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Abstract

High-throughput sequencing technologies have greatly enabled the study of genomics, tran-

scriptomics and metagenomics. Automated annotation and classification of the vast

amounts of generated sequence data has become paramount for facilitating biological sci-

ences. Genomes of viruses can be radically different from all life, both in terms of molecular

structure and primary sequence. Alignment-based and profile-based searches are com-

monly employed for characterization of assembled viral contigs from high-throughput

sequencing data. Recent attempts have highlighted the use of machine learning models for

the task, but these models rely entirely on DNA genomes and owing to the intrinsic genomic

complexity of viruses, RNA viruses have gone completely overlooked. Here, we present a

novel short k-mer based sequence scoring method that generates robust sequence infor-

mation for training machine learning classifiers. We trained 18 classifiers for the task of dis-

tinguishing viral RNA from human transcripts. We challenged our models with very stringent

testing protocols across different species and evaluated performance against BLASTn,

BLASTx and HMMER3 searches. For clean sequence data retrieved from curated data-

bases, our models display near perfect accuracy, outperforