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Abstract

The release of unwanted fish from purse seines whilst still in the water is termed slipping

and may lead to significant mortality following release. The objective of this study was to

determine the fish welfare implications of a new slipping methodology in which fish are

released via a discharge opening formed in the bunt end of the purse seine net. Video analy-

ses of collective and individual level fish behaviour were undertaken in the Norwegian mack-

erel and herring purse seine fisheries, to quantitively describe slipping behaviour and to

determine its driving factors. The majority of fish escaped the purse seine with the schooling

structure intact as part of large groups towards the end of slipping process, increasing their

speed following escape. However, there was also a tendency (24% of all escapes) to

escape in a manner likely to impact negatively upon their welfare, with a breakdown in

schooling structure and physical contact with the fishing gear and conspecifics. The ten-

dency to express such welfare compromising behaviour was higher for mackerel than for

herring, but was also influenced by the vessel releasing the fish, the amount of fish being

slipped, how long the discharge opening had been open and the particular slipping event.

These results provide important information for future science-based development of wel-

fare friendly slipping practises.

Introduction

Purse seining is a widespread [1], effective [2] and relatively fuel efficient [3–6] capture method

for small pelagic schooling species. However, it is not without challenges. A lack of suitable

monitoring technology means that skippers typically lack detailed information regarding

school size and characteristics prior to setting the net [7]. This can lead to discarding when

resulting catches are undesirable in some way. Discarding can be detrimental to sustainable

fishery management as discarded fish may die [8,9], which can introduce uncertainty into

stock assessment if not properly accounted for [10–12].

Discarding in purse seining often takes the form of slipping. Slipping is a somewhat unique

case of discarding, in that the unwanted catch (or component that is unwanted) is released
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whilst still in the water and before being brought aboard the fishing vessel [13–15]. As such,

releasing unwanted catches via slipping offers an opportunity to release fish without exposing

them to the additional stressors associated with onboard catch sorting, such as air exposure

[16]. Despite this, previous work has demonstrated that mortality rates for a variety of small

pelagic fish species after release via slipping can be significant [17–21]. This potentially low

rate of survival is related to the degree and duration of crowding in the final stages of capture

[17,19,20], with mortality likely being induced via mechanisms such as hypoxia, physical

injury, scale loss and exhaustion.

This potential for low survival following slipping is recognized in the management of the

extensive Norwegian purse seine fisheries for Atlantic mackerel (Scomber scombrus). To mini-

mize detrimental effects on survivability, legislation dictates that if mackerel are to be slipped

then the net must be opened before potentially harmful levels of crowding are reached and

that the opening should be of sufficient size to ensure that the fish can swim out freely [22]. It

is thought that Atlantic herring (Clupea harengus) are more robust to the negative effects of

slipping than mackerel [21] and consequently similar legislation does not exist for the Norwe-

gian herring fishery. However, for both species, there is currently limited understanding of

how the process of slipping itself impacts upon the welfare of the fish.

Despite being a contentious issue [23–27], an appreciation of fish welfare in commercial

fishing has greater utility than just addressing ethical concerns. It is a useful framework by

which to identify capture induced stress, which is known to affect not only product quality

[28] but also subsequent survival in released catches [19]. An understanding of welfare is of

particular importance here because anecdotal evidence suggests slipping may be a routine part

of many purse seine fisheries [19], especially when schooling density is high (resulting in

unavoidably large catch sizes which exceed quota limits or vessel capacity) or when higher

prices may be obtained for certain fish species, sizes or quality [7].

It is now well established that individual behaviour and behavioural change can be useful in

determining the welfare status of fish [16,25,29,30]. However, as both mackerel and herring

are obligate schoolers [31] and as such spend much of their lives interacting in tight polarized

groups with conspecifics, our contention is that the welfare status of such fish is best deter-

mined by examination of not only their individual behaviour, but also their collective, school-

level behaviour.

In Norway, a new best practice methodology for purse seine slipping was developed in 2014

in conjunction with fishers, managers and scientists with the aim of reducing impacts upon

fish slipped from purse seines. To determine the implications of this methodology on fish wel-

fare, the aim of this study was to describe the behaviour of mackerel and herring whilst being

slipped. As an understanding of the drivers of behaviour may allow it to be manipulated in the

desired direction [32], a secondary objective was to determine factors influencing the observed

behaviour. We were particularly interested in slipping behaviours and drivers that negatively

impacted upon the animals’ welfare, to better inform future science-based regulation of slip-

ping practices which maximize the survival potential of released catches.

Materials and methods

Vessels, gear and slipping methodology

Behavioural observations of mackerel and herring during slipping were collected during

experimental fishing in 2015 and 2016, at coastal and offshore locations in the North and Nor-

wegian Seas (Fig 1). Two different commercial purse seine vessels were used: an offshore vessel

named here as Vessel A (LOA 64.2m) and a coastal vessel (Vessel B, LOA 36.3m). Vessel A

fished with a purse seine of 746m long, with a depth of 212m, while Vessel B fished with a
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571m long by 201m deep net. These dimensions represent the typical net sizes of the Norwe-

gian purse seining fleet.

Both vessels employed the “best practice” methodology guidelines for slipping, meaning

that: 1) the release of fish took place through an opening (hereafter, the discharge opening)

formed by the terminal end of the net bunt (Fig 2); 2) the length of the bunt end from end to

end was a minimum of 18m [33]; 3) the “hang-in” ratio in the net bunt was a maximum of

25% (which is the equivalent of a minimum “hanging ratio”, E, of 0.8; see [34]) and 4) a control

rope was attached to the bunt float in order to control the size of the discharge opening (Fig 2).

Further explanation of purse seine terminology can be found in [2] and [7]. These criteria

were intended to make the slipping procedure easier to control and to maximize the size of the

discharge opening available for fish to escape through. Furthermore, when applicable, legisla-

tion regarding mackerel slipping was also followed, meaning that the discharge opening was

formed before 7/8th of the net length was brought onboard to avoid detrimental levels of

crowding [22].

In practice, fishing followed typical commercial practices of ensonifying the school, fol-

lowed by shooting, pursing and hauling of the net. The point of 7/8th of the net length was

marked with a white buoy, as a clearly visible indicator. Prior to this point being hauled

onboard, the discharge opening was typically closed, bunched against the vessel’s side using a

rope running through rings in the bunt end. To create the opening, the bunt end rope was

paid out with the width and depth being adjusted as desired by the control rope attached to the

bunt float. Control of width and depth allowed rapid alteration to the discharge opening in

Fig 1. Spatial positions of mackerel and herring slipping events for Vessel A and Vessel B. Triangles denote slipping events not included in the analysis due

to no behaviour being recorded; circles denote slipping events included in the analysis. Note that some points overlap.

https://doi.org/10.1371/journal.pone.0213031.g001
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response to fish movements and behaviour as well as changes in the position and orientation

of the net and vessel. Whilst the discharge opening was open, the net was hauled continuously

at a steady and controlled rate. Similar to typical practice in commercial fishing, catches were

either partially slipped (in which the discharge opening was closed once the desired amount of

fish had been released, determined using a combination of prior experience, visual estimation

and slipping time) or completely slipped (in which the opening remained open until the net

was completely hauled aboard).

Video camera positioning

Slipping events were monitored using either GoPro HERO3, HERO4 or HERO5 cameras,

recording in high definition colour with a minimum of 1080p at 25fps. One camera (hereafter

the “bridge camera”) was positioned on the starboard bridge wing to record the hauling of the

net and the discharge opening from the surface (Fig 2). Two cameras (hereafter the “discharge

cameras”) with waterproof housings were encased in Divinycell foam casings (to provide

buoyancy and protection) and attached to the bunt end to record behaviour as fish escaped

through the discharge opening (Fig 2). One camera was situated approximately 1m out from

the midpoint of discharge opening and was orientated to film vertically upwards. The second

camera was initially situated approximately 3m inwards from the midpoint of the discharge

opening and oriented to film horizontally. However, the field of view was often blocked by net-

ting in this position, so the position was changed to approximately 7m from the bunt float on

subsequent deployments (data collected from both positions were used in the analysis). When

Fig 2. Illustration of the discharge opening and camera positioning. The discharge opening was formed in the bunt end of the purse seine to allow

fish escape. The positioning of cameras (and approximate filming orientation in green) for observation of behaviour is indicated: a) bridge camera to

observe net hauling and discharge opening from the surface; b) horizontally orientated discharge camera; c) vertically orientated discharge camera and

d) vertically orientated drop camera. See main text for further description of camera set up and slipping methodology. Adapted from [7], with

permission IMR.

https://doi.org/10.1371/journal.pone.0213031.g002
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light conditions were poor, discharge cameras were deployed with a red LED light (Brinyte

Model: DIV01C-V, www.brinyte.com) for additional lighting. A fourth camera (hereafter the

“drop camera”) was lowered into the water on a rope, approximately 5m forward from the dis-

charge opening to record behaviour after the fish had escaped the net (Fig 2). It was attached

to a frame with a wing, which stabilised the camera whilst filming by preventing the camera

from spinning at the end of the rope by orientating the camera into any current. The drop

camera was positioned deeper than the discharge opening and filmed vertically upwards

towards the surface. The maximum number of cameras employed per slipping event was

therefore four.

Behaviour description and quantification

Video footage from the discharge cameras was synchronised with respect to time, allowing

observation of slipping behaviour from two different perspectives; horizontal and vertical. Pre-

liminary observations were then used to construct an ethogram of collective slipping behav-

iour, considering the size of the group escaping the net and their schooling structure (Table 1

and Fig 3). Two types of behavioural units were classified, either states (mutually exclusive,

prolonged behaviours) or events (discrete, short duration behaviours [35]). Behavioural units

were then assigned a hypothesized “welfare impact” (Table 1) depending on the likely impact

upon individual fish. We focused on a function- and nature-based approach to welfare (in

accordance with [23]), in that we defined behavioural units which were likely to cause injuries

and/or were expressions of dysfunctional behaviour (equating, for example, in an obligate

Table 1. Slipping behaviour ethogram. Ethogram of collective fish behaviour during escape from purse seines.

Behavioural

unit

Type Description Hypothesised welfare impact

No escape State Discharge channel (or its immediate area) in field of view of cameras,

but with no fish escaping the net

Uncertain–positive impacts resulting from maintenance of

schooling; negative impacts resulting from continued risk of impact

of capture stressors

Single fish Event Discharge channel (or its immediate area) in field of view of camera,

with a single fish escaping the net

Moderate–loss of schooling advantages in an obligatory schooling

species

Small group Event Discharge channel (or its immediate area) in field of view of camera,

with a small group1 of fish (<30) escaping the net with a coordinated

schooling structure

Minor–school structure remains intact, low probability of contact

related injuries

Orderly State Discharge channel (or its immediate area) in field of view of camera,

with a large group of fish (>100) escaping3 the net with a coordinated

schooling structure

Minor–school structure remains intact, low probability of contact

related injuries

Disorderly State Discharge channel (or its immediate area) in field of view of camera,

with a large group of fish (>100) escaping3 the net without a

coordinated schooling structure, often with collisions between fish and

into gear

High–schooling structure lost in an obligatory schooling species,

high probability of contact related injuries

Disagreement State Discharge channel (or its immediate area) in field of view, but with

disorderly behaviour and orderly behaviour evident on different

cameras

Minor / High–as for orderly or disorderly above.

Return Event Discharge channel (or its immediate area) in field of view of camera

and an escape taking place, with� 1 fish of the group re-entering the

net

Uncertain–positive impacts resulting from joining large school

inside the net; negative impacts resulting from increased risk of

impact from capture stressors

Not in view State Either: 1) both camera views obscured, or 2) discharge channel (or its

immediate area) not in field of view of either camera

NA

1A group was defined as >1 fish in close proximity (less than approximately 5 body lengths distance between individuals)
2A coordinated structure was defined as a polarized group of fish, capable of collective schooling movements
3The start and end of an escape for groups of >100 fish was defined as when the first and last fish passed the discharge channel threshold.

https://doi.org/10.1371/journal.pone.0213031.t001
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schooling species to a loss of schooling structure or individuals swimming alone) as having

negative welfare impacts. Video examples of behavioural units and typical camera perspectives

are given in the supporting information (S1–S7 Videos).

