the size and the nominal level 
5% reveals the robustness of our test. The following example is used to examine the power of our 
test.

Example 2 The stochastic processes {Xi}
n
i=1 are i.i.d copies of X, {Yi}

n+m
i=n+1 are i.i.d copies of 

Y, where for t ∈ [0, 1],

X(t) = ξ1 − cos (2πt)
( 􏼁

+ ξ2 sin (2πt)
( 􏼁

Y(t) = ς1t2 + ς2

�������
1 − t4
√􏼐 􏼑

ξ1, ξ2 ∼i.i.d N(0, 1), and ς1, ς2 are independently sampled from the following 
mixture of Gaussian distributions:

P(ς ≤ a) =
1
2

P(N(μς, σ2
ς ) ≤ a) +

1
2

P(N( − μς, σ2
ς ) ≤ a) for any a ∈ R ⊈ 

The sampling plan is similar to Example 1.

By selecting μς and σ2
ς such that μ2

ς + σ2
ς = 1, we have var(X(t)) = var(Y(t)). Under this scenario, X(s) 

and Y(t) have the same marginal mean and variance, but different marginal distributions. In this ex-
ample, we set μς = 0.98, σς = 0.199, σ2

1 = σ2
2 = 0.2 when σ1 = σ2 and σ2

1 = 0.05, σ2
2 = 0.25 when 

σ1 ≠ σ2. The power comparison results are provided in Table 2. Since the FPCA approach is often dif-
ferent from the nominal level, which makes the power comparison not so meaningful as a fair 

Table 1. Comparison of size

Without augmentation With augmentation

Error n = m Ni FPCA MED FPCA MED

Normal 150 1,2 0.464 0.044 0.422 0.062

4,5,6 0.120 0.042 0.050 0.056

8,9,10 0.002 0.037 0 0.048

200 1,2 0.560 0.034 0.452 0.056

4,5,6 0.136 0.055 0.028 0.060

8,9,10 0 0.057 0 0.058

300 1,2 0.626 0.052 0.452 0.074

4,5,6 0.096 0.059 0.018 0.060

8,9,10 0 0.037 0 0.052

Student t 150 1,2 0.580 0.058 0.488 0.077

4,5,6 0.016 0.036 0.010 0.044

8, 9,10 0 0.052 0 0.048

200 1,2 0.606 0.054 0.526 0.060

4,5,6 0.012 0.048 0.002 0.060

8,9,10 0.002 0.042 0 0.042

300 1,2 0.638 0.058 0.518 0.099

4,5,6 0.012 0.060 0 0.066

8,9,10 0 0.044 0 0.038

Note. MED = marginal energy distance.
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comparison requires similar levels of actual sizes. We have thus not included FPCA in the power analysis. 
Instead, we compare the power of MED-based tests between sparse and intensively sampled data, where 
the sparse data are uniformly sampled from intensively sampled data. The same error-augmentation ap-
proach is applied to MED when σ1 ≠ σ2, regardless of design intensities. When the measurement errors 
follow scaled Student t-distributions, MED-based tests have moderate power loss compared to intensive-
ly sampled data when Ni = 150, 200, but the powers catch up quickly when Ni = 300. We note that 
when the measurement errors follow scaled t-distributions with σ1 ≠ σ2, the error-augmentation ap-
proach is applied by adding additional Gaussian noise to the observations. The high powers for medium 
and not so sparse cases demonstrate the robustness of our tests against additional noises. For the ex-
tremely sparse case (Ni = 1, 2) with Gaussian measurement errors, and as the sample sizes increase to 
300, the power grows to 0.836 when σ1 = σ2 and to 0.556 when σ1 ≠ σ2.

Example 3 The stochastic processes {Xi}
n
i=1 are i.i.d copies of X, {Yi}

n+m
i=n+1 are i.i.d copies of 

Y, where for t ∈ [0, 1], X is a Gaussian process with mean 0 and covariance 
structure cov(X(s), X(t)) = min {s, t}, and Y is a Gaussian process with mean 
α(t + sin(2πt)) and covariance structure 
cov(Y(s), Y(t)) = (1 − β) min {s, t} + β min {1 − s, 1 − t}. When α = 0 and 
β > 0, X and Y have the same mean, but difference covariance structure. When 
α > 0 and β = 0, X and Y have the same covariance structure but different means. 
In the two-sample context, the magnitudes of α and β determine the level of de-
viation from the null hypothesis. Larger values of α, β would lead to easier testing 
problem so we can explore the power performance under various alternative hy-
potheses. We consider similar sampling designs to Example 1 with Gaussian 
measurement errors.

For this example, we consider the case n = m = 200 with noise level σ2
1 = σ2

2 = 0.2. We compare 
the results for both sparsely (Ni ∈ {4, 5, 6, 7, 8}) and intensively sampled data (Ni = 100), from 

Table 2. Comparison of power

Without augmentation With augmentation

Error n = m MED
dense

(Ni) MED
sparse

(Ni) MED
dense

(Ni) MED
sparse

(Ni)

Normal 150 1 (100) 0.269(1, 2) 1(100) 0.184(1, 2)

0.894(4, 5, 6) 0.694(4, 5, 6)

0.976(8, 9, 10) 0.904(8, 9, 10)

200 1(100) 0.424(1, 2) 1(100) 0.290(1, 2)

0.994(4, 5, 6) 0.876(4, 5, 6)

0.998(8, 9, 10) 0.984(8, 9, 10)

300 1(100) 0.836(1, 2) 1(100) 0.556(1, 2)

1.000(4, 5, 6) 0.992(4, 5, 6)

1.000(8, 9, 10) 1.000(8, 9, 10)

Student t 150 0.852(100) 0.130(1, 2) 0.906(100) 0.134(1, 2)

0.372(4, 5, 6) 0.314(4, 5, 6)

0.496(8, 9, 10) 0.426(8, 9, 10)

200 0.986(100) 0.122(1, 2) 0.978(100) 0.148(1, 2)

0.586(4, 5, 6) 0.512(4, 5, 6)

0.760(8, 9, 10) 0.674(8, 9, 10)

300 1 (100) 0.295(1, 2) 1 (100) 0.259(1, 2)

0.892(4, 5, 6) 0.795(4, 5, 6)

0.990(8, 9, 10) 0.948(8, 9, 10)

Note. MED = marginal energy distance.
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which the sparse data are sampled. The simulation results are shown in Figure 1, which reveals 
that MED-based approach enjoys strong power growth for intensively sampled data, and compar-
able power growth for sparsely sample data (see the left panel of Figure 1) when testing the equal- 
mean hypothesis. The result in the right panel of Figure 1 suggests that the sampling frequency has 
a more prominent role on the power of testing equal-covariance.

3.2 Applications to real data
In this subsection, we apply the proposed MED-based tests to two real data sets. PBC data: The first 
data set is the PBC data from Mayo Clinic (Fleming & Harrington, 2005). This data set is from a clin-
ical trial studying PBC of the liver. There were 312 patients assigned to either the treatment or control 
group. The drug D-penicillamine is given to the treatment group. Here, we are interested in testing the 
equality of the marginal distributions of prothrombin time, which is a blood test that measures how 
long it takes blood to clot. The trajectories of prothrombin time for different subjects are plotted in 
Figure 2, and there are on average six measurements per subject. For our tests, the bandwidth is set 
to be 2. Here, the equal distribution assumption for errors seems to work (the estimated variances 
for treatment and control group are 0.96 and 1.009, respectively). By using 200 permutations, the 
p-value of the MED-based test is 0.54, which means that there is not enough evidence to conclude 
that the marginal distributions of prothrombin time are different between the two groups. This con-
clusion matches with existing knowledge that D-penicillamine is ineffective to treat PBC of liver.

