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Abstract 

Importance:  An artificial intelligence (AI)-based model to predict COVID-19 likelihood from 

chest x-ray (CXR) findings can serve as an important adjunct to accelerate immediate clinical 

decision making and improve clinical decision making. Despite significant efforts, many 

limitations and biases exist in previously developed AI diagnostic models for COVID-19. 

Utilizing a large set of local and international CXR images, we developed an AI model with high 

performance on temporal and external validation.  

Objective:  Investigate real-time performance of an AI-enabled COVID-19 diagnostic support 

system across a 12-hospital system.  

Design: Prospective observational study.  

Setting: Labeled frontal CXR images (samples of COVID-19 and non-COVID-19) from the M 

Health Fairview (Minnesota, USA), Valencian Region Medical ImageBank (Spain), MIMIC-

CXR, Open-I 2013 Chest X-ray Collection, GitHub COVID-19 Image Data Collection 

(International), Indiana University (Indiana, USA), and Emory University (Georgia, USA) 

Participants:  Internal (training, temporal, and real-time validation): 51,592 CXRs; Public: 

27,424 CXRs; External (Indiana University): 10,002 CXRs; External (Emory University): 2002 

CXRs 

Main Outcome and Measure: Model performance assessed via receiver operating characteristic 

(ROC), Precision-Recall curves, and F1 score. 

Results: Patients that were COVID-19 positive had significantly higher COVID-19 Diagnostic 

Scores (median .1 [IQR: 0.0-0.8] vs median 0.0 [IQR: 0.0-0.1], p < 0.001) than patients that were 

COVID-19 negative. Pre-implementation the AI-model performed well on temporal validation 

(AUROC 0.8) and external validation (AUROC 0.76 at Indiana U, AUROC 0.72 at Emory U). 



 

The model was noted to have unrealistic performance (AUROC > 0.95) using publicly available 

databases. Real-time model performance was unchanged over 19 weeks of implementation 

(AUROC 0.70).  On subgroup analysis, the model had improved discrimination for patients with 

“severe” as compared to “mild or moderate” disease, p < 0.001. Model performance was highest 

in Asians and lowest in whites and similar between males and females.  

Conclusions and Relevance: AI-based diagnostic tools may serve as an adjunct, but not 

replacement, for clinical decision support of COVID-19 diagnosis, which largely hinges on 

exposure history, signs, and symptoms. While AI-based tools have not yet reached full 

diagnostic potential in COVID-19, they may still offer valuable information to clinicians taken 

into consideration along with clinical signs and symptoms. 

  



 

Manuscript: 

Introduction 

The World Health Organization designated COVID-19 a global pandemic on March 11, 

2020.1 The rapid and sustained transmission of the virus has overwhelmed healthcare systems 

worldwide, resulting in critical equipment and supply shortages.2 The absence of curative 

treatment early in the pandemic, gives rise to rapid identification and supportive treatment of 

infected individuals as a key tool in curtailing COVID-19. 

The mainstay of COVID-19 diagnosis is nucleic acid testing of upper or lower respiratory 

tract swab specimens using reverse transcription polymerase chain reaction (RT-PCR).3 Early in 

the pandemic, RT-PCR remained a bottleneck and delay for COVID-19 diagnosis with studies 

reporting clinical sensitivity of approximately 70%.4  Efforts have attempted to develop AI 

diagnostic models of COVID-19. A recent review identified 62 AI models for COVID-19 from 

biomedical imaging.5,6 However, significant limitations exist in AI models published to date 

including: the lack of external validation6, lack of equity analysis by race and gender, lack of 

reporting patient demographics, inadequate number of images, lack of reporting of real-time 

performance, and the utilization of “unrealistic” training datasets7 which fail to represent the 

environment where the model will ultimately be deployed.5,8  

In November, 2020 the University of Minnesota, was one of the first in the world to study 

the real-time performance of an AI diagnostic model for COVID-19 implemented as a clinical 

decision support system across 12 hospitals in the state of Minnesota. This study represents a 

pre-planned prospective observational study to investigate real-time performance, model equity, 

and model drift over a 19-week period post-implementation.  