The total duration of each behavioural state and the frequency of events was then quantified

over the whole duration of the slipping event, using the event logging software Observer XT

12.0 (Noldus Information Technology, www.noldus.com). Both horizontal and vertical per-

spectives were considered together when classifying behaviour. Only the escape behaviour of

the target species of mackerel and herring were considered; behaviour of the minimal amount

of bycatch (non-target species) was not included. The start of slipping was defined as the point

at which the discharge opening was opened, as recorded by the bridge camera. When the

whole catch was slipped, the end of slipping was defined as the point at which the bunt float

reached the Triplex. For partial slipping, the end of slipping was defined as the point at which

Fig 3. Examples of behavioural units. Behavioural units were used to classify collective fish behaviour during escape from purse seines: a) “No

escape”; b) “Single fish”; c) “Small group”; d) “Orderly”; e) “Disorderly”; f) “Return”, with a fish re-entering the net indicated by the arrow. See

Table 1 for full definition of behavioural units.

https://doi.org/10.1371/journal.pone.0213031.g003
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the discharge opening was closed again. It was necessary to include a “not in view” behavioural

state (Table 1), as the floatation attached to the discharge cameras meant they were free to

move and turn with the gear and current, resulting in times when the discharge channel was

not in the field of views or the lenses was covered by netting.

To determine the effects of slipping upon behaviour at the level of individual fish, we quan-

tified tail beat frequency (TBF) at two different stages of the slipping process; during and after

escape. Changes in activity in response to stress for small pelagic species has been noted previ-

ously [36–38] and TBF is a key determinant of both swimming speed [39] and energy expendi-

ture in fish [40–43]. TBF during escape was collected from the vertically orientated discharge

camera. TBF after escape was collected from the drop camera. Random sampling of individu-

als within time intervals was employed. The elapsed time between the first and last appearance

of escaping fish on the camera was divided into five equal time intervals. Following this, video

frames from within each time interval was converted to a sequence of still images. A random

starting image from within each sequence was then selected and viewed using ImageJ V1.51

software [44]. Starting images were then overlaid with a grid, allowing random selection of fish

within the image by generating random grid coordinates. The TBF of five fish from within

each time interval was then quantified over the duration of their appearance on subsequent

images. If no fish was present at the grid coordinate, another coordinate was generated. To

gather a more accurate measure of TBF, selected fish which appeared on camera for less than

one second were rejected, and another random fish was selected for sampling instead. A single

tail beat was defined as the movement from one extreme lateral position to the opposite

extreme lateral position. Whether selected fish were escaping as part of a large group (> 100

individuals, Table 1) or not was also noted.

Potential explanatory variables

During slipping operations, data was collected on several variables hypothesized to have the

potential to affect slipping behaviour. These were: net hauling rate for the final 7/8th of the net,

amount of fish being slipped and the dimensions of the discharge channel.

Video footage from the bridge camera was used to calculate the net hauling rate, by obser-

vation of the speed at which the net entered the Triplex net roller. For this, the final 7/8th of the

net length (during which slipping typically took place) was marked at 10m intervals along the

float-line by high visibility plastic tags, and their time of arrival at the Triplex noted. Due to the

nature of purse seine fishing and lack of accurate monitoring equipment, it was not possible to

directly measure the amount of fish being slipped. Amount of slipped catch was therefore esti-

mated (in tonnes) by an experienced crew member informed by prior experience, as well as

estimation of school size prior to shooting and movement of the fishing gear in response to the

captured school. The width, depth and cross-sectional area of the discharge opening during

slipping was modelled [33]. For this, depth was recorded every 5 seconds from up to seven

RBR depth loggers attached at regular intervals along the bunt end. Additionally, the distance

of the bunt float to the vessel was recorded using a laser range finder (Nikon Laser 550A S).

Ethics statement

Permission to develop new slipping methodologies and allocation of associated scientific fish-

ing quota was granted by the Directorate of Fisheries (Fiskeridirektoratet), the national author-

ity regarding fisheries management for Norway. Note that slipping is a legal practice providing

regulations [22] are adhered to. No other specific permissions were required for the work, and

the work did not involve endangered or protected species. Additionally, no approval from

local animal welfare authorities was required to conduct the work. This is because the
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collection of video images during routine fishing operations and during slipping has no addi-

tional impact on the welfare of the organisms.

Data analysis

The collected data was summarised in three different datasets; an individual level behaviour

dataset comprised of TBF observations and two collective level behaviour datasets.

The datasets. The TBF dataset (“Dataset A”, S1 Dataset) expressed number of tail beats

per second, taking into account the number of video frames the fish were observed over and

the known frame rate of the camera. “Dataset B” (S2 Dataset) expressed the proportion each

collective behaviour (Table 1) contributed to the overall time budget per slipping event,

excluding times when the fish did not escape. Single fish and small group escape events were

highly transient and were therefore assumed to have one second durations. “Dataset C” (S3

Dataset) expressed the most dominant behaviour in consecutive 10 second time bins during

different slipping events. For this, the proportion that each behaviour (Table 1) contributed to

each 10 second bin was calculated. Instances of disagreement behaviours were divided equally

between orderly and disorderly behaviours. The behaviour with the largest proportional con-

tribution in each bin was then selected as the most dominant behaviour. In some time bins,

orderly and disorderly escape behaviour contributed the same proportion. In these cases, a

precautionary approach was taken and disorderly escape behaviour was chosen as the most

dominant. For cases when “not in view” behaviour contributed the highest proportion and

other behaviours were present, the next most common behaviour was taken as the dominant

behaviour.

For all datasets, data exploration followed the protocol described in [45]. Slipping events for

which no fish were caught or in which no behaviour was recorded were excluded from data

analysis. Single fish and small group escapes were rare events, so were grouped together into a

new behavioural category termed “small” for the purposes of data analysis. Net hauling rate

(hereafter “rate”) was collinear with vessel and species, while discharge channel dimensions

(“depth”, “width” and “area”) were highly collinear with one another. Therefore, these terms

were never included in the same model together. Following the removal of missing covariate

values in Dataset B, it was found that 90% of mackerel data came from one vessel alone. To

avoid further collinearity issues, “species” and “vessel” were not included in the same model

for this dataset.

Modelling the data. All statistical analysis was undertaken with R version 3.4.2 [46]. The

datasets were hierarchically structured, in that multiple observations of slipping events were

conducted upon different vessels and on different trips. Mixed effects modelling was therefore

applied to Dataset A and Dataset C, with random covariate effects of “slipping event” nested

within “trip”. Insufficient levels of “vessel” (number: 2) meant that the correlation structure

could not be accurately determined [47], and vessel was therefore included as a fixed effect.

Mixed modelling fitting procedures followed those described by [48]. Where appropriate,

model assumptions were checked visually using residual plots, examining fitted values, covari-

ates included and not included in the model and normality. Significance of the terms in the

most parsimonious models were determined by likelihood ratio testing (LRT).

In order to determine factors driving TBF in mackerel and herring during slipping, a linear

mixed model (LMM) was developed based on Dataset A, considering the covariates of”vessel”

(categorical with two levels), as well as “escape type” (categorical with two levels, either large

group or not), “amount” (slipped amount, continuous), “species” (categorical with two levels,

either mackerel or herring), “observation” (categorical with two levels, either during or after

escape) and their interactions. Backward selection was then applied, dropping the most
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insignificant term (p> 0.05) at each step to determine the most parsimonious model. How-

ever, the “species” term was never dropped to ensure that a model was fitted for both species.

LMMs were fitted with the lme function from the nlme library of R [49].

Dataset B was used to determine important factors driving the observed slipping behaviour.

The dataset was modelled using Dirichlet regression, a multivariate extension of beta regres-

sion. Dirichlet regression is appropriate for modelling response variables that represent pro-

portions of a whole, corresponding to the behavioural composition of each slipping event.

Further, Dirichlet regression can model compositional data that shows skewness and hetero-

scedasticity [50]. We employed an information-theoretic approach [51], in which 17 models

were developed using combinations of the variables; “area” (cross sectional area of the dis-

charge channel, continuous), “depth” (depth of the discharge channel, continuous), “width”

(width of the discharge channel, continuous), “rate”, “amount” (square root transformed to

reduce the influence of obvious outliers), “species” and their interactions, corresponding to

specific hypotheses (Table 2) and considering the findings of the data exploration. Candidate

models were ranked according to AIC corrected for small sample size (AICc, n = 26) and their

normalized Akaike weights (AICw). The most parsimonious model was the one with the

smallest AICc score and the largest AICw. Dirichlet regression was performed using DirichReg

function of the DirichletReg package in R [52].

Dataset C was used to model the probability of fish escaping the purse seine over the dura-

tion of a slipping event, employing a generalized linear mixed model (GLMM) with a logit link

Table 2. Candidate Dirichlet regression models. Candidate models and associated hypotheses to explain the beha-

vioural composition of fish whilst being slipped from purse seines.

Model Covariates Hypothesis

M1 Area + Amount + Area:

Amount

Escape behaviour is determined by the amount of fish being released and the

space available for them to escape the net

M2 Area + Species + Species:

Area

Escape behaviour is determined by the species of fish being released and the

available space for them to escape the net

M3 Depth + Species + Depth:

Species

Escape behaviour is determined by the species of fish being released and the

depth of the discharge opening

M4 Width + Species +

Width:Species

Escape behaviour is determined by the species of fish being released and the

width of the discharge opening

M5 Area + Vessel + Area:

Vessel

Escape behaviour is determined by the vessel releasing and the available space

for fish to escape the net

M6 Depth + Vessel + Depth:

Vessel

Escape behaviour is determined by the vessel releasing and the depth of the

discharge opening

M7 Width + Vessel + Width:

Vessel

Escape behaviour is determined by the vessel releasing and the width of the

discharge opening

M8 Rate + Area + Rate:Area Escape behaviour is determined by how fast the net is hauled and the space

available for escaping the net

M9 Amount + Species

+ Amount:Species

Escape behaviour is determined by the species and amount of fish being

released

M10 Amount + Vessel

+ Amount:Vessel

Escape behaviour is determined by the vessel doing the slipping and how

much they are releasing

M11 Amount + Rate + Amount:

Rate

Escape behaviour is determined by the amount of fish being released and how

fast the net is hauled

M12 Area Escape behaviour is determined by the area of the discharge channel alone

M13 Vessel Escape behaviour is determined by how the vessel conducts slipping

M14 Species Escape behaviour is determined by the species of fish being released

M15 Amount Escape behaviour is determined by the amount of fish exiting the net

M16 Rate Escape behaviour is determined by how fast the net is hauled

M17 Null None of the covariates affect how fish exit the purse seine

https://doi.org/10.1371/journal.pone.0213031.t002
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function. A second GLMM was also developed, to model the probability of fish exiting in a

“disorderly” manner (Table 1). For these models, a Bernoulli error structure was chosen, as the

response variable (either escape/no escape or disorderly escape/other escapes) represented

either successes or failures. Time bins were converted to a proportion of the total slipping

time, to allow comparison between slipping events of different durations. Backwards selection

based on dropping the least significant term was applied on the covariates of “vessel” and the

interaction between “elapsed time” (proportion of the total slipping time, binomial) and “spe-

cies” to arrive at the most parsimonious model. GLMMs were fitted using the glmer function

of the lme4 library of R [53]. A pseudo R2 for the marginal (variance explained by the fixed

effects) and conditional effects (variance explained by the fixed and random effects together)

for mixed models was calculated using the equation of [54].

Results

Observations of behaviour were collected from 39 slipping events across 8 different trips

(Table 3). Of these events, 4 (10%) contained no usable behavioural data (Fig 1), either because

the vessel failed to encircle the target school and the net was empty, or because no behavioural

footage was recorded on the cameras. The discharge cameras were deployed on all events,

while circumstances onboard meant that the drop camera was deployed on only 27 events

(70% of all observed casts). Of the usable footage, the majority of observations (88%, n = 31)

represented complete slipping events rather than partial slips. For both vessels combined,

mean slipped amount was 158t (range: 1–1200t), while mean (± SD) width, depth and area of

the discharge channels was 11 ± 2m, 7 ± 3m and 50 ± 25m2, respectively. Observations from

individual slipping events consisted wholly of either mackerel or herring; mixed species

catches were not encountered.

Collective behaviour observations

For slipping events in which collective behaviour was recorded (n = 35), the discharge channel

was not in view for a mean of 57% (SD ±23%) of the total observed time. Disagreements

between the behaviour recorded on either discharge cameras were rare, occurring on only 9

slips and totalling a mean of 1% (±1%) of the observed time. Return events occurred on 57% of

slips; on average there was 3.6 (±3.1) return events per slip.

Collective slipping behaviour varied considerably between slipping events (Fig 4). Of times

when the discharge channel was in view, the majority of the slipping behaviour was comprised

of “no escape” (mean ± SD per cast: 73 ± 20%). Of times when fish did escape the purse seine,

the majority (84 ± 27%) escaped the net in either orderly (59 ± 35%) or disorderly (24 ± 31%)

large groups; fish escaping individually or in small groups were relatively rare (15 ± 27%).

Table 3. Slipping events. Number of observed slipping events of mackerel and herring from purse seines.