Strawberry data: In the food industry, there is a continuing interest in distinguishing the pure 
fruit purees from the adulterated ones (Holland et al., 1998). One practical way to detect adulter-
ation is by looking at the spectra of the fruit purees. Here, we are interested in testing the marginal 
distribution between the spectra of strawberry purees (authentic samples) and non-strawberry 
purees (adulterated strawberries and other fruits). The strawberry data can be downloaded 
from the UCR Time Series Classification Archive (Dau et al., 2018; https://www.cs.ucr.edu/ 
˜eamonn/time_series_data_2018/). The single-beam spectra of the purees were normalized to 

Figure 1. Power study w.r.t. Example 3.
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back-ground spectra of water and then transformed into absorbance units. The spectral range was 
truncated to 899–1802 cm−1 (235 data points). The two samples of spectra are plotted in Figure 2
and more information about this data set can be found at Holland et al. (1998). The estimated var-
iances of the measurement errors are 0.000279 and 0.00031 for the two samples, which indicates 
that there are practically no measurement errors. To check the performance of our method, we 
analyse the data using all 235 measurements as well as sparse subsamples that contain 2–10 ob-
servations per subject. The R package ‘energy’ is applied for the complete data. Both tests are con-
ducted with 200 permutations and have p-value 0.005. Thus, we have strong evidence to conclude 
that the marginal distributions between the spectra of strawberry and non-strawberry purees are 
significantly different and our test produced similar results regardless of the sampling plan.

4 Conclusion
The literature on testing homogeneity for functional data is scarce probably because most approaches 
rely on intensive measurement schedules and the hope that measurement errors could be addressed by 
presmoothing the data. Since reconstruction of noise-free functional data is not feasible for sparsely 
observed functional data, a test of homogeneity is infeasible. In this work, we show what is feasible 
for sparse functional data, a.k.a. longitudinal data, and propose a test of marginal homogeneity 
that adapts to the sampling plan and provides the corresponding convergence rate. Our test is based 
on ED with a focus on testing the marginal homogeneity. To the best of our knowledge, this is the only 
nonparametric test with theoretical guarantees under sparse designs, which are ubiquitous.

There are several twists in our approach, including the handling of asynchronized longitudinal data 
and the unconventional way that measurement errors affect the method and theory. The asynchroni-
zation of the data can be overcome completely as we demonstrated in Section 2.1, but the handling of 
measurement errors requires some compromise when the distributions of the measurement errors are 
different for the two samples. This is the price one pays for lack of data and is not due to the use of the 
L1 norm associated with testing the marginal homogeneity, as an L2 norm for testing full homogeneity 
would also face the same challenge with measurement errors unless a presmoothing step has been 

Figure 2. Trajectories of real data.
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employed to eliminate the measurement errors. As we mentioned in Section 1, this would require a 
super intensive sampling plan well beyond the usual requirement for dense or ultra-dense functional 
data (Zhang & Wang, 2016). While the new approach may involve error augmentation, numerical 
results show that the efficiency loss is minimal. Moreover, such an augmentation strategy is not un-
common. For instance, an error augmentation method has also been adopted in the SIMEX approach 
(Cook & Stefanski, 1994) to deal with measurement errors for vector data.

While testing marginal homogeneity has its own merits and advantages over a full-fledged test of 
homogeneity, our intention is not to particularly endorse it. Rather, we point out what is feasible and 
infeasible for sparsely or intensively measured functional data and develop theoretical support for the 
proposed test. To the best of our knowledge, we are the first to provide the convergence rate for the per-
muted statistics for sparse functional data. This proof and the proof of consistency for the proposed per-
mutation test are non-conventional and different from the multivariate/high-dimensional case.

5 Technical details
5.1 Proof of Theorem 1
Here, we show that
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and ‖􏽢G3 − G3‖2 can be bounded similarly. For p1, p2 = 0, 1, 2, set

T
p1p2
i1i2

(t1, t2) =
1

Ni1

1
Ni2

􏽘Ni1

j1=1

􏽘Ni2
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where hi = hx, if 1 ≤ i ≤ n; otherwise hi = hy. The weighted raw data are denoted as

Z
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i1 i2
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1
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1
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􏼒 􏼓 p1 Ti2j2 − t2

hi2
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zi1j1 − zi2j2

􏼌
􏼌

􏼌
􏼌

If there is no confusion, we will only write T i1i2 , Zi1i2 instead of T p1p2
i1i2

(t1, t2), Z p1p2
i1 i2

(t1, t2) for sim-
plicity. Both (5) and (6) admit closed form solutions and some algebra show that for I = 1, 2

􏽢GI(t1, t2) =
WI,1(t1, t2)V0,0

I (t1, t2) − WI,2(t1, t2)V1,0
I (t1, t2) + WI,3(t1, t2)V0,1

I (t1, t2)