 



 

Methods 

 

Model Development (Training): 

M Health Fairview Model Development (Training) Dataset:  

We obtained 2,220 CXRs from patients with PCR confirmed COVID-19 (taken either 2 weeks 

prior to COVID-19 diagnosis or during a COVID-19 associated hospitalization) and 36,288 non-

COVID-19 CXRs from M Health Fairview for model training and optimization. All the COVID-

19 positive case CXRs were obtained between March 2nd, 2020 to June 30th, 2020, and the 

negative controls were obtained between October 25th, 2016 to March 3rd, 2020. All CXRs were 

taken in Minnesota, U.S.A at an M Health Fairview clinic or hospital. Patient demographics for 

the training dataset are provided in Table 1.  

 

Publicly Available COVID-19 Datasets:  

COVID-19 positive cases were collected from two open-source COVID-19 databases, namely 

BIMCV COVID-19+9 and COVID Chest X-ray Github .10 BIMCV COVID+ contains 2261 

CXRs (after excluding CT images) collected from 11 hospitals from the Valencian Region, 

Spain, and the positive cases were collected between February 26th and April 18th, 2020. We 

included all frontal X-Rays (Images with “view” column attribute values: "PA" or "AP" or "AP 

Supine" or "AP semi erect" in the Github metadata) with "COVID-19" or "COVID-19, ARDS" 

or "SARS" labels from the COVID Chest X-Ray Github. In total, we have 504 images from this 

database. The COVID-19 MIDRC was not utilized as our model was already developed and 

temporally validated by August, 2020.11  

 



 

Publicly Available non-COVID-19 Datasets:  

For COVID-19 negative cases, we collected cases and frontal images combined from: (1) 2011 – 

2016 MIMIC-CXR12 (random sample of 23,611 images); and (2) Open-I 2013 IU Chest X-Ray 

Collection13 (random sample of 3,814 images). Images in MIMIC-CXR and Open-I sets are 

dated prior to December 2019 resulting in 27,424 images of patients with no particular medical 

status except the absence of COVID-19. Patient demographic information in publicly available 

datasets was not available as it was removed by the originating institutions to facilitate patient 

de-identification.  

 

Model Development 

For model development, 38,508 (2,220 positives and 36,288 negatives) M Health Fairview CXR 

were used for training. Model training was supplemented to maximize model generalizability 

using publicly available (9,592 total with a positive: negative ratio of 1:16) images of COVID-19 

positive and negative patients. In the training set, 444 positives and 7,257 negatives were held 

out for tuning the deep learning models hyperparameters and the rest were used to train the 

models. Our main model pipeline consisted of lung segmentation, outlier detection, and feature 

extraction/classification part, as illustrated in Figure 2.  

 

Lung Segmentation 

To ensure the AI system relies on medically relevant pulmonary pathology (and minimize AI 

‘shortcuts’6) we performed lung segmentation to focus learning on lung parenchyma, where the 

COVID-19 radiomic features are located (Figure 1).14-17 Segmentation was performed using a 

modified (adopted from Kaggle18) U-net model19 which is widely used for biomedical image 



 

segmentation. The segmentation model was trained using three public lung segmentation 

datasets: Montgomery20, HIN21, and Japanese Society of Radiological Technology Digital Image 

Database22, which provided manual segmentation masks (Figure 1).  

 

Outlier Detection  

Practical X-rays have large variations and some of the extreme cases, (e.g., caused by high/low 

exposure, skewed positions, wrong position attributes) can substantially contaminate the model 

training or prediction process. Rather than overburden the model (robustness is a grand challenge 

for modern AI23), we chose to isolate these extreme and infrequent cases for human screening 

(Figure 2). We implemented two sequential procedures for this. First, before lung segmentation, 

we trained a conditional Generative Adversarial Network (GAN)24 on the training CXRs to 

separate potential outliers. The class labels were fed into the conditional GAN as the 

“conditional” information. After training, any samples that were assigned scores lower than 0.1 

by the discriminator with corresponding both positive and negative “conditional” information 

were declared as outliers. Second, on the remaining samples, after lung segmentation, we 

calculated the ratio of the area of the predicted lung mask and the area of the whole X-ray image. 