Target species Vessel Trip no. Date No. of observed slipping events

Mackerel Vessel A 1 September 2015 6

2 October 2016 6

Vessel B 1 June 2015 5

Herring Vessel A 1 November 2015 1

2 June 2016 6

Vessel B 1 February 2015 5

2 June 2016 4

3 November 2016 6

https://doi.org/10.1371/journal.pone.0213031.t003
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Qualitative observations from the “drop camera” indicated that fish tended to swim with a

downwards pitch after exiting the purse seine.

The composition of slipping behaviour differed between species and vessel. Mackerel

showed a higher tendency for disorderly escapes than herring (39 ± 35% to 11 ± 19%, respec-

tively), while orderly escapes tended to dominate slipping behaviour for herring more than

mackerel (71 ± 31% to 47 ± 35%, respectively). Vessel A produced a higher proportion of dis-

orderly escapes than Vessel B (37 ± 34% to 10 ± 19%, respectively), and a lower proportion of

orderly escapes (49 ± 33% to 73 ± 33%, respectively).

Development of collective behaviour over time

The most parsimonious GLMM describing the probability of escaping the purse seine con-

tained the fixed effect of an interaction between elapsed time and species (LRT, df = 1,

LRT = 25.29, p =< 0.001). The variance explained by the model’s fixed effects was relatively

low (marginal pseudo R2 = 0.37), while the fixed and random effects together accounted for

substantially more (conditional pseudo R2 = 0.72), indicating large differences in the timings

of escapes between different slipping events. For both species, the probability of an escape after

the discharge opening was opened was initially low but increased over time (Fig 5). For mack-

erel and herring, there was a predicted 50% probability of an escape at 60% and 63% respec-

tively of the elapsed time after the discharge channel was opened (Fig 5).

The best adequate GLMM to explain the probability of a disorderly escape contained the

fixed effects of vessel and an interaction between elapsed time and species (vessel LRT, df = 1,

LRT = 4.05, p =< 0.05, elapsed time:species interaction LRT, df = 1, LRT = 18.31, p =<

0.001). The conditional and marginal pseudo R2 (0.89 and 0.47 respectively) indicated that a

considerable proportion of the model variance was contained within the random effects,

Fig 4. Behavioural time budget. The behavioural time budget of mackerel and herring whilst escaping from purse seines, from different slipping events (casts) from

two different vessels.

https://doi.org/10.1371/journal.pone.0213031.g004

Behavioural and welfare implications of a new slipping method for purse seine fisheries in Norwegian waters

PLOS ONE | https://doi.org/10.1371/journal.pone.0213031 March 11, 2019 11 / 24

https://doi.org/10.1371/journal.pone.0213031.g004
https://doi.org/10.1371/journal.pone.0213031


suggesting there were large differences in the timing of disorderly escapes between different

slipping events. For both species from both vessels, the probability of disorderly escapes

increased with time, although the probability of disorder was always higher for mackerel (Fig

6). There were also clear differences between vessels, with estimated probabilities suggesting

that, for a given time, disorderly behaviour developed sooner and was more likely to occur in

both species when released from Vessel A (Fig 6).

Examination of the distribution of escape behaviour over time (S1 Fig) showed that large

group escapes would occur mainly in large “blocks”, indicating that once escaping began it

would generally continue (with occasional small interruptions) until the net was empty. How-

ever, on occasion, escapes manifested as “bursts”, with longer periods of no escapes between

“blocks”.

Fig 5. Probability of escape as a function of time. Estimated probability (with 95% confidence intervals) of a purse

seine escape of any kind over time, for mackerel and herring. The lower panel shows the number of observed escape

events per tenth-part of elapsed time. The dataset includes observations from both Vessel A and Vessel B.

https://doi.org/10.1371/journal.pone.0213031.g005
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Drivers of collective behaviour

Of our 17 models fitted by Dirichlet regression, models containing the discharge channel

dimensions or hauling rate covariates tended to be substantially less well supported than those

containing amount, species or vessel (Table 4). Although there was considerable support for

the top three models (ΔAICc < 2, Table 4), M10 was selected as the most parsimonious as

determined by the lowest AICc and highest AICw values.

The selected model (M10) contained amount, vessel and an interaction between these

terms (Table 5) and predicted the behavioural composition significantly better than the null

model (M17) (LRT, df = 9, LRT = 42.025, p =< 0.001). The interaction term had a highly sig-

nificant effect (LRT, df = 3, LRT = 18.529, p =< 0.001) on the composition of slipping

behaviour.

Predictions from the model (Fig 7) indicated that for Vessel A, an increasing amount of

slipped fish resulted in an increasing proportion of disorderly escapes, with a simultaneous

reduction in the proportion of fish escaping in an orderly way or in small groups/individually.

For Vessel B, the situation was reversed; slightly decreasing proportions of disorderly and

small group/individual escapes with increased slipped amount were predicted, while orderly

escapes were predicted to increase (Fig 7). Dropping the extreme slipped amount datapoint at

~35^2 tonnes for Vessel A from the dataset did not substantially alter coefficient estimates or

overall inferences drawn from the model.

Fig 6. Probability of disorderly escape as a function of time. Estimated probability (with 95% confidence intervals)

of a disorderly purse seine exit over time for mackerel and herring from Vessel A and Vessel B. The lower panels show

the number of observed escape events per tenth-part of elapsed time.

https://doi.org/10.1371/journal.pone.0213031.g006
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Individual level behaviour

The selected model to explain tail beat frequency (TBF) during escape for mackerel and her-

ring contained “observation” and species as covariates. The covariates of “escape type” (large

group or not), “slipped amount” and “vessel” were not statistically useful predictors of TBF.

The observation position (either during or after slipping) significantly predicted TBF (LRT,

df = 1, LRT = 34.9, p =< 0.001), whilst species did not (LRT, df = 1, LRT = 1.36, p => 0.05).

The conditional pseudo R2 was 0.39; marginal R2 was 0.08, suggesting large differences in TBF

between different slipping events. Model predicted mean values indicated that both species

tended to increase their TBF after escape (by 15% for herring and by 17% for mackerel, Fig 8).

Furthermore, TBF was considerably more variable during escape compared with after escape,

particularly for mackerel.

Table 4. Dirichlet model ranking. Ranking of candidate Dirichlet regression models to explain the behavioural composition of fish whilst slipping from purse seines.

Model Covariates df Log-likelihood AICc ΔAICc Weight

M10 Amount + Vessel + Amount:Vessel 12 56.680 -65.361 0.000 0.380

M15 Amount 6 40.650 -64.880 0.481 0.299

M17 Null 3 35.668 -64.245 1.116 0.218

M14 Species 6 38.612 -60.803 4.557 0.039

M12 Area 6 38.163 -59.905 5.455 0.025

M13 Vessel 6 37.947 -59.473 5.887 0.020

M7 Width + Vessel + Width:Vessel 12 53.470 -58.939 6.421 0.015

M16 Rate 6 35.931 -55.440 9.921 0.003

M9 Amount + Species + Amount:Species 12 51.251 -54.501 10.859 0.002

M5 Area + Vessel + Area:Vessel 12 46.053 -44.107 21.254 <0.001

M1 Area + Amount + Area:Amount 12 45.067 -42.134 23.227 <0.001

M4 Width + Species + Width:Species 12 44.023 -40.045 25.316 <0.001

M11 Amount + Rate + Amount:Rate 12 42.869 -37.738 27.623 <0.001

M8 Rate + Area + Rate:Area 12 42.413 -36.825 28.536 <0.001

M6 Depth + Vessel + Depth:Vessel 12 42.177 -36.354 29.007 <0.001

M2 Area + Species + Species:Area 12 41.206 -34.412 30.949 <0.001

M3 Depth + Species + Depth:Species 12 41.049 -34.099 31.262 <0.001

https://doi.org/10.1371/journal.pone.0213031.t004

Table 5. Dirichlet regression results of the most parsimonious model. Parameters of the best selected model to explain the behavioural composition (comprised of

small, orderly and disorderly behaviours) of fish slipped from purse seines, fitted by Dirichlet regression.

Behaviour Variable Estimate SE Z p
Disorderly (intercept) -1.455 0.455 -3.195 <0.01

Amount 0.110 0.033 3.352 <0.001

Vessel (Vessel B) -0.986 0.758 -1.302 0.193

Amount : Vessel (Vessel B) 0.190 0.077 2.472 0.013

Orderly (intercept) -0.626 0.549 -1.139 0.255

Amount 0.069 0.038 1.799 0.072

Vessel (Vessel B) -0.272 0.853 -0.318 0.750

Amount : Vessel (Vessel B) 0.307 0.082 3.765 <0.001

Small (intercept) -0.938 0.498 -1.883 0.059

Amount 0.034 0.034 0.993 0.321

Vessel (Vessel B) -1.510 1.035 -1.459 0.145

Amount : Vessel (Vessel B) 0.271 0.095 2.835 <0.01

https://doi.org/10.1371/journal.pone.0213031.t005
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Discussion

Efforts to maximise post slipping survival through better catch control earlier in the capture

process (such as those described by [55] and [56]), may be negated if the slipping process itself

further compromises the welfare of released catches. As such, it is important to understand

how slipping methodology affects welfare. The results of this study describe the behaviour of

mackerel and herring during slipping from purse seines, and highlight factors affecting the

observed behaviour. To our knowledge, these observations are the first to describe fish behav-

iour whilst slipping from purse seines in the field.

Previous work on slipping has focused mainly on either small [20], mid-sized [17,57] or

large-scale experiments [18,19,21] to estimate post slipping mortality and characterize physio-

logical responses or has addressed specific topics such as the extent of slipping in particular

fisheries [13]. [58] demonstrated that the method of slipping can significantly impact subse-

quent survival. However, none of these studies have examined behaviour or welfare implica-

tions in the field during the slipping process itself, although [59] showed impaired behaviour

in response to predation following laboratory simulated slipping and [56] demonstrated that

intra- and post-crowding behavioural responses could be used as a welfare indicator in

mackerel.

The majority of slipped fish escaped the purse seine in a way which was likely to have

minor welfare impacts (orderly escapes), as part of a large group in one self-contained period

of time. These escapes typically took place towards the end of the slipping event. Fish escaping

in such a way maintained schooling structure and therefore also presumably schooling func-

tion [60], with a low risk of individual physical injury by avoiding contact with conspecifics

and the fishing gear. However, a large proportion of fish escaped purse seines in a way in

which was likely to impact negatively upon their future survival potential (disorderly escapes),

as schooling structure broke down and contact with conspecifics and gear occurred. Mackerel

Fig 7. Behavioural composition as a function of slipped amount. The relationship between slipped amount and the composition of slipping behaviour

(comprised of the behavioural units of disorderly, orderly and small) for herring and mackerel released by two different purse seine vessels. For Vessel B, note

that the regression lines for “Disorderly” and “Small” overlap.

https://doi.org/10.1371/journal.pone.0213031.g007
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and herring are particularly vulnerable to mortality following physical injury [17,56,61–64].

Furthermore, a loss of predator avoidance, increased cost of locomotion, reduced information

transfer rates and impaired foraging benefits can be expected when schooling structure fails

[60].

For most of the time that the discharge opening was open, fish failed to escape and the

probability of an escape increased over time. This result may be explained by two hypotheses;

either the fish had difficulties finding the discharge channel or they were able to find it but

were unwilling to use it. We propose that the second explanation is more likely, as we observed

times when schools were extremely close to the discharge channel but did not escape; showing

a reluctance to cross the threshold presented by the discharge opening/bunt end (see example

in Fig 3). This explanation is further supported by the propensity for “return” events in which

escaped fish turned and re-entered the net. Taken together with the fact that most fish escaped

in large groups, these results indicate that individual fish were reluctant to leave the net

because to do so would mean abandoning the anti-predator advantages of being in a school

[60], in a situation they likely perceive as highly threatening. This suggests the current slipping

method is dependent upon fish being effectively “forced” out of the net by the reduction in

available volume as the net is hauled and the concurrent increase in negative stimuli (increas-

ing noise, visual stimuli of netting approaching, unavoidable close proximity to conspecifics,

etc.) as that process takes place. This contention is supported by the increase in probability of

disorderly escapes for both species with increasing time. It is likely that as the net is hauled fur-

ther after the formation of the discharge opening, the volume inside the purse seine reaches

levels in which normal schooling behaviour is restricted and negatively perceived stimuli reach

a high intensity, resulting in disorderly behaviour. Therefore to minimize negative effects on

welfare, efforts should be made to develop ways to encourage fish to escape earlier in the slip-

ping process, perhaps by altering the available visual stimuli or contrast of the discharge open-

ing and/or the bunt end of the purse seine [65].