WI,1(t1, t2)U0,0
I (t1, t2) − WI,2(t1, t2)U1,0

I (t1, t2) + WI,3(t1, t2)U0,1
I (t1, t2) 

Here, {WI,J : I = 1, 2, J = 1, 2, 3} are two-dimensional functions defined as

WI,1(t1, t2) = (U2,0
I (t1, t2)U0,2

I (t1, t2)) − (U1,1
I (t1, t2))2

WI,2(t1, t2) = (U1,0
I (t1, t2)U0,2

I (t1, t2)) − U0,1
I (t1, t2)U1,1

I (t1, t2)

WI,3(t1, t2) = (U1,0
I (t1, t2)U1,1

I (t1, t2)) − UI(t1, t2; 0, 1)U2,0
I (t1, t2) 
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where for p1, p2 = 0, 1, 2, {UI, VI : I = 1, 2} have the following expressions:
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By some straight-forward calculations, for I = 1, 2

􏽢GI(t1, t2) − GI(t1, t2)

=
WI,1(t1, t2)F0,0
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(13) 

where for p1, p2 = 0, 1, 2,

Fp1p2
1 (t1, t2) = V p1p2

1 (t1, t2) − G1(t1, t2)U p1p2
1 (t1, t2)

− hx
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Lemma 3 entails that the denominator in (13) is bounded away from 0 with high probability. 
Thus, for I = 1, 2, we have
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It can be easily seen that E[|zi1 j1 − zi2j2 | |Ti1j1 , Ti2j2 ] = G1(Ti1j1 , Ti2,j2 ) if 1 ≤ i1 ≤ n, n + 1 ≤ i2 ≤ n + 
m and E[|zi1 j1 − zi2j2 | |Ti1j1 , Ti2j2 ] = G2(Ti1j1 , Ti2,j2 ) if 1 ≤ i1 < i2 ≤ n. By Taylor expansion
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Lemma 1 Under Assumptions 1 and 2, for I = 1, 2 and p1, p2 = 0, 1, 2, it holds that
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Proof. By setting
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For any p1, p2 = 0, 1, 2,
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where C is a constant that depends on Tx, Ty, K, X, Y. Using the above inequality, 
if i1 = i′1 and i2 = i′2, we have
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If i1 = i′1, i2 ≠ i′2, we have
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Similarly, for the case i1 ≠ i′1 and i2 = i′2, it holds that
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Then, it follows from the above inequalities that
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The bound for E[ ∫10∫10 L2(t1, t2)2 dt1 dt2] can be derived using the same tactics.  □

5.2 Proof of Theorem 2
For any permutation π, let 􏽢Gπ,I be the estimated function based on the permuted sample

π · Z = (zπ(1); zπ(2); . . .; zπ(n+m)) 

Correspondingly, the explicit form of 􏽢Gπ,I depends on the following quantities:
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For I = 1, 2, J = 1, 2, 3, let W p1p2
π,I,J be defined similarly with W p1p2

I,J with UI, VI replaced by 

Uπ,I, Vπ,I, respectively. Then it can be shown that 􏽢Gπ,I(t1, t2) admits a similar form as 􏽢GI(t1, t2) 
with WI, UI, VI replaced by Wπ,I, Uπ,I, Vπ,I.

The following lemma shows that Uπ,I, Vπ,I as well as UΠ,I, VΠ,I converge to their mean func-
tions, where Π is a random permutation sampled uniformly from Pn+m.
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Lemma 2 Under the assumptions of Theorem 2, for any p1, p2 = 0, 1, 2, we have 

(i) for any fixed permutation π ∈ Pn+m,
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Proof. (i)  Here, we only show the result for Vπ,1, as the proof for Vπ,2 is similar. Set 
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Since E[􏽥Zπ(i1)π(i2)􏽥Zπ(i′1)π(i′2)] ≠ 0 only if {π(i1), π(i2)} ∩ {π(i′1), π(i′2)} ≠ ∅, by simi-
lar arguments with equations (14), (15), and (16), we can show that

∫∫ E 􏽥Zi1 i2 (t1, t2)􏽥Zi′1i′2
(t1, t2)