Any CXR with a ratio below 0.1 or above 0.9 would be removed as outliers. The two procedures 

rejected about 10% of all input images, which were visually confirmed as outliers. An example 

of an outlier is shown in Figure 2 where a lateral CXR was inappropriately labeled as frontal.  

 

Feature Extraction and Classification 

We used the pre-trained DenseNet-12125, which was trained on the ImageNet dataset (the largest 

natural image benchmark dataset)26, and further trained the model using our CXR datasets to 



 

fine-tune it to diagnose COVID-19. The difference between the prediction and the target (1 for 

positive and 0 for negative) was measured using the standard cross-entropy loss (Figure 2). The 

network was implemented using the deep learning package PyTorch 1.5.0.27 Our data were 

imbalanced between the positive cases and negative controls, reflecting the intrinsically biased 

distribution of COVID-19 cases in the population. To counter the adverse effects of the 

imbalance on learning, we set our training objective as the maximum of averaged loss over the 

positive and the negative cases.  

 

Pre-implementation Validation: 

M Health Fairview Temporal Validation Dataset:  

Prior to implementation, the model underwent multiple temporal and external validations. To 

simulate real-time performance, temporal validation included all adult CXRs within the M 

Health Fairview system obtained between July 1, 2020 – July 30, 2020. To investigate model 

performance under differing COVID-19 prevalence, varying ratios of case imbalance were 

evaluated using a ratio of 1:1 (50% positive: negative) to 1:20 (4.8%). The area under the 

precision-recall curve (AUPRC) was calculated for each ratio. During this prospective period, 

5,228 CXRs were obtained from patients that tested negative for COVID-19 and 1,777 from 

patients with PCR confirmed COVID-19 (prevalence rate of 25.4%). Patient demographics for 

the temporal validation dataset are provided in Table 1. 

 

Indiana University (IU) External Validation Datasets: 

External validation included 10,002 CXRs of patients aged 18 years and older within the 15 

hospital IU Health system. Emergency Department CXRs from 7,001 patients (Date: February 1, 



 

2019-July 15, 2019) that were negative for COVID-19 and 3,001 patients (Date: March 13, 

2020-November 7, 2020) that were confirmed PCR positive for COVID-19 (prevalence rate of 

30%). Patient demographics are provided in Table 1. 

 

Emory External Validation Datasets: 

External validation included 2,002 CXRs of patients age 18 years and older within the Emory 

University hospital system collected between March 1st, 2020 and July 30th, 2020. COVID-19 

positive and negative CXRs were equally distributed.  Patient demographics are provided in 

Table 1. 

 

Model Implementation:  

In collaboration with Epic Cognitive Computing, the AI model was integrated into the M Health 

Fairview production instance of Epic on November 10, 2020. Portable and non-portable chest x-

rays are “pulled” from picture archiving and communication system (PACS) leveraging Epic’s 

Interconnect via the Epic Cognitive Computing and Cloud Foundation platform. The AI model 

was deployed in Epic’s Cloud Foundation where the algorithm calculated the COVID-19 

Diagnostic AI score. The score was fed back into Interconnect and pushed into the M Health 

Fairview Epic as a discrete data field for investigational purposes (Supplemental Figure 1). A 

reporting workbench report was generated to facilitate score evaluation. A manual chart review 

was performed on all records to confirm the accuracy of COVID-19 status. All patients with a 

PCR confirmed COVID-19 diagnosis within 4 weeks of the CXR were considered PCR positive.   

 

Prospective Observational Study of Real-World Performance: 



 

M Health Fairview Real-Time Validation Dataset (Week 1 - Pilot):  

The CXR AI model was implemented into the M Health Fairview Epic Electronic Health Record 

for investigative purposes on November 10, 2020. The AI model evaluated all ED and inpatient 

CXRs in adults age 18 years or older taken between November 11 – November 16, 2020 (Week 

1) at all M Health Fairview hospitals (n = 12) in real-time with a COVID-19 status of unknown 

or negative. A total of 683 images met the above criteria. During this time period there were 

CXRs from 544 patients that were negative for COVID-19 and 139 patients that were ultimately 

confirmed PCR positive for COVID-19 for a prevalence rate of 20.4%.  

 

Week 8-19 Real-Time Post-Implementation Drift Evaluation / Validation: 

An investigation for model drift was conducted for all CXRs that triggered the clinical decision 

support (CDS) in patients with unknown or negative COVID-19 status between 1/1/21 – 3/18/21.  

A total of 5335 images met the above criteria. During this period there were CXRs from 5077 

patients that were negative for COVID-19 and 258 patients that were confirmed PCR positive for 

COVID-19 (prevalence of 4.8%). Patient demographics are provided in Table 1.  

 

Power analysis and Statistical Considerations: 

We set a minimum threshold to achieve 80% power or better with a predetermined minimum 

sample size of 5000 AI predictions. The sample size needed for adequate power will vary based 

on the prevalence.28 Assuming a 5% prevalence rate, 3,980 AI predictions would be needed for 

investigation with 80.4% power. Thus with 5,335 AI predictions and a prevalence rate of 4.8%, 

our study achieved our minimum threshold of 80% power.  



 

Model performance was evaluated in real-time across the 12 hospital M Health Fairview 

system. The COVID-19 Diagnostic Score from the model ranged from 0 to 1, indicating the 

likelihood of COVID-19. Wilcoxon rank-sum (2 groups) and Kruskal-Wallis (3 groups) tests 

were used to evaluate differences in the COVID-19 Diagnostic Score and COVID-19 positivity. 

The model was evaluated during two time periods: (1) 1 week early-implementation pilot and (2) 

between 8-19 weeks post implementation to assess for model performance, model drift and 

model equity. To evaluate model drift, images were split into 4 time quartiles, each with 1334 

images (Quartile 1: 1/1/21-1/11/21; Quartile 2: 1/12/21-1/20/21; Quartile 3: 1/21/21-2/1/21; and 

Quartile 4: 2/2/21-3/18/21). Area under the receiver operating characteristic curve (AUROC), 

95% confidence intervals, precision, recall, and F1 scores were calculated during each period. To 

assess equity, model performance was evaluated across race and gender when available. All 

analysis was conducted using Stata-MP Version 16 (College Station, Tx). This study was 

approved by the University of Minnesota institutional review board (STUDY 00011158). 

External validation at IU was deemed exempt by the IU IRB as all secondary data was fully de-

identified and remained within IU (STUDY 2010169012). External validation of the model at 

Emory was approved by the Emory University institutional review board (STUDY00000506).  

 

Results  

Pre-Implementation Validation: 

Temporal and Publicly Available Validation: 

To investigate how prevalence and disease severity may impact real-time model performance we 

investigated model performance pre-implementation using M Health Fairview images collected 

between July 1 – July 30, 2020. The mean AUROC and AUPRC are shown in Supplemental 



 

Table 1. A sub analysis was conducted to evaluate model performance for patients with “severe” 

disease defined as patients that required ICU admission and “moderate” disease defined as 

patients that required hospital (but not ICU) admission. Supplemental Figure 2 displays curves 

for each AUROC and AUPRC where each random subsampling result is represented by a line, 

mean AUROC and AUPRC is displayed in the bottom right or top right of the figure. 

Distribution of COVID-19 Diagnostic Scores for both positive and negative cases during the 

month of July 2020 are provided in Supplemental Figure 3.  

 

To investigate how real-time performance correlates with performance obtained using publicly 

available COVID-19 datasets, performance was investigated using a sample of publicly available 

COVID-19 CXRs. The mean AUROC and AUPRC are shown in Supplemental Table 1. 

 

External Validation: 

Models were externally validated at Indiana and Emory University (Supplemental Table 2). 

Box-and-whiskers plot of COVID-19 Diagnostic Scores for both positive and negative cases at 

both Indiana and Emory University are provided in Supplemental Figure 4. 

 

Real-time evaluation and assessment for model drift 

Patients that were COVID-19 positive had significantly higher scores (median .1 [IQR: 0.0-0.8] 

vs median 0.0 [IQR: 0.0-0.1], p < 0.001) than patients that were COVID-19 negative (Figure 3). 

Patients with “severe” COVID-19 disease had higher scores (median 0.2 [IQR: 0.0-1.0]) vs 

patients with “mild/moderate” COVID-19 disease (median 0.1 [IQR: 0.0-0.8]) vs. patients 

without COVID-19 (median 0.0 [IQR: 0.0-0.1], p < 0.001). Real-time performance during early 



 

pilot-implementation was AUROC 0.7 (95% CI 0.65-0.75) and was similar for the time period 8-

19 weeks (AUROC 0.70 [95% CI 0.66-0.73]). (Supplemental Table 3). AI model performance 

was similar across time quartiles (Quartile 1: AUROC 0.69, 95% CI 0.63-0.75; Quartile 2: 

AUROC 0.66, 95% CI 0.6-0.74; Quartile 3: AUROC 0.7, 95% CI 0.62-0.78; Quartile 4: AUROC 

0.74, 95% CI 0.65-0.83) (Table 2). Model performance peaked during the final quartile 2/2/21-

3/18/21 (AUROC 0.74, Precision 0.98, Recall 0.55, F1 score 0.7) (Table 2).  

 

Subgroup Analysis by Race and Gender 

Ethnic and gender data was available for negative and positive controls for both external 

validation at Emory University and real-time Validation at M Health Fairview. Model 

performance was evaluated by subgroup analysis in Table 3. In both datasets, the model had 

improved performance in males and non-white patients (Table 3). Performance was highest in 

Asian patients (AUROC 0.94, 95% CI 0.86-1.0).  

 

Discussion  

 This study represents a prospective observational study to investigate the real-world 

performance of an AI model for COVID-19 diagnosis based on CXR findings alone. 

Specifically, this study sought to characterize real-world performance, model drift and equity. In 

this study we identified: (1) COVID-19 CXR diagnostic models perform well for patients with 

“severe” COVID-19 (patients with a high COVID-19 Diagnostic AI score); however, they fail to 

differentiate patients with “mild” COVID-19 who may present with minimal CXR findings and 

thus a low COVID-19 Diagnostic AI score. (2) We observed an AUROC of 0.7 for real-time 

performance in patients with unknown or previously negative COVID-19 status. (3) We did not 



 

observe significant model drift. (4) We observed validation using publicly available datasets 

provides unrealistic performance estimates.  

At the beginning of the COVID-19 pandemic, we and others sought to generate AI 

models to successfully predict COVID-19 from biomedical imaging.29,30 Unfortunately, 1 year 

into the pandemic, no such generalizable model in daily practice exists and few models have 

been investigated in real-time. The lack of any single model may reflect a number of reasons. 

First, it may be impossible to develop a model solely based on CXR findings alone to 

differentiate between patients with COVID-19 and non-COVID-19 diagnoses. This was an early 

hypothesis by our clinical content experts as the radiographic appearance of COVID-19 positive 

patients is heterogeneous, and may range from no or minimal observable pathology, to severe 

ARDS, and can progress and defervesce depending on the time of exposure and stage of disease. 

There may also coexist chest pathology or chronic lung disease that may be the only imaging 

finding of a newly diagnosed positive COVID-19 patient or there may be overlapping findings. 

However, the possibility that AI could differentiate these diseases based on features not seen by 

the “naked eye” promulgated efforts to test this hypothesis. Second, it is possible that adequate 

training data has not yet been collected to train such a generalizable model. Despite our model, 

which utilized approximately 50,000 images both locally and internationally, we observed an 

AUROC of 0.7 on real-world validation. Another reason, it is possible that the rigorous approach 

to develop and evaluate AI models for medical imaging has not yet been defined, and there may 

be a lack of communication between AI model developers and medical researchers. For example, 

a recent review of 62 AI models for COVID-19 from biomedical imaging found significant 

limitations in AI models published to date and nearly all have been designated as having high 

bias.5 These biases include: the lack of external validation, lack of equity analysis by race and 



 

gender, lack of reporting patient demographics, inadequate number of images, lack of reporting 

of real-time performance, and the utilization of “unrealistic” training datasets which fail to 

represent the environment where the model will ultimately be deployed. Finally, albeit unlikely, 

it is possible that false positives by AI are actually patients with COVID-19 that had a negative 

PCR test despite being COVID-19 positive. The current sensitivity of rapid PCR testing varies 

significantly based on the viral load of a patient. Patients with viral load cycle threshold (Ct) 

levels < 25 have a sensitivity of 90%; however, in patients with lower viral loads (higher Ct) 

PCR sensitivity drops to 76%.31   

A question raised by our findings is what is the performance bar for AI models in clinical 

decision diagnostic support? Does a model with an AUROC of 0.7 or 0.8 not add additional 

information that the clinician can integrate into decision making? Similar to how an elevated 

white blood cell count (AUROC 0.70-0.7532,33) in a patient with right lower quadrant tenderness 

adds diagnostic information towards a work-up for appendicitis. Our findings suggest that AI 

analysis of chest x-rays alone is not adequate to diagnose COVID-19. However, AI-enabled 

clinical decision support may add additional information, which ED providers can integrate into 

clinical decision making when developing a differential diagnosis and determining if the patient 

needs confirmatory testing and isolation for COVID-19.  

Correspondingly, what is the standardized evaluation process to assess achievement of 

the performance bar?34,35 In this study, prior to implementation we performed a temporal 

validation to simulate performance had the model been implemented live in July 2020. 

Following acceptable performance we conducted two external validations including an equity 

evaluation at one site. Following usability optimization, the model was then implemented for 

investigational use and an 8-week proactive educational campaign was initiated across our 



 

system to educate providers about this model and its investigational use. Performance was 

evaluated during a 1-week pilot immediately following implementation to ensure no significant 

performance drops as compared with pre-implementation validation. We then conducted a 

prospective observational study to investigate real-time model performance, drift, and equity.36 

We encourage model developers to implement and accurately evaluate real-world performance 

prior to overly optimistic publications.30 We also encourage exercising maximal discretion when 

interpreting or utilizing reported performance using publically available. Our model obtained 

unrealistic performance (AUROCs > 0.96) using such publicly available data. 

Currently, the need for a rapid diagnostic algorithm for COVID-19 is less urgent given 

the development and wide utilization of a rapid PCR test. However, we believe continued 

investigation into model optimization is warranted as to better inform development for future 

viral pandemics and other AI tasks. Moreover, limited resource settings may not have access to 

testing and hence imaging may be used for initial triage especially when resources are 

overwhelmed as may occur in a pandemic. Differentiation of COVID-19, which presents with 

non-specific ARDS findings is significantly harder than differentiation of other diseases 

processes such as acute pneumothorax. We observed that when the model generates a high score, 

it is typically correct in its identification of COVID-19. Given the high PPV (0.98) of PCR 

testing (and low NPV: 0.8) in COVID-19, our clinical decision support model only ran on 

patients with unknown or negative COVID-19 tests. Thus, it is possible that performance would 

be improved if the model had run on patients with known COVID-19. We observed, many 

patients with “mild” COVID-19 will have a low score thus overlapping with negative controls. 