If the welfare of slipped purse seine catches is to be ensured it is important to identify the

causes of such behaviour. Species was a key determinant of disorderly escape behaviour; for

mackerel, there was a higher tendency towards disorderly escapes compared to herring. This

observation matches previous work demonstrating a higher mortality rate for mackerel [19]

Fig 8. Tail beat frequency during and after escape. Model predicted mean (with 95% confidence intervals) tail beat

frequency of mackerel and herring during and after slipping from purse seines.

https://doi.org/10.1371/journal.pone.0213031.g008
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than herring [21] in large scale slipping trials and species-specific differences in the response

to purse seine capture [66,67]. The reasons for these behavioural differences are likely linked

to differences in sensory modalities and the ability to respond to stimuli associated with purse

seine capture. For instance, mackerel are likely less sensitive to sound [66] and have stronger

swimming ability than herring [68]. However, the key sense in the maintenance of schooling is

vision [69], and as such, differences in the ability to detect visual stimuli or differing responses

and reaction thresholds to visual stimuli likely account for the difference. Although [70] noted

schooling mackerel turned or swam erratically in response to visual stimuli, no authors have

examined differences in the school level responses to visual stimuli between the two species.

Some species-specific regulation of slipping practices is incorporated in current legislation

[22] but may need to be expanded to fully account for this effect. In light of the fact that slip-

ping behaviour appears to be species specific, future studies should work to quantify behaviour

in other species targeted by purse seine, such as capelin (Mallotus villosus) and sardine.

The amount of fish released had a clear effect on slipping behaviour. Increases in the pro-

portion of schooling structure breakdown (disorderly escapes) were seen with increasing

amounts of slipped fish for one vessel, while the opposite trend was seen for the other. As the

volume of the net decreases during hauling, the available space for schooling is reduced,

increasing school density and especially so for larger catches [55]. It is therefore likely that dif-

ferences in school density account to some degree for why slipped amount affects slipping

behaviour. Schooling is integral to the life history strategies of mackerel and herring, allowing

the rapid transfer of information between individuals and resulting in complex and coordi-

nated collective level responses to stimuli [71]. This is achieved by adherence by schoolmates

to simple behavioural rules of far field attraction, near field repulsion and alignment [72].

Importantly, the speed and effectiveness of information transfer is dependent on school den-

sity [73] and an increase in coordinated responses typically accompanies increases in schooling

density [74]. Larger (and consequently, denser) catches should therefore theoretically be more

coordinated upon slipping, meaning less disorderly and more orderly escapes. We observed

this effect on only one of the vessels (Vessel B). It would therefore seem that for the other ves-

sel, increases in density caused the individual behavioural rules that define coordinated school-

ing to break down for a larger proportion of the catch. The reason for this difference between

vessels is not immediately clear, as both operated with nets of similar sizes and therefore simi-

lar changes in school density with hauling can be expected. However, as the majority of obser-

vations from Vessel B were comprised of herring, a species effect cannot be fully discounted

here and indeed, the Dirichlet model containing the “species” covariate alone was relatively

well supported. Taken together, these results suggest for some conditions, the slipping method

examined here is increasingly unsuitable as the amount of slipped fish increases, and alterna-

tive methods for such situations may need to be developed.

In all of the mixed modelling, the variance explained by the conditional effects was consid-

erably larger than fixed effects alone, indicative of a high degree of variation in the manifesta-

tion of escape behaviour between different slipping events. Diversity in the behavioural

response of different fish schools to purse seine capture has been observed previously

[66,67,75,76]. In these cases, differences may have arisen due to differences in behavioural sti-

muli between different capture events, such as light levels between night and day [66,75] or the

particular hydrographic conditions which may have altered vessel generated stimuli such as

noise [76]. Other explanations include school specific factors such as difference in initial activ-

ity level [66] or position within the purse seine upon encirclement [67]. It is likely such factors

also play an important role in determining the expression of slipping behaviour as well, and

may therefore help to explain why we observed such large variations in behaviour between dif-

ferent slipping events. Factors such as biological condition (which varies considerably between
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seasons for mackerel and herring) or behavioural state of the school prior to encirclement may

also influence subsequent slipping behaviour. For example, a school previously under attack

from a predator can be expected to differ in response to capture than a school simply migrat-

ing. Of particular importance to slipping behaviour however may be wind and current condi-

tions, which dictate the extent that side thruster propellers are used by the vessel. Thrusters

likely introduce extreme auditory stimuli at close range to the fish, as well as deforming the

shape of the net and should be monitored in future studies examining slipping behaviour. This

said, the diversity of factors potentially affecting behaviour highlights the difficulty in minimiz-

ing welfare impacts on slipped catches in a consistent manner.

The dimensions of the discharge opening were likely of an adequate size to release at least

small schools without interfering with behaviour substantially. However, we observed

instances of disorderly behaviour in even the smallest slipped amounts (�1 tonne). Con-

versely, the relatively small size of the discharge opening in comparison to the larger catch

sizes we observed (up to 1200 tonnes) would make it highly improbable that such a large mass

of fish could be released without at least some effect upon their behaviour. These facts together

with the result that models containing discharge opening dimensions were not well supported,

suggests that slipping behaviour was primarily determined inside the bunt end prior to escape.

However, from our observations, we were unable to determine if this was the case due to the

positioning of the cameras. Such knowledge would further inform science-based regulation of

slipping practices and may be gathered by linking behavioural observations of schooling

behaviour inside the purse seine to behaviour at the point of slipping.

Although the effects of species and vessel could not be fully resolved by Dirchelet regression,

the GLMM results indicate a clear effect of vessel in disorderly escape probability. Fish slipped

from Vessel A had a higher probability of welfare compromising behaviour than fish from Ves-

sel B for any given time during slipping. The reasons for this are likely related to vessel specific

behavioural stimuli not encompassed by the covariates we monitored, as well as the particular

handling style of the gear by the fishers. It should be noted that purse seine nets in the water are

dynamic, adopting different shapes depending, in part, on how they are handled [2,55]. There-

fore, net structure may cause localized areas of high schooling density, resulting in school struc-

ture breakdown. It is worthwhile to highlight that the vessel which minimized disorderly escape

behaviour was the coastal vessel. Norwegian coastal purse seiners (including Vessel B, J. Salt-

skår, pers. comm.) have a tradition of live transfer and storage of catches to holding pens [61], to

enable them to take catches in excess of their hold capacity as well as allowing some optimisa-

tion of when the catch is sold. This experience could result in more welfare friendly slipping

practices. Whatever the explanation, it is encouraging that certain vessels have the capacity to

release fish in a welfare friendly manner probably due primarily to their handling of the gear,

and future work should focus on identifying these handling parameters.