􏽨 􏽩
dt1 dt2

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 ≤ C

ϕπ(i1)ϕπ(i2) if i1 = i′1, i2 = i′2
ϕπ(i1) if i1 = i′1, i2 ≠ i′2
ϕπ(i2) if i1 ≠ i′1, i2 = i′2

⎧
⎨

⎩

which implies

∫∫ E V p1p2
π,I (t1, t2) − E V p1p2

π,I (t1, t2)
􏽨 􏽩􏼐 􏼑2

dt1 dt2

≤ 2C
1
n2

􏽘

1≤i1≤n

ϕπ(i1) +
1

m2

􏽘

n+1≤i2≤n+m

ϕπ(i2)

􏼨 􏼩

The bound on ∫∫ E(U p1p2
π,I (t1, t2) − E[U p1p2

π,I (t1, t2)])2 dt1 dt2 can be shown 
similarly.

(ii) The result follows from the inequality:

∫∫ E V p1p2
π,I (t1, t2) − E V p1p2

π,I (t1, t2)
􏽨 􏽩􏼐 􏼑2

dt1 dt2

≤ 2C sup
π∈Pn+m

1
n2

􏽘

1≤i1≤n

ϕπ(i1) + sup
π∈Pn+m

1
m2

􏽘

n+1≤i2≤n+m

ϕπ(i2)

􏼨 􏼩

and the fact that C is a constant independent of π.                                          □
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Lemma 3 Under the assumptions of Theorem 2, for any p1, p2 = 0, 1, 2, we have 

(i) for any fixed permutation π ∈ Pn+m,

supt1,t2
U p1p2

π,I (t1, t2) − E U p1p2
π,I (t1, t2)

􏽨 􏽩􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 = op(1) 

(ii) For any random permutation Π sampled from Pn+m uniformly,

supt1,t2
U p1p2

Π,I (t1, t2) − E U p1p2
Π,I (t1, t2)

􏽨 􏽩􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 = op(1) 

Proof. (i) We can write T p1p2
i1i2

= S p1
i1
S

p2
i2 

and

U p1p2
π,1 (t1, t2) = Rp1

π,1(t1)Rp2
π,2(t2)

U p1p2
π,2 (t1, t2) = Rp1

π,1(t1)Rp1
π,1(t1) −

1
n2

􏽘n

i1=1

(S p1
π(i1)(t1))2 

where Rp1
π,1(t1) = (1/n)

􏽐n
i1=1 S

p1
π(i1)(t1) and R p2

π,2(t2) = (1/m)
􏽐n+m

i2=n+1 S
p2
π(i2)(t2) and

S
p1
i1

(t1) =
1

Ni1

􏽘Ni1

j1=1

Khi1
(Ti1j1 − t1)

Ti1j1 − t1

hi1

􏼒 􏼓p1

S
p2
i2

(t2) =
1

Ni2

􏽘Ni2

j2=1

Khi2
(Ti2j2 − t2)

Ti2j2 − t2

hi2

􏼒 􏼓p2 

It is sufficient to show that supt1
|Rπ,I(t1) − E[Rπ,I(t1)]| = op(1). Here, we only pro-

vide details for the case I = 1 and the rest can be shown similarly. The superscripts 
p1, p2 will be dropped if there is no confusion. Set

􏽥Rπ,1 =
1
n

􏽘

1≤i1≤n

􏽥Sπ(i1) 

where 􏽥Sπ(i1) = Sπ(i1) − E[Sπ(i1)] and

an = log
n

􏽐n
i=1 N−1

π(i)/n

􏼠 􏼡􏽐n
i=1 N−1

π(i)/n

min {hx, hy}
1
n

􏼨 􏼩1/2

, bn =
1

(n−2
􏽐n

i=1 N−1
π(i))

2 

Let χ(bn) ⊂ [0, 1] be the set of equally spaced grid points of size bn, then

sup
t1

|􏽥Rπ,1(t1)| ≲ sup
t1∈χ(bn)

|􏽥Rπ,1(t1)| + sup
|t1−t′1|<1/bn

|􏽥Rπ,1(t1) −􏽥Rπ,1(t′1)|

To bound the second term, note that

|􏽥Rπ,1(t1) −􏽥Rπ,1(t′1)|

≤
1
n

􏽘

1≤i1≤n

Sπ(i1)(t1) − Sπ(i1)(t′1)
􏼌
􏼌

􏼌
􏼌 + E Sπ(i1)(t1)

􏼂 􏼃
− E Sπ(i1)(t′1)

􏼂 􏼃􏼌
􏼌

􏼌
􏼌

􏼈 􏼉
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For any t1, t′1 such that |t1 − t′1| < 1/bn,

sup
|t1−t′1|<1/bn

1
n

􏽘

1≤i1≤n

Sπ(i1)(t1) −Sπ(i1)(t′1)
􏼌
􏼌

􏼌
􏼌

≤ CK sup
|t1−t′1|<1/bn

1
n

􏽘

1≤i1≤n

1
Nπ(i1)

􏽘Nπ(i1)

j1=1

Khπ(i1)
(Tπ(i1)j1 − t1) − Khπ(i1)

(Tπ(i1)j1 − t′1)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

􏽮

+
Tπ(i1)j1 − t1

hπ(i1)

􏼒 􏼓p1

−
Tπ(i1)j1 − t′1

hπ(i1)

􏼒 􏼓p1
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌

􏼛

≤ C′K
1
bn

1
min{h2

x, h2
y}
→0

(17) 

where CK, C′K are constants that depend on K. Similarly, we can show that

sup
|t1−t′1|<1/bn

1
n

􏽘

1≤i1≤n

E[Sπ(i1)(t1)] −E[Sπ(i1)(t′1)]
􏼌
􏼌

􏼌
􏼌≤ C′K

1
bn

1
min{h2

x, h2
y}
→0 

By similarly arguments as in the proof of Lemma 2 (Zhang & Wang, 2016), we can 
show that if M is large enough

P sup
t1∈χ(bn)

􏽥Rπ,1(t1)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌> Man

􏼠 􏼡

≤ 2
max1≤i≤n+m N−1

i

n

􏼒 􏼓M−CK,T−2

→0 (18) 

where CK,T is a constant that depends on K and Tx, Ty.
(ii) The result follows from the fact that the upper bounds in (17) and (18) hold 

uniformly for all permutations in Pn+m.                                                  □

Next, we resume the proof of Theorem 2. For any 1 ≤ i1 ≠ i2 ≤ n + m, we set

􏽥T(t1, t2) = E T Π(i1),Π(i2)
􏼂 􏼃

and 􏽥G(t1, t2) = E ZΠ(i1),Π(i2)
􏼂 􏼃

By symmetry of the kernel K, E[U p1p2
Π,I ] = 0 if p1 = 1 or p2 = 1. Consequently, by Lemmas 2 and 3, if 

p1 = 1 or p2 = 1,

U p1p2
Π,I (t1, t2)

􏼍
􏼍
􏼍

􏼍
􏼍
􏼍

2
=op(1) and sup

t1,t2

U p1p2
Π,I (t1, t2)

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 = op(1) 

Otherwise, supt1,t2
|U p1p2

Π,I (t1, t2)| would converge to a positive constant in probability. This also 

implies that the denominator of 􏽢GΠ,I(t1, t2) is bounded away from 0 with high probability. Thus,

∫∫ 􏽢GΠ,I(t1, t2) −
􏽥G(t1, t2)
􏽥T(t1, t2)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
dt1 dt2

= Op ∫∫ |U0,0
Π,I(t1, t2) −􏽥T(t1, t2)| dt1 dt2+ ∫∫ V0,0

Π,I(t1, t2) − 􏽥G(t1, t2)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌dt1 dt2

􏼐

+ ∫∫ |U1,0
Π,I(t1, t2)V1,0

Π,I(t1, t2)|dt1 dt2+ ∫∫ |U0,1
Π,I(t1, t2)V1,0

Π,I(t1, t2)| dt1 dt2

+ ∫∫ |U1,0
Π,I(t1, t2)V0,1

Π,I(t1, t2)|dt1 dt2+ ∫∫ |U0,1
Π,I(t1, t2)V0,1

Π,I(t1, t2)| dt1 dt2

􏼑

= Op U0,0
Π,I −􏽥T

􏼍
􏼍
􏼍

􏼍
􏼍
􏼍

2
+ V0,0

Π,I − 􏽥G
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍

2
+ U1,0

Π,I

􏼍
􏼍
􏼍

􏼍
􏼍
􏼍

2
+ U0,1

Π,I

􏼍
􏼍
􏼍

􏼍
􏼍
􏼍

2

􏼐 􏼑

= Op sup
π∈Pn+m

�������������

1
n2

􏽘n

i1=1

ϕπ(i1)

􏽶
􏽵
􏽵
􏽴 + sup

π∈Pn+m

����������������

1
m2

􏽘n+m

i2=n+1

ϕπ(i2)

􏽶
􏽵
􏽵
􏽴

⎛

⎝

⎞

⎠
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which entails that

MED(Π · Z)
􏼌
􏼌

􏼌
􏼌 ≤ ∫10 2 􏽥GΠ,1(t, t) −

􏽥G(t, t)
􏽥T(t, t)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

+ 􏽥GΠ,2(t, t) −
􏽥G(t, t)
􏽥T(t, t)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

+ 􏽥GΠ,3(t, t) −
􏽥G(t, t)
􏽥T(t, t)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
dt

= Op sup
π∈Pn+m

�������������

1
n2

􏽘n

i1=1

ϕπ(i1)

􏽶
􏽵
􏽵
􏽴 + sup

π∈Pn+m

����������������

1
m2

􏽘n+m

i2=n+1

ϕπ(i2)

􏽶
􏽵
􏽵
􏽴

⎛

⎝

⎞

⎠

5.3 Proof of Theorem 3
Under HA, set c = MED(X, Y) ≥ 0. By Theorems 1 and 2,

PHA
􏽢p ≤ α
( 􏼁

≥ PHA |MEDn(Z) − c| < c/2, |MEDn(Πl · Z)| < c/2, l = 1, . . ., S − 1
( 􏼁

≥ 1 − PHA |MEDn(Z) − c| ≥ c/2
( 􏼁

+ (S − 1)PHA |MEDn(Πl · Z)| ≥ c/2
( 􏼁􏼈 􏼉

→ 1 

5.4 Proof of Corollary 2
Under Assumptions 1, 2, and 4, the result can be shown by adopting similar arguments as in the 
proof of Theorem 1 by replacing zi1j1 , zi2j2 , G1, G2, 􏽢G1, 􏽢G2 with 􏽥zi1 j1 ,􏽥zi2j2 , H1, H2, 􏽢H1, 􏽢H2, 
respectively.

5.5 Proof of Theorem 4

Proof. Denote the density functions of X(t) + e1, Y(t) + e2, X(t), Y(t), e1, e2 as 􏽥fx( · |t), 
􏽥fy( · |t), fx( · |t), fy( · |t), η1(·), and η2(·), respectively. Under Assumption 5, we 
have η1 = η2. Suppose X(t) + e1 =d Y(t) + e2, then for all a ∈ R ⊈

∫∞−∞ fx(u|t)η1(a − u) du =􏽥fx(a|t) =􏽥fy(a|t)= ∫∞−∞ fy(u|t)η2(a − u) du 

which entails that fx(u|t) − fy(u|t) is orthogonal to la(u) = η1(a − u) for any a ∈ R. 
By Wiener’s Tauberian theorem, the span of {la(u) = η1(a − u) | a ∈ R} forms a 
dense subset of L2(R). Thus, we can conclude that fx(u|t) − fy(u|t) = 0.  □

5.6 Proof of Corollary 3

Proof. Under Assumptions 1, 3, and 4, we can adopt similar arguments in Section 5.2 and 
show that

MEDn(Π ·􏽥Z)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 = Op sup

π∈Pn+m

������������
1
n2

􏽘n

i=1

ϕπ(i)

􏽳

+ sup
π∈Pn+m

��������������

1
m2

􏽘n+m

i=n+1

ϕπ(i)

􏽶
􏽵
􏽵
􏽴

⎛

⎝

⎞

⎠

By Corollary 2 and Theorem 4, the result follows similarly from Theorem 3.  □
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