We propose the development of a hierarchal or two-step model, which will first pass all CXRs 

through the algorithm and generate a score. In the event that patients have a low score, we 



 

propose to train a model to differentiate “mild” COVID-19 from non-COVID-19 in efforts to 

improve discrimination at the lower end of the scale. Additionally, we propose the integration of 

structured and unstructured note data into model training. For example, vital signs, lab values, 

and signs and symptoms from clinical notes may significantly improve diagnostic accuracy in 

combination with findings from radiographic models.  

A source of bias in most models is the lack of adequate analysis ensuring it performs 

similarly across different populations, specifically gender and racial groups. We and others have 

reported COVID-19 has disproportionately burdened minority populations.37,38 To ensure the 

model performed equitably, we tested the model across race and gender. Notable, the model 

performed slightly better in males and minority populations. Male gender and minority 

populations have been found to be at higher risk for severe disease.37-39 In fact, one study found 

imaging severity to be higher across minority populations compared to white.40 This may explain 

the improved performance we noted in non-white patients, as our pre-implementation model 

performance was superior for patients with “severe” vs. “moderate” COVID-19 (Supplemental 

Table 2). Importantly, the model does perform equitably and there is limited risk that it would 

further widen the disparate COVID-19 outcomes being experienced by minority populations.  

This study is not without limitations. First, our negative controls were not selected from a 

target population of suspected COVID-19 patients. We included all x-rays to model a “real-

world” environment when training the model to optimize realistic performance; however, this 

limits the potential usefulness of the model outside of the ED and early inpatient setting. Second, 

CXR findings for COVID-19 are nonspecific and overlap with a number of other infectious and 

non-infectious etiologies, which could complicate interpretation. Third, our model only ran on 

patients with unknown or negative COVID-19 status. Given the high PPV of COVID-19 PCR 



 

testing, it is unnecessary to deploy an AI model when the diagnosis is already confirmed. Thus 

performance reported was truly pragmatic; however, data does not exist as to model performance 

for patients that had a positive PCR test result prior to CXR. This study does however, 

encompass a period of pre-rapid PCR testing. Lastly, these models were trained and validated on 

fixed data and it is anticipated that the models will evolve as new data arrive. It is possible to 

modify the models to make them gradually improve over time, leveraging advances in online 

machine learning. Finally, the integration of radiometric characteristics of COVID-19 positive 

patients may further improve models.  

In conclusion, AI-based diagnostic tools may serve as an adjunct, but not replacement, 

for clinical decision support of COVID-19 diagnosis, which largely hinges on exposure history, 

signs, and symptoms. While AI-based tools have not yet reached full diagnostic potential in 

COVID-19, they may still offer valuable information to clinicians taken into consideration along 

with clinical signs and symptoms.  

  

Figures and Figure Legends: 

Figure 1: COVID-19 negative and positive images and representative lung masks.  

Legend: Representative samples of Chest X-rays for COVID-19 negative and positive patients 

shown (left) as well as their accompanying lung segmentation masks (right).  

 

Figure 2: Overview of COVID-19 Diagnostic Model Pipeline. 

 

Figure 3: COVID-19 Diagnostic AI Scores for COVID-19 positive and negative patients. 

(A) Box-and-whiskers plot of COVID-19 Diagnostic Scores (y-axis) for non-COVID-19 vs. PCR 



 

confirmed COVID-19 from real-time implementation at M Health Fairview (B) Mean initial 

COVID-19 Diagnostic Scores (y-axis) for non-COVID-19 vs PCR confirmed COVID-19 

patients that ultimately did not require ICU admission (Mild/Moderate COVID-19) vs. PCR 

confirmed COVID-19 patients that ultimately required ICU admission (Severe COVID-19). (C) 

Box-and-whiskers plots of initial COVID-19 Diagnostic Scores (y-axis) for non-COVID-19 vs. 

Mild/Moderate COVID-19 vs. Severe COVID-19.  

