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In this paper, a nonlinear fractional-order chikungunya disease model that incorporates asymptomatic infectious individuals is
proposed and analyzed. The main interest of this work is to investigate the role of memory effects on the dynamics of
chikungunya. Qualitative analysis of the model’s equilibria showed that there exists a threshold quantity which governs
persistence and extinction of the disease. Model parameters were estimated based on the 2015 weekly reported cases in
Colombia. The Adams-Bashforth-Moulton method was used to numerically solve the proposed model. We investigated the
role of asymptomatic infectious patients on short- and long-term dynamics of the diseases. We also determined threshold
levels for the efficacy of preventative strategies that results in effective management of the disease. We believe that our model
can provide invaluable insights for public health authorities to predict the effect of chikungunya transmission and analyze its
underlying factors and to guide new control efforts.

1. Introduction

Emerging and reemerging diseases of vector-borne infec-
tions such as Zika virus and chikungunya pose a consider-
able public health problem worldwide [1]. Previous studies
reported that vector-borne diseases are emerging at a grow-
ing rate and bearing a disproportionate segment of all new
infectious diseases, the vast majority of them being viruses
[1, 2]. These diseases are currently associated with high mor-
tality and morbidity, which triggers immeasurable loss in
many societies. For this reason, there is growing interest
among researchers to utilize different techniques to study
the dynamics of vector-borne infections with a goal to pro-
vide useful means for policymakers to evaluate potential
ways of effectively managing these diseases [3, 4].

Although various techniques can be used to understand
the short- and long-term dynamics of vector-borne infec-
tions, mathematical modeling is now regarded as a standard
and indispensable tool for understanding the mechanisms of

interaction between host and vectors [5, 6]. Models are used
to approach questions which are too complex, inaccessible,
numerous, diverse, mutable, unique, dangerous, expensive,
big, small, slow, or fast to approach by other means [7]. In
this study, we seek to develop and analyze a mathematical
framework for understanding the dynamics of chikungunya
virus.

Chikungunya is a viral infection whose causative agent is
an alphavirus that infects humans through bites of Aedes mos-
quitoes [8]. The initial chikungunya cases were in Tanzania in
the mid-1900s [9]. The clinical indications of chikungunya
infections resemble those of dengue fever and include rashes
and high fever [9, 10]. The onset of the disease in humans is
often rapid and takes 5-7 days, and several case fatalities have
been reported [11, 12]. Over the past 50 years, numerous cases
of chikungunya reemergence have occurred in different parts
of Africa and Asia [13, 14]. The infection has presently been
established in nearly 40 countries but is endemic in Africa
where its transmission is maintained between mosquitoes,
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primates, and humans [15]. The most notable outbreak
occurred in India in 2005-2006 when theWHO approximated
1.3 million cases [16, 17].

In the last two decades, a plethora of mathematical
models have been proposed to explain and predict as well
as quantify the effectiveness ways of managing chikungunya
virus (see, for example, [8, 18–26] and references therein).
Yakob and Clements [8] constructed and analyzed a deter-
ministic mathematical model for chikungunya virus that
incorporated two infected human subpopulations desig-
nated as symptomatic and asymptomatic. Among several
outcomes, their study demonstrated the strong influence
that both the latent period of infection in humans and the
prepatent period have on the dynamics of the disease. In
[20], a spatial stochastic model was utilized to show that
perifocal vector control is capable of limiting the spread of
chikungunya. In [23], a stochastic model that incorporated
climate-based mosquito population was proposed to identify
temporal windows that have epidemic risk in the United
States (US). Among several outcomes, their work strongly
suggested that, in the event of an introduction and establish-
ment of chikungunya in the US, endemic and epidemic
regions would emerge initially, primarily defined by envi-
ronmental factors controlling annual mosquito population
cycles. In [24], a system of ordinary differential equations
was employed to investigate and understand the importance
of different model parameters on the dynamics of chikungu-
nya. In [26], a mathematical framework was proposed to
model and analyze virus mutation dynamics of chikungunya
outbreaks. Results from their study suggested that the virus
mutation dynamics could play an important role in the
transmission of chikungunya. Hence, there is a need to bet-
ter understand the mutation mechanism.

Despite these efforts, however, not much has been done
to investigate the role of memory effects on chikungunya
virus dynamics. Previous studies suggest that memory effects
are inherent in many biological phenomena and models
based on integer-order differentiation do not adequately
capture the memory effects [27, 28]. Based on this assertion,

Table 1: Description of parameters used in the model system (18).

Symbol Description Value Units

μh Natural mortality rate of humans 0.00004 day −1 [24]

1/αh Incubation period of in humans 12 (5–12) days −1 [20, 24]

c Biting rate of human by female mosquito 0.19 (0.19–0.39) days −1 [20, 24]

f h Proportion of asymptomatic patients 0.1 (0.1–0.3) [20]

1/γh Infectious period for asymptomatic patients 10 (7–10) days −1 [20]

1/σh Infectious period for symptomatic patients 7 (7–10) days −1 [20, 24]

ϕ The number of mosquitoes per individuals 3 Fitting

ηh Reduction of infectivity from asymptomatic patients to susceptible mosquito 0.2 (0–1.0) Fitting

εh Efficacy of preventative strategies 0.3 [0–1] Fitting

βh Probability of infection to be transmitted from humans to mosquito per bite 0.9 (0.8–1) Fitting

βv Probability of infection to be transmitted from an infectious to a susceptible human per bite 0.244 (0.06–0.244) [24, 46]

1/μv Life expectancy of mosquitoes 30 (4–30) day −1 [19, 20]

1/αv Incubation of mosquitoes 3 (3–7) day −1 [24, 46]

R0 Basic reproduction number 1.5–7 [20]
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Figure 1: Flow chart for chikungunya disease transmission.
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Figure 2: The root-mean-square error (RMSE) of the model
estimation for different derivative orders. The minimum error
estimation is obtained for θ = 0:640, and it corresponds to RMSE
= 2:08 × 10−7.

2 Computational and Mathematical Methods in Medicine



fractional-order calculus has been widely and extensively
used by several researchers recently, to investigate the role
of memory effects in different diseases [29–33]. The frac-

tional derivative has several definitions such as those derived
from Riemann-Liouville, Caputo, Liouville, Weyl, Riesz,
Grünwald-Litnikov, Marchaud and Hifler, Caputo-Fabri-
zio-Caputo, Atanga-Baleanu, Atanga-beta derivative, M

-fractional derivative, conformable derivative, Atangana-
Koca, Atanga-Gomez, and variable-order and fractal-
fractional idea [34, 35].

Motivated by the above-mentioned works, we derive a
fractional-order model for chikungunya virus based on the
Caputo derivative. The choice of using the Caputo derivative
is also aided by the fact that the Caputo derivative for a given
function which is constant is zero. Thus, the Caputo opera-
tor computes an ordinary differential equation, followed by a
fractional integral to obtain the desired order of fractional
derivative [36]. Most importantly, the Caputo fractional
derivative allows the use of local initial conditions to be
included in the derivation of the model [33, 36].

The remaining part of this paper is organized as follows:
Section 2 contains some few basic definitions on fractional
calculus. These definitions will be utilized to establish several
important results. In Section 3, we propose and qualitatively
analyze a fractional-order chikungunya virus model. In par-
ticular, we computed the reproduction number and demon-
strated that it is an important threshold quantity for disease
persistence and extinction. Section 4 contains numerical
illustrations and discussions. The paper is concluded in Sec-
tion 5

2. Preliminaries on Fractional Calculus

Throughout the paper, we use the Caputo fractional-order
derivatives because the initial conditions of fractional differ-
ential equations with Caputo derivative take on the same
form as that of the integer-order ones, which have received
more attention in modeling and analysis of many real-
world phenomena despite their inability to capture memory
effects, which are inherent in these phenomena. In this sec-
tion, we will present some essential definitions and lemmas
that will be utilized to determine the dynamical behavior of
the proposed model.

Definition 1 (see [37]). The Riemann-Liouville fractional
integral operator of order θ of a continuous function f : ½t0,
+∞Þ⟶ℝ is defined as

Iθ f tð Þ = 1
Γ θð Þ

ðt
0
t − sð Þθ−1 f sð Þds, ð1Þ

where Γð·Þ is the gamma function and is defined by ΓðzÞ =Ð∞
0 e−t tz−1dt and θ > 0:

Definition 2 (see [37]). The Caputo fractional derivative of
order θ for a function f ∈ Cnð½t0,+∞Þ,ℝÞ is defined by

c
t0
Dθ
t f tð Þ = 1

Γ n − θð Þ
ðt
t0

f nð Þ sð Þ
t − sð Þθ−n+1

ds, ð2Þ

where t ≥ t0 and n is a positive integer such that n − 1 < θ
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Figure 3: The estimation of the fractional-order model with θ =
0:64 with RMSE = 2:08 × 10−7 and R0 = 1:53.
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Figure 4: Simulation of residuals against predicted values of
chikungunya cases in Colombia for the model system (18) as
reported in [24].
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< n ∈ℕ: In particular, if 0 < θ < 1, then the Caputo frac-
tional derivative takes the form

c
bD

θ
t f tð Þ = 1

Γ 1 − θð Þ
ðt
t0

f ′ sð Þ
t − sð Þθ

ds: ð3Þ

Lemma 3 (see [38]). The solution to the Cauchy problem

c
t0
Dθ

t

n
x tð Þ = λx tð Þ + f tð Þ,

x að Þ = b b ∈ℝð Þ

8<
: ð4Þ

with 0 < θ < 1 and λ ∈ℝ has the form

x tð Þ = bEθ λ t − að Þθ
h i

+
ðt
a
t − sð Þθ−1Eθ,θ λ t − sð Þθ

h i
f sð Þds,

ð5Þ

while the solution to the problem

c
t0
Dθ
t

n
x tð Þ = λx tð Þ,

x að Þ = b b ∈ℝð Þ

8<
: ð6Þ
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Figure 6: Effects of varying (a) mosquito feeding (biting) rate, c on R0; (b) the efficacy of preventative strategies, ε on R0; (c) both ε and c on
R0.
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is given by

x tð Þ = bEθ λ t − að Þθ
h i

, ð7Þ

where Eθð·Þ is the Mittag-Leffler function and defined by

Eθ zð Þ = 〠
∞

k=0

zk

Γ θk + 1ð Þ , θ > 0, z ∈ℂ: ð8Þ

Lemma 4 (see [39]). Let uðtÞ be a continuous function on ½
t0, +∞Þ and satisfying

c
t0
Dθ
t

n
u tð Þ = −λu tð Þ + μ, u t0ð Þ = ut0 , ð9Þ

with 0 < θ < 1, ðλ, μÞ ∈ℝ2, and λ ≠ 0, and t0 ≥ 0 is the initial

time. Then,

u tð Þ ≤ ut0 −
μ

λ

� �
Eθ −λ t − t0ð Þθ
h i

+ μ

λ
: ð10Þ

Lemma 5 (see [40]). Let xðtÞ be a continuous and differentia-
ble function with xðtÞ ∈ℝ+ . Then, for any time instant t ≥ t0
, one has

c
t0
Dθ
t x tð Þ − x∗ − x∗ ln x tð Þ

x∗

� �
≤ 1 −

x∗

x tð Þ
� �c

t0

Dθ
t x tð Þ, x∗ ∈ℝ+,∀θ ∈ 0, 1ð Þ:

ð11Þ

3. Model Formulation and Analytical Results

3.1. Model Formulation. Owing to the merits of fractional
derivatives (discussed in Introduction) in modeling real-world
problems in comparison to integer ordinary differential
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Figure 7: Effects of varying (a) mosquito mortality rate, μv on R0, and (b) the number of mosquitoes per individuals, ϕ on R0:
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Figure 8: Effects of varying (a) average infectious period for symptomatic patients, 1/σh on R0, and (b) the probability of infection to be
transmitted from an infectious to a susceptible human per bite, βv on R0.
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equations, in this section, we propose a fractional-order model
for chikungunya infection. The proposed model (12) is based
on the Caputo fractional operator which is known to be the most
suitable for modeling biological and physical phenomena [36].
The proposed model is governed by the following assumptions:

(i) The total populations of humans NhðtÞ are subdi-
vided into classes of susceptible ShðtÞ, exposed Ehð
tÞ, asymptomatic infectious individuals AhðtÞ,

symptomatic infectious individuals IhðtÞ, and
humans who have recovered from infection RhðtÞ.
The total vector population NvðtÞ is subdivided into
compartments of susceptible SvðtÞ, exposed EvðtÞ,
and infectious IvðtÞ: Once infected, vectors are
assumed to remain infectious for their entire life
span. Throughout this paper, we will use the sub-
scripts h and v to represent the human and vector
population, respectively
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Figure 9: Dynamical solutions of model (18) with different order derivatives. The solutions were obtained upon setting ε = 0:6 giving R0
= 0:8722. Overall, we can note that as the order of the derivative approaches unity, then time taken by model solutions to converge to
the unique DFE equilibrium increases.
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Figure 10: Dynamical solutions of model (18) with different order derivatives. The solutions were obtained upon setting ε = 0:1 giving
R0 = 1:9625. Overall, we observe that when the derivative order θ is reduced from 1, the memory effect of the system increases, and as a
result, the infection grows slowly and the number of infected vectors and host increases over time.
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Figure 11: Continued.
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(ii) Disease transmission is assumed to occur solely
when there is interaction between the host and vec-
tor. Thus, all new recruits in the both the host and
vector are assumed to be susceptible to infection.
In most cases, chikungunya disease does not lead
to death, but its symptoms can be severe and dis-
abling [41]. Based on this assertion, we assumed a
constant size population in both the host and vector
with a recruitment and non-disease-related mortal-
ity rate modeled by μ j with j = h, v: Further, new
recruits are assumed susceptible and their recruit-
ment rate is proportional to the population and is
given by μjN j: Meanwhile, we assume that when-
ever there is effective contact between a susceptible
individual and an infectious vector, disease trans-
mission will occur at rate βv: Similarly, let βh be
the transmission rate of the disease from a infec-
tious human to a susceptible vector whenever there
is effective contact. Asymptomatic infectious indi-
viduals are assumed to have less parasite load com-
pared to symptomatic infectious individuals. To
account for this aspect, in our model formulation,
we introduce a factor ð1 − ηhÞ to model the reduc-
tion of infectivity of the asymptomatic individuals

(iii) Although there is no vaccine to prevent chikungu-
nya virus infection, humans can minimize chances
of contracting the infections through a number of
strategies such as the use of insect repellent, wearing
of long-sleeved shirts and pants, and treating cloth-
ing and gear. Let 1 − εh model the effects of preven-
tative strategies utilized by humans to minimize
chances of contracting the infection (naturally or
through treatment)

(iv) Exposed humans are assumed to incubate the infec-
tion for 1/αh days after which a proportion f h
become asymptomatic infectious patients and the
remainder, ð1 − f hÞ, become symptomatic infectious
patients. The average infectious period of asymp-
tomatic infectious individuals is modeled by 1/γh,
and symptomatic infectious individuals are
assumed to be infectious for an average period of 1
/σh days

(v) Exposed vectors incubate the disease for 1/αv days
after which they become infectious. Once infected,
vectors are assumed to remain infectious for their
entire life span

Based on the above assumptions, the proposed model
(12) is summarized in Figure 1 and akes the following form:

c
bD

θ
t Sh tð Þ = μhNh tð Þ − 1 − εhð ÞβvcIv tð Þ

Nh tð Þ Sh tð Þ − μhSh tð Þ,

c
bD

θ
t Eh tð Þ = 1 − εhð ÞβvcIv tð Þ

Nh tð Þ Sh tð Þ − αh + μhð ÞEh tð Þ,

c
bD

θ
t Ah tð Þ = f hαhEh tð Þ − μh + γhð ÞAh tð Þ,

c
bD

θ
t Ih tð Þ = 1 − f hð ÞαhEh tð Þ − μh + σhð ÞIh tð Þ,

c
bD

θRh tð Þ = γhAh tð Þ + σhIh tð Þ − μhRh tð Þ,
c
bD

θ
t Sv tð Þ = μvNv tð Þ − 1 − εhð Þβhc Ih tð Þ + 1 − ηhð ÞAh tð Þ½ �

Nh tð Þ Sv tð Þ − μvSv tð Þ,

c
bD

θ
t Ev tð Þ = 1 − εhð Þβhc Ih tð Þ + 1 − ηhð ÞAh tð Þ½ �

Nh tð Þ Sv tð Þ − αv + μvð ÞEv tð Þ,

c
bD

θ
t Iv tð Þ = αvEv tð Þ − μvIv tð Þ,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð12Þ
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Figure 11: Numerical results for different values of f h (proportion of individuals who become asymptomatic patients upon the completion
of the incubation period) over time with θ = 0:64.
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Figure 12: Numerical results showing the effects of varying εh on long-term dynamics of the disease.
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where θ ∈ ð0, 1� is the order of the fractional derivative.
Model (12) is subject to the initial conditions:

Sj 0ð Þ = Sj0,
Ej 0ð Þ = Ej0,
Ah 0ð Þ = Ah0,
I j 0ð Þ = I j0,
Rh 0ð Þ = Rh0,

ð13Þ

for j = h, v. By adding all the equations that govern the
dynamics of the disease in the host, one can observed that
the human population is assumed to be constant. Similarly,
by adding all the equations for the vector population, one
can also observe that the vector population is assumed to
be constant. Based on this, we can consider normalized pop-
ulations for both the vector and host. Let

sj tð Þ =
Sj tð Þ
Nj tð Þ

,

ej tð Þ =
Ej tð Þ
Nj tð Þ

,

ij tð Þ =
I j tð Þ
Nj tð Þ

,

ah tð Þ = AhtÞ
Nh tð Þ ,

rh tð Þ = Rh tð Þ
Nh tð Þ ,

ϕ = Nv tð Þ
Nh tð Þ :

ð14Þ

Using the definitions in (18), the chikungunya model
with normalized populations is given as follows:

c
bD

θ
t sh tð Þ = μh − 1 − εhð Þβvϕcivsh − μhsh,

c
bD

θ
t eh tð Þ = 1 − εhð Þβvϕcivsh −m1eh,

c
bD

θ
t ah tð Þ = f hαheh −m2ah,

c
bD

θ
t ih tð Þ = 1 − f hð Þαheh −m3ih,

c
bD

θrh tð Þ = γhah + σhih − μhrh,
c
bD

θ
t sv tð Þ = μv − 1 − εhð Þβhc ih + 1 − ηhð Þah½ �sv − μvsv ,

c
bD

θ
t ev tð Þ = 1 − εð Þβhc ih + 1 − ηhð Þah½ �sv −m4ev,

c
bD

θ
t iv tð Þ = αvev − μviv,

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;
ð15Þ

with

m1 = αh + μhð Þ,
m2 = μh + γhð Þ,
m3 = μh + σhð Þ,
m4 = αv + μvð Þ,

ð16Þ

subject to the initial conditions

sj 0ð Þ = sj0,
ej 0ð Þ = ej0,
ah 0ð Þ = aj0,
ij 0ð Þ = ij0,
rh 0ð Þ = rh0,

ð17Þ

for j = h, v. Since the variable rhðtÞ does not appear in any
other equations of system (12), it suffices to analyze the
dynamics of chikungunya virus infection from the following
reduced system:

c
bD

θ
t sh tð Þ = μh − 1 − εhð Þβvϕcivsh − μhsh,

c
bD

θ
t eh tð Þ = 1 − εhð Þβvϕcivsh −m1eh,

c
bD

θ
t ah tð Þ = f hαheh −m2ah,

c
bD

θ
t ih tð Þ = 1 − f hð Þαheh −m3ih,

c
bD

θ
t sv tð Þ = μv − 1 − εð Þβhc ih + 1 − ηhð Þahð Þsv − μvsv ,

c
bD

θ
t ev = 1 − εð Þβhc ih + 1 − ηhð Þahð Þsv −m4ev ,

c
bD

θ
t iv tð Þ = αvev − μviv:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;
ð18Þ

3.2. Positivity and Boundedness of Model Solutions

Theorem 6. The fractional order (18) has a unique solution,
which remains in ℝ7 , and the closed set

Ω =
sh, eh, ah, ih
sv, ev, iv

 !
∈ℝ7

+

sh ≥ 0, eh ≥ 0, ah ≥ 0, ih ≥ 0

sh + eh + ah + ih ≤ 1

sv ≥ 0, ev ≥ 0, iv ≥ 0

sv + ev + iv ≤ 1

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð19Þ

is a positive invariant set of system (18).

Proof. We begin by demonstrating that the solution of sys-
tem (18) is always nonnegative for all t ≥ 0. Based on system
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(18), we have (for j = h, vÞ

c
t0
Dθ
t sh tð Þ

���
sj=0

= μ j ≥ 0,

c
t0
Dθ
t eh tð Þ

���
eh=0

= 1 − εhð Þβvϕcivsh ≥ 0,

c
t0
Dθ

t ah tð Þ
���
ah=0

= f hαheh ≥ 0,

c
t0
Dθ

t ih tð Þ
���
ih=0

= 1 − f hð Þαheh ≥ 0,

c
t0
Dθ
t tð Þ
���
ev=0

= 1 − εhð Þβhc ih + 1 − ηhð Þahð Þsv ≥ 0,

c
t0
Dθ
t iv tð Þ

���
iv=0

= αvev ≥ 0:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð20Þ

Results in equation (20) demonstrate that the vector field
given by the right-hand side of (18) on each coordinate
plane either is tangent to the coordinate plane or points to
the interior of ℝ7

+. Hence, the domain ℝ7
+ is a positively

invariant region. Moreover, if the initial conditions of sys-
tem (18) are nonnegative, then it follows that the corre-
sponding solutions of model (18) are nonnegative. Let
nhðtÞ = shðtÞ + ehðtÞ + ahðtÞ + ihðtÞ: By adding all the equa-
tions for the host population in (6), one gets

c
t0
Dθ
t nh tð Þ ≤ μh − μhnh: ð21Þ

It follows from Lemma 3 that (38) has a solution of the
form

nh tð Þ ≤ nh 0ð Þ − 1ð ÞEθ −μht
θ

� �
+ 1: ð22Þ

Since Eθð−μhtθÞ ≥ 0, so that when nhð0Þ ≤ 1, we have nh
ðtÞ ≤ 1. Similarly, by adding all the equations for the vector
population (with, nv = sv + ev + iv), one gets

c
t0
Dθ

t nv tð Þ = μv − μvnv: ð23Þ

Again, by Lemma 3, we have

nv tð Þ ≤ nv 0ð Þ − 1ð ÞEθ −μvt
θ

� �
+ 1: ð24Þ

By similar arguments as before, we have nvðtÞ ≤ 1. This
completes the proof.☐

3.3. Model Equilibria, Their Existence, and Global Stability.
Direct calculations of system (18) show that the proposed
model admits two equilibrium points, namely, the disease-
free equilibrium (DFE) point (denoted by E0) and the
endemic equilibrium (EE) point (denoted by E∗) point,
which are, respectively, given by E0 : ðs0h, e0h, a0h, i0h, s0v , e0v , i0vÞ
= ð1, 0, 0, 0, 1, 0, 0Þ. The endemic equilibrium (EE) point

E∗ = ðS∗h , E∗
h , I∗h , S∗v , E∗

v , I∗v Þ with

s∗h =
m4 βhð 1 − εhð Þcαhμh 1 − f hð Þm2 + 1 − ηhð Þf hm3ð Þ

H1
,

e∗h =
μvμhm2m3m4

H1
R2
0 − 1

	 

, a∗h =

μvμhm3m4 f hαh
H1

R2
0 − 1

	 

,

i∗h =
μvμhm2m4 1 − f hð Þαh

H1
R2
0 − 1

	 

, s∗v =

μvm1m2m3 βv 1 − εhð Þϕcαv + μhm4ð Þ
H2

,

e∗v =
μ2vμhm1m2m3

βv 1 − εð ÞϕcαvH2
R2
0 − 1

	 

i∗v =

μvμhm1m2m3
βv 1 − εhð ÞϕcH2

R2
0 − 1

	 

,

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð25Þ

with

H1 = βhc 1 − εhð Þαh βvϕ 1 − εhð Þcαv + μhm4ð Þ 1 − f hð Þm2 + 1 − ηð Þf hm3ð Þ,
H2 = 1 − f hð Þm2αhβh 1 − εhð Þcμh +m3 1 − ηð Þf hαh 1 − εhð Þβhμh +m1m2μv½ �,

R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βvβhϕc

2 1 − εhð Þ2αvαh
μvm1m4

1 − ηhð Þf h
m2

+ 1 − f hð Þ
m3

� �s
:

ð26Þ

In equation (25), we can note that the disease persists in
the community if R0 > 1. Precisely, the threshold quantity R0
demonstrates the power of the disease to persist or become
extinct in the host population. Thus, the expression R0
defines the basic reproduction number of the proposed
fractional-order model.