Examination of tail beat frequency (TBF) allowed us to examine behaviour on the level of

individual fish. For both species, TBF increased following escape from the purse seine. A posi-

tive correlation between TBF and swimming speed has been reported for many species

[40,77,78], including mackerel [79] and herring [80]. It is therefore reasonable to assume,

based on TBF, that fish increased their swimming speed following escape from the purse seine.

Comparison of swimming speed between mackerel and herring based on our data is however

invalid, due to differences in stride length (the distance covered per tail beat) between species

and individual level-effects (eg. differences in sizes of individual fish [38]). Drawing inferences

on the welfare implications of this increase in speed is also difficult; while the animal may

move away from the capture related stressors inside the net more rapidly when swimming

faster, it could also be forced to respond beyond its normal physiological capacity [81] thereby

making such a response maladaptive.
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Increases in swimming speed in small pelagic species have been noted previously in

response to stressors [35,82], as the fish attempt to avoid threats. As such, one might expect

that swimming speed would be reduced after escape, as there would presumably be a reduction

in negatively perceived stimuli once outside the net. However, this was not the case. It could be

that the dimensions of the discharge opening restricted free-swimming movements for fish in

large groups, but in that case, differences in TBF between fish escaping individually or in small

groups would be expected and this effect was not observed. More likely is that the restrictive

volume available for swimming inside the net meant that individual fish could not swim in a

straight line and were forced to swim in either circular milling patterns (as suggested by [67])

or with pronounced and numerous alterations in direction. Fish not swimming in straight

lines can be expected to have lower speeds [83]. It is probable that this restriction in speed was

evident when fish first escaped the net but was removed allowing the fish to accelerate by the

time they passed the “drop camera” a few seconds later. This suggestion is supported by the

observation that schools were always polarised and coordinated after escaping; that is, their

swimming path was straighter. [59] examined behaviour in sardines (Sardina pilchardus) and

found a reduction in swimming speed after simulated purse seine slipping. The difference

between this and our results can be explained by the timing and nature of the observations;

[59] examined swimming speed up to 3 days post-slipping in the laboratory while we exam-

ined speed immediately post-escape in the field.

For the majority of time, the discharge channel was out of the field of view of the cameras,

preventing any quantification of slipping behaviour during these occasions. Although this will

have reduced our overall observed time, it is unlikely to have influenced our overall conclu-

sions regarding the behavioural composition and timings of slipping events. The discharge

cameras were attached to the discharge opening itself, and as the opening moved around in

the water in response to the current and waves, so the cameras moved, sometimes encompass-

ing the discharge channel in their field of view and at other times not. Therefore, our observa-

tions can be thought of as random snapshots of escape behaviour throughout the slipping

event, with no systematic biases. Recent advances in underwater video technology [84] may,

however, allow future observations to be conducted at distance from the discharge channel,

avoiding the need to attach cameras to moving gear and thereby increasing the amount of

observed time.

There are potentially additional explanatory variables that influence slipping behaviour

which we did not include in our analysis. The duration of the fishing operation up to the point

of slipping often varies due to operational reasons onboard and may therefore have an impor-

tant effect on determining behaviour upon escape due to differences in the duration of expo-

sure to capture related stressors. Furthermore, as herring and mackerel are ectothermic, their

potential for behavioural activity is determined to some degree by temperature. Our observa-

tions likely encompass a range of temperatures due to the large temporal and spatial extent of

our study, but we did not record this parameter. Likewise, schooling is chiefly mediated visu-

ally [69] meaning that differences in lighting conditions (including night versus day) between

casts may have further influenced schooling behaviour. The majority of our dataset consisted

of complete slipping events, meaning that for these cases slipped amount was a fair proxy of

crowding density prior to slipping. However, it may have been informative to relate beha-

vioural composition to crowding density for the few casts in our dataset which represented

partial slips. Accounting for variables such as these may have helped to further explain the vari-

ability in the composition of the collective slipping behaviour we observed between different

casts and vessels.

In conclusion, the results show that the slipping method examined primarily releases fish in

a manner that is likely to have minor welfare impacts. However, the method can also induce
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behaviours that may be indicative of compromised welfare and subsequent survival. The

results also indicate that the probability that welfare compromising behaviour will be

expressed is situation specific, and depends on the particular slipping event, the species being

released, the particular vessel releasing the fish, how long the discharge opening has been open

and the amount of fish being released. In order to improve slipping methodologies, further

investigation is needed to highlight additional factors affecting behaviour which may further

explain the observed variability between events, and to definitively link slipping behaviour to

subsequent mortality.

Supporting information

S1 Video. “No escape” video sequence. An example of the “No escape” behavioural unit,

recorded by the horizontally orientated discharge camera.

(MP4)

S2 Video. “Single fish” video sequence. Examples of the “Single fish” behavioural unit,

recorded by the vertically orientated discharge camera.

(MP4)

S3 Video. “Small group” video sequence. An example of the “Small group” behavioural unit,

recorded by the horizontally orientated discharge camera.

(MP4)

S4 Video. “Orderly” video sequence. Examples of the “Orderly” behavioural unit, with perse-

pctives recorded by the both the horizontally orientated and the vertically orientated discharge

cameras.

(MP4)

S5 Video. “Disorderly” video sequence. Examples of the “Disorderly” behavioural unit,

recorded by the horizontally orientated discharge camera.

(MP4)

S6 Video. “Return” video sequence. Examples of the “Return” behavioural unit, with persec-

tives recorded by the both the vertically orientated and the horizontally orientated discharge

cameras (equipped with red light).

(MP4)

S7 Video. “Drop camera” video sequence. Examples of the perspective given by the drop

camera.

(MP4)

S1 Dataset. “Dataset A”. Dataset containing observations of tail beat frequency during and

after escape from purse seines.

(CSV)

S2 Dataset. “Dataset B”. Dataset of behavioural time budgets per slipping event.

(CSV)

S3 Dataset. “Dataset C”. Dataset of the most dominant slipping behaviour per 10 second

interval of slipping.

(CSV)

S1 Fig. The most dominant slipping behaviour patterns over time for mackerel and her-

ring from two different vessels. Vertical bar represent 10 second bins. A: Mackerel from
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Vessel A; B: Mackerel from Vessel B; C: Herring from Vessel A; D: Mackerel from Vessel B.

(TIF)
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