 

Supplemental Figure 1: Schematic of COVID-19 Diagnostic Model Implementation 

 

Supplemental Figure 2: COVID-19 CXR Diagnostic Model Temporal Validation 

 

Supplemental Figure 3: Distribution of COVID-19 Diagnostic Scores (X-axis) for patients 

with PCR confirmed positive COVID-19 (purple bars) and non-COVID-19 patients (green 

bars) during the month of July 2020, prevalence 25.4% 

 

Supplemental Figure 4: External validation COVID-19 Diagnostic AI Scores for COVID-

19 positive and negative patients. (a) Box-and-whiskers plot of COVID-19 Diagnostic Scores 

(y-axis) for non-COVID-19 vs. PCR confirmed COVID-19 from 10,002 CXR from Indiana 

University. (b) Box-and-whiskers plot of COVID-19 Diagnostic Scores (y-axis) for non-COVID-

19 vs. PCR confirmed COVID-19 from 2,002 CXR from Emory University.  
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Table 1: Distribution of training and validation datasets 

*N/A - Pilot study: interim goal for overall performance evaluation 

 COVID-19 
status 

n Age in years, 
mean(SD) 

Male % Racial 
Distribution (if 
available) 

MHFV Training Positive 2220 59.8 (16.2)  48.5% N/A 
Negative 36288 58.6 (18.6) 49.4% N/A 

Public Positive 2261 N/A N/A N/A 
Negative 27424 N/A N/A N/A 

MHFV Temporal 
Validation 

Positive 1777 61.6 (16.2) 68.6% N/A 
Negative 5228 57.5 (18.5) 31.4% N/A 

MHFV Real-
Time Week 1 
(Pilot) Validation 

Positive 139 N/A* N/A* N/A* 
Negative 544 N/A* N/A* N/A* 

MHFV Real-
Time Week 8-19 
Validation 

Positive 258 62.9 (19.4) 56.2% 67.8% white 
14.7% Black 
7.4% Asian 
10.1% other 

Negative 5077 58.9 (19.4) 47.7% 80.6% white 
9.9% Black 
3.2% Asian 
6.3% other 

Indiana U Positive 7001 62.8 (15.9) 57.3% N/A 
Negative 3001 58.8 (18.7) 48.8% N/A 

Emory U Positive 1001 62.3 (16.7) 51.5% 20.7% white 
68.5% Black 
10.8% other 

Negative 1001 60.4 (18.9) 48.4% 42.9% white 
50.4% Black 
6.7% other 



 
Table 2: Evaluation of model performance over weeks 8-19 

 
 N AUROC 95% CI Prevalence Precision Recall F1 Score 

Weeks 8-19 (1/1/21-
3/18/21)  

5335 0.696 0.66-0.73 4.8% 0.97 0.45 0.62 

Quartile 1 (1/1/21 – 
1/11/21) 

1334 0.69 0.63-0.75 7.1% 0.95 0.44 0.61 

Quartile 2 (1/12/21 – 
1/20/21) 

1334 0.66 0.60-0.74 5.0% 0.97 0.39 0.56 

Quartile 3 (1/21/21 – 
2/1/21) 

1334 0.70 0.62-0.78 3.8% 0.98 0.45 0.62 

Quartile 4 (2/2/21 – 
3/18/21) 

1333 0.74 0.65-0.83 3.5% 0.98 0.55 0.70 

        

 

 

 



 
Table 3: Evaluation for Model Equity 

 

 AUROC Emory External 
Validation (n = 2,002) 

AUROC Real-time Validation across 12 
hospitals (n = 5,335) 

Gender   
     Male 0.75 0.72 (95% CI 0.67-0.77) 
     Female 0.69 0.66 (95% CI 0.61-0.71) 
Race   
     White 0.68 0.65 (95% CI 0.61 – 0.69) 
     Black 0.71 0.72 (95% CI 0.62 – 0.81) 
     Asian (included in other) 0.94 (95% CI 0.86 – 1.0) 
     Other 0.78 0.82 (95% CI 0.71 – 0.93) 
Overall 0.72 0.70 (95% CI 0.66 – 0.73) 
 