Theorem 7. If R0 < 1 , then the DFE of system ((18)) is glob-
ally asymptotically stable in Ω , otherwise it is unstable.

Proof. By considering only the infected compartments from
(18), we can write

c
bD

θ
t x = F −Vð Þx, ð27Þ

where x = ðeh, ah, ih, ev, ivÞT , with F and V defined as follows:

F =

0 0 0 0 βv 1 − εð Þθc
0 0 0 0 0
0 0 0 0 0
0 βh 1 − εð Þ 1 − ηð Þc βh 1 − εð Þc 0 0
0 0 0 0 0

2
666666664

3
777777775
,

V =

m1 0 0 0 0
−f hαh m2 0 0 0

− 1 − f hð Þαh 0 m3 0 0
0 0 0 m4 0
0 0 0 −αv μv

2
666666664

3
777777775
:

ð28Þ

One can verify by direct calculations that V−1F is a non-
negative and irreducible matrix and ρðV−1FÞ = R0. It follows
from the Perron-Frobenius theorem [42] that V−1F has
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positive left eigenvector w associated with R0, i.e.,

wV−1F = R0w: ð29Þ

Since wV−1 is a positive vector, we propose the following
Lyapunov function to study the global stability of DFE:

L tð Þ =wV−1x: ð30Þ

Differentiating L along solutions of (12) leads to

c
bD

θ
t L tð Þ = wV−1c

bD
θ
t x ≤ wV−1 F − Vð Þx = R0 − 1ð Þwx ≤ 0 if R0 ≤ 1:

ð31Þ

It can be easily verified that the largest invariant subset
of Γ where c

bD
θ
t LðtÞ = 0 is the singleton fE0g. Therefore,

by LaSalle’s invariance principle [43], E0 is globally asymp-
totically stable in Γ when R0 ≤ 1.☐

Theorem 8. If R0 > 1, then the endemic equilibrium E∗ of sys-
tem ((18)) is globally asymptotically stable in Ω:

Proof. To prove Theorem 8, we consider the following Lya-
punov functional:

U tð Þ = sh − s∗h − s∗h ln
sh
s∗h

� �
+ eh − e∗h − e∗h ln

eh
e∗h

� �

+w1 ah − a∗h − a∗h ln
ah
a∗h

� �
w2 ih − i∗h − i∗h ln

ih
i∗h

� �

+w3 sv − s∗v − s∗v ln
sv
s∗v

� �
+w3 ev − e∗v − e∗v ln

ev
e∗v

� �

+w4 iv − i∗v − i∗v ln
iv
i∗v

� �
:

ð32Þ

Let gðih, ahÞ = ih + ηhah. At the endemic equilibrium, we
have the following identities:

μh = 1 − εð Þβvϕci
∗
v s

∗
h + μhs

∗
hm1e

∗
h = 1 − εð Þβvϕci

∗
v s

∗
h ,m2a

∗
h = f hαhe

∗
h ,m3i

∗
h

= 1 − f hð Þαhe∗h , μv = 1 − εð Þβhcg i∗h , a∗hð Þs∗v − μvs
∗
v ,m4e

∗
v

= 1 − εð Þβhg i∗h , a∗hð Þs∗v , μvi∗v = αve
∗
v :

ð33Þ

Let

w1 =
βvi

∗
v s

∗
h

1 − f hð Þαhe∗h
,

w2 =
βvi

∗
v s

∗
h

f hαhe
∗
h

,

w3 =
βvi

∗
v s

∗
h

βhg i∗h , a∗hð Þs∗v
,

w4 =
βvi

∗
v s

∗
h

αve∗v
:

ð34Þ

After some algebraic manipulations, one gets

c
t0
DU tð Þ ≤ μh 2 − sh

s∗h
−
s∗h
sh

� �
+ μvw3 2 − Sv

S∗v
−
S∗v
Sv

� �

+ βvi
∗
v s

∗
h 7 − s∗h

sh
−
she

∗
h iv

s∗hehi
∗
v
−
ah
a∗h

−
eha

∗
h

e∗hah
+ eh
e∗h

−
ehi

∗
h

e∗h ih
−
ih
i∗h

�

−
s∗v
sv

+ g ih, ahð Þ
g i∗h , a∗hð Þ −

svevg i∗h , a∗hð Þ
s∗v e

∗
v g i∗h , a∗hð Þ −

evi
∗
v

e∗v iv

�
:

ð35Þ

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that terms in the brackets are

2 ≤
sj
s0i

+ s0i
si

j = h, v, 7 ≤ s∗h
sh

+ she
∗
h iv

s∗hehi
∗
v
+ ah
a∗h

+ eha
∗
h

e∗hah
−
eh
e∗h

+ ehi
∗
h

e∗h ih
+ ih
i∗h

+ s∗v
sv

−
g ih, ahð Þ
g i∗h , a∗hð Þ + svevg i∗h , a∗hð Þ

s∗v e
∗
v g i∗h , a∗hð Þ + evi

∗
v

e∗v iv
:

ð36Þ

Hence, we conclude that c
t0
DUðtÞ ≤ 0 for all ðsh, eh, ah,

ih, sv, ev, ivÞ ≥ 0 since s∗h ,e∗h ,a∗h , i∗hs∗v ,e∗v , and i∗v are nonnegative
whenever R0 > 1. Therefore, by Lasalle’s invariance principle
[43], the endemic equilibrium point is globally asymptoti-
cally stable whenever R0 > 1.☐

4. Numerical Results and Discussions

In this section, we will make use of MATLAB programming
language to simulate model (18) so as to support analytical
findings and determine the implications of time-dependent
controls. To simulate model (12), we make use of the tech-
nique so-called generalized Adams-Bashforth-Moulton
(ABM) method [36]. For any nonlinear fractional differen-
tial equation,

c
bD

θ
tψ tð Þ = f t, ψ tð Þð Þ, 0 ≤ t ≤ T , ð37Þ

with the following initial conditions:

ψm 0ð Þ = ψm
0 , m = 0, 1, 2, 3,⋯, θ½ � − 1: ð38Þ

Now, with operating by the fractional integral operator
on equation (37), we can obtain on the solution ψðtÞ by solv-
ing the following equation:

ψ tð Þ = 〠
θ½ �−1

m=0

ψm
0

m!
tm + 1

Γ θð Þ
ðt
0
t − τð Þθ−1 f τ, ψ τð Þð Þdτ: ð39Þ

Diethelm [44] used the predictor-corrector scheme
based on the ABM algorithm to numerically solve (39). Set-
ting h = T/N , tn = nh, and n = 0, 1, 2,⋯,N ∈ℤ+, equation
(39) can be discretized as follows:

ψh tn+1ð Þ = 〠
∣θ∣−1

m=0

ψm
0

m!
tmn+1 +

hθ

Γ θ + 2ð Þ〠
n

q=0
aq,n+1 f tq, ψq

� �
+ hθ

Γ θ + 2ð Þ f tn+1, ψ
p
n+1

	 

,

ð40Þ
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where

aq,n+1 =
nθ+1 − n − θð Þ n + θð Þθ, q = 0,

n − q + 2ð Þθ+1 + n − qð Þθ+1 − 2 n − q + 1ð Þθ+1, 1 ≤ q ≤ n,
1, if q = n + 1,

8>><
>>:

ð41Þ

and the predicted value ψp
hðtn+1Þ is determined by

ψp
tn+1

= 〠
∣θ∣−1

m=0

ψm
0

m!
tmn+1 +

1
Γ θð Þ〠

n

q=0
bq,n+1 f tq, ψh tq

	 
	 

, ð42Þ

with

bq,n+1 =
hθ

θ
n + 1 − qð Þθ − n − qð Þθ

� �
: ð43Þ

The error estimate is

max
0≤q≤k

ψ tq
	 


− ψh tq
	 
�� �� =O hp

	 

, ð44Þ

with k ∈ℕ and p =min ð2, 1 + θÞ.
4.1. Application of the ABM Method to the Proposed Model.
In this subsection, we solve numerically the nonlinear frac-
tional model using the ABM method. In view of the general-
ized ABM method, the numerical scheme for the proposed
model (18) is given in the following form [36]:

sh tn+1ð Þ = sh0 +
hθ

Γ θ + 2ð Þ f sh tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph
	

� tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ

+ hθ

Γ θ + 2ð Þ〠
n

q=0
aq,n+1 f sh tq, sh tq

	 

, eh tq
	 


, ah
	

� tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

eh tn+1ð Þ = eh0 +
hθ

Γ θ + 2ð Þ f eh tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph
	

� tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ

+ hθ

Γ θ + 2ð Þ〠
n

q=0
aq,n+1 f eh tq, sh tq

	 

, eh tq
	 


, ah
	

� tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

ah tn+1ð Þ = ah0 +
hθ

Γ θ + 2ð Þ f ah tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph
	

� tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ

+ hθ

Γ θ + 2ð Þ〠
n

q=0
aq,n+1 f ah tq, sh tq

	 

, eh tq
	 


, ah
	

� tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

ih tn+1ð Þ = ih0 +
hθ

Γ θ + 2ð Þ f ih tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph
	

� tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ

+ hθ

Γ θ + 2ð Þ〠
n

q=0
aq,n+1 f ih tq, sh tq

	 

, eh tq
	 


, ah
	

� tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

sv tn+1ð Þ = sv0 +
hθ

Γ θ + 2ð Þ f sv tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph
	

� tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ

+ hθ

Γ θ + 2ð Þ〠
n

q=0
aq,n+1 f sv tq, sh tq

	 

, eh tq
	 


, ah
	

� tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

ev tn+1ð Þ = ev0 +
hθ

Γ θ + 2ð Þ f ev tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph
	

� tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ

+ hθ

Γ θ + 2ð Þ〠
n

q=0
aq,n+1 f ev tq, sh tq

	 

, eh tq
	 


, ah
	

� tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

iv tn+1ð Þ = iv0 +
hθ

Γ θ + 2ð Þ f iv tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph
	

� tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ

+ hθ

Γ θ + 2ð Þ〠
n

q=0
aq,n+1 f sv tq, sh tq

	 

, eh tq
	 


, ah
	

� tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,
ð45Þ

where

sph tn+1ð Þ = sh0 +
1

Γ θð Þ〠
n

q=0
bq,n+1 f sh tq, sh tq

	 

, eh tq
	 


, ah tq
	 


, ih
	

� tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

eph tn+1ð Þ = eh0 +
1

Γ θð Þ〠
n

q=0
bq,n+1 f eh tq, sh tq

	 

, eh tq
	 


, ah tq
	 


, ih
	

� tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

aph tn+1ð Þ = ah0 +
1

Γ θð Þ〠
n

q=0
bq,n+1 f ah tq, sh tq

	 

, eh tq
	 


, ah tq
	 


, ih
	

� tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,
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iph tn+1ð Þ = ih0 +
1

Γ θð Þ〠
n

q=0
bq,n+1 f ih tq, sh tq

	 

, eh tq
	 


, ah tq
	 


, ih
	

� tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

spv tn+1ð Þ = sv0 +
1

Γ θð Þ〠
n

q=0
bq,n+1 f sv tq, sh tq

	 

, eh tq
	 


, ah tq
	 


, ih
	

� tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

epv tn+1ð Þ = ev0 +
1

Γ θð Þ〠
n

q=0
bq,n+1 f sh tq, sh tq

	 

, eh tq
	 


, ah tq
	 


, ih
	

� tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



,

sph tn+1ð Þ = iv0 +
1

Γ θð Þ〠
n

q=0
bq,n+1 f iv tq, sh tq

	 

, eh tq
	 


, ah tq
	 


, ih
	

� tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 



:

ð46Þ

Further, we have

f sh tq, sh tq
	 


, eh tq
	 


, ah tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 
	 


= μh − 1 − εhð Þβvqcivsh − μhsh,
ð47Þ

f eh tq, sh tq
	 


, eh tq
	 


, ah tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 
	 


= 1 − εhð Þβvqcivsh −m1eh,
ð48Þ

f ah tq, sh tq
	 


, eh tq
	 


, ah tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 
	 


= f hαheh −m2ah,
ð49Þ

f ih tq, sh tq
	 


, eh tq
	 


, ah tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 
	 


= 1 − f hð Þαheh −m3ih,
ð50Þ

f sv tq, sh tq
	 


, eh tq
	 


, ah tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 
	 


= μv − 1 − εð Þβhcihsv − μvsv − 1 − εhð Þβhc 1 − ηhð Þahsv,
ð51Þ

f ev tq, sh tq
	 


, eh tq
	 


, ah tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 
	 


= 1 − εð Þβhcihsv −m4ev + 1 − εð Þβhc 1 − ηhð Þahsv,
ð52Þ

f iv tq, sh tq
	 


, eh tq
	 


, ah tq
	 


, ih tq
	 


, sv tq
	 


, ev tq
	 


, iv tq
	 
	 


= αvev − μviv:

ð53Þ

In addition, the quantities

f sh tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ	 

,

f eh tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ	 

,

f ah tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ	 

,

f ih tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ	 

,

f sv tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ	 

,

f ev tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ	 

,

f iv tn+1, sPh tn+1ð Þ, eph tn+1ð Þ, aph tn+1ð Þ, iph tn+1ð Þ, sPv tn+1ð Þ, epv tn+1ð Þ, ipv tn+1ð Þ	 

ð54Þ

are derived from system (53), at the points tn+1, n = 1, 2, 3,
⋯:,m:

4.2. Fractional-Order and Parameter Estimation Using Real
Chikungunya Data. In this section, we will utilize the chi-
kungunya data for Colombia (weekly cases observed in
2015) presented in [24] to numerically solve system (18)
and determine the best fractional-order parameter θ that
minimizes the deviations between the real data and model
estimates. Data constitute of weekly reported chikungunya
cases for Colombia in the year 2015. Despite it being a chal-
lenging task, estimation of fractional-order and model
parameters is an integral part in mathematical modeling of
infectious diseases. Several techniques such as the maximum
likelihood iterated filtering and the nonlinear least-squares
curve fitting are often used to validate proposed epidemio-
logical models with data.

The fitting process in this paper was done by making use
of the least-squares method and Nelder-Mead algorithm
[45]. The Nelder-Mead algorithm was used to perform a
broad search of the parameter space and is less dependent
on initial guesses. Once a good fit was determined, these
parameters as the initial guess to search for a more localized
region. We fitted the model to cumulative daily new infec-
tion data presented in [24]. Since our proposed model con-
stitutes a normalized population, we have normalized the
weekly cases by assuming that the total human population
in the area where these cases were reported is assumed to
be around 19,471,223 [24]. The cumulative new infections
predicted by model (18), CðtÞ, are given by the solution of
the following equation:

c
bD

θ
t C tð Þ = αθh 1 − f hð Þeh tð Þ: ð55Þ

In order to compute the best fitting, we implemented the
function

F : ℝ5
θ,ηh ,ϕ,εh ,βhð Þ ⟶ℝ θ,ηh ,ϕ,εh ,βhð Þ, ð56Þ

where θ, ηh, ϕ, εh, βh are variables such that

(1) for a given ðθ, ηh, ϕ, εh, βhÞ, solve numerically the
system of differential equation (18) and equation
(55) to obtain a solution Ŷ iðtÞ = ð̂shi, êhi, âhi, îhi, ŝvi,
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êvi, îviÞ, which is an approximation of the real-world
data YðtÞ

(2) Set t0 = 1 (the fitting process starts in week 1) and for
t = 2, 3,⋯, 52, corresponding to weeks in where data
are available, evaluate the computed numerical solu-
tion for ihðtÞ; that is., îhð2Þ, îhð3Þ,….., îhð52Þ

(3) Compute the root mean square (RMSE) of the differ-
ence between îhð2Þ, îhð3Þ, :⋯ , îhð52Þ and observed
cases. This function F returns the root-mean-square
error (RMSE) where

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
52

k=1
ih kð Þ − i∧h kð Þð Þ2

vuut ð57Þ

(4) Determine a global minimum for the RMSE using
Nelder-Mead algorithm

The function F takes values in ℝ5 and returns a positive
real number, the RMSE that measures the closeness of the
model predictions to the observed data. On performing the
fitting process, we assumed the following initial conditions
ehð0Þ = 0:0002, ah = ihð0Þ = 0:0001, shð0Þ = 1 − ehð0Þ − ahð0Þ
− ihð0Þ, evð0Þ = 0:0002, ivð0Þ = 0:0001, and svð0Þ = 1 − evð0Þ
− ivð0Þ and the baseline values for the model parameters
are in Table 1.

Figure 2 depicts the root-mean-square error (RMSE) for
different derivative orders. The simulation results show that
a global minimum error of estimation for the given data set
occurs for θ = 0:64 with RMSE = 2:08 × 10−7. Figure 3 illus-
trates the model estimates for θ = 0:64 and θ = 1 (the classi-
cal model). From the illustration, one can be able to compare
the predictability strength between the integer and fractional
models. From the illustrations, we can observe that estimates
for the integer model are close to the real data for the first 4
weeks; thereafter, the estimates significantly deviate from the
reported cases compared to the estimates of the fractional-
order model. Hence, we conclude that the fractional model
presents better forecasts compared to the integer model.

Figure 4 shows the simulation of residuals against the
predicted values of chikungunya cases in Colombia. It was
noted that the residuals did not follow any particular path
(exhibited a random pattern), suggesting that the model sys-
tem (18) was a good fit well to chikungunya cases in Colom-
bia as reported in [24].

4.3. Sensitivity of the Reproduction Number to Model
Parameters. From the results in Theorems 7 and 8, it is
apparent that basic reproduction number R0 is an integral
parameter for chikungunya persistence and extinction in
the community; hence, there is a need to determine the sen-
sitivity of R0 to each parameter. One of the techniques of
determining the sensitivity of R0 to each parameter is
through the computation of an elasticity index; that is, for
a parameter ν, the elasticity index is found by the for-

mulaðν/R0Þð∂R0/∂νÞ. Model parameters that have a positive
elasticity index will increase the magnitude of R0 whenever
they are increased while those with negative index will
decrease R0 whenever they are increased. Thus, this linear-
ized sensitivity analysis gives an idea of parameters that are
vital in reducing R0 below unity in order for the disease to
die out in the community. Results on computations on the
elasticity indices are shown in Figure 5.

From the results in Figure 5, one can observe that the
mosquito feeding (biting) rate (parameter c) has the largest
elasticity index than all the other model parameters that
define R0. In particular, if the mosquitoes increase their feed-
ing rate by 10%, then the magnitude of R0 will also increase
by 10%. Parameters βh (transmission rate of the disease
from humans to mosquito per bite), βv (transmission rate
of the disease from mosquito to human per bite), ϕ (the
number of mosquitoes per individual), and μv (mortality
rate of mosquitoes) have a similar elasticity index in absolute
value. However, an increase in βh, βv, and ϕ will increase the
size of R0 while an increase in μv reduces the size of R0. It is
also worth noting that the efficacy of preventative strategies
εh has a significant effect on reducing the size of R0. An
increase in the efficacy of preventative strategies by 10% will
decrease the size of R0 by 4.28%. From the results, one can
conclude that the recovery of symptomatic patients, mortal-
ity rate of mosquitoes, and efficacy of preventative strategies
are capable of reducing the size of R0 by a significant margin
whenever they are increased.

Simulation results in Figure 6(a) depict the effects of
varying mosquito feeding (biting) rate, c on R0. The results
show that an increase in mosquito biting rate (modeled by
parameter c) increases the size of R0. In particular, whenever
c > 0:13, then R0 > 1 which implies that the disease persists
in the community. Figure 6(b) demonstrates the effects of ε
(efficacy of preventative strategies) on R0. From the results,
we can conclude that whenever the efficacy of preventative
strategies is less than 54% all the time, then the disease per-
sists in the community. However, if the reverse is true, it dies
off. Figure 6(c) shows a contour plot of R0 as a function of c
and ε. We observe that when c becomes larger or when ε is
reduced, R0 increases, implying a higher disease risk.

Numerical illustrations in Figure 7(a) show the effects of
varying mosquito mortality rate, μv on R0. From the results,
we note that if the life span of mosquitoes is less than 14
days (μv = 0:07 day −1), then the disease dies out, otherwise
it persists. In Figure 7(b), we explore the impact of the num-
ber of mosquitoes per individuals, ϕ on R0. We can note that
whenever the number of vectors per human in the area is
greater than 1.3, then the infection persists in the area, oth-
erwise it dies out.

Numerical simulation in Figure 8(a) shows the effects of
varying average infectious period for symptomatic patients,
1/σh on R0: From the results, we note that if the average
infectious period for symptomatic patients is greater than
40%, the disease dies out, otherwise it persists. In
Figure 7(b), we assessed the effect of probability of infection
to be transmitted from an infectious mosquito to a suscepti-
ble human per bite, βv on R0:We can note that whenever the
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probability of transmission from infectious mosquito to sus-
ceptible human is greater than 10%, the disease persists in
the area, otherwise it dies out.

4.4. Simulation Results to Support Analytical Findings in the
Study. In this section, we will carry out numerical simula-
tions so as to support analytical findings in the study. Simu-
lation results in Figure 9 show the convergence of model
solutions to the disease-free equilibrium with different deriv-
ative orders. We can note that all model solutions converge
to the DFE point despite different derivative orders and this
is in agreement with Theorem 7. In Figure 10, we can
observe that order of the derivative has a significant effect
on dynamical behavior on the infected vector and host pop-
ulation over time. In particular, we observe that when the
derivative order θ is reduced from 1, the memory effect of
the system increases, and as a result, the infection grows
slowly and the number of infected vectors and host increases
over time.

To gain insights on the role of asymptomatic patients on
chikungunya dynamics, we simulated model (18) with dif-
ferent values of f h (proportion of individuals who become
asymptomatic patients upon the completion of the incuba-
tion period) and the results are shown in Figure 11. The
results show that as f h increases, the exposed human popu-
lation, asymptomatic patients, and infectious vectors
increase remarkably while the infectious human population
decreases slightly. Although the exposed vector population
increases with increasing f h, the increase is not highly signif-
icant compared to the other populations.

To explore the impact of the preventative strategies on
long-term dynamics, we simulated model (18) with different
values of εh with a fixed derivative order (θ = 0:64) and the
results are in Figure 12. Overall, the results show that as εh
approaches unity, the disease dies out in the community.
In particular, the closer εh is to unity, the shorter the time
it takes for the disease to become extinct.

5. Conclusions

In this paper, we have formulated a mathematical model chi-
kungunya virus transmission that incorporates the human
and mosquito populations. The proposed model is based
on the Caputo fractional derivative. Fractional calculus has
been widely used in mathematical modeling of evolutionary
systems with memory effect on dynamics. Previous studies
suggest that biological and physical phenomena are charac-
terized by memory effects. Although there are several defini-
tions of fractional derivatives, our choice of using Caputo
derivative is as follows: (i) the Caputo derivative for a given
function which is constant is zero. Thus, the Caputo opera-
tor computes an ordinary differential equation, followed by a
fractional integral to obtain the desired order of fractional
derivative; (ii) the Caputo fractional derivative allows the
use of local initial conditions to be included in the derivation
of the model. We computed the model equilibria and deter-
mined their existence and global stability. We have shown
that the model has two equilibrium points: the disease-free
equilibrium (DFE) and the endemic equilibrium (EE), which

are both globally stable whenever the reproduction number
is less than unity and greater than unity, respectively. We
used the 2015 weekly reported cases in Colombia to estimate
model parameters. We carried out a comprehensive sensitiv-
ity analysis of the model parameters, so as to determine the
correlation between the model parameters and the repro-
duction number. Utilizing results on the sensitivity analysis,
we determined threshold values for different model parame-
ters that results in either extinction or persistence of the dis-
ease. In particular, this analysis was carried out for model
parameters that were found to have a strong correlation with
the reproduction number.

The Adams-Bashforth-Moulton method was used to
numerically solve the proposed model, and we observed that
when the derivative order is reduced from 1, the memory
effect of the system increases, and as a result, the infection
grows slowly and the number of infected vectors and host
increases over time. We believe that our model can provide
invaluable insights for public health authorities to predict
the effect of chikungunya transmission and analyze its
underlying factors and to guide new control efforts.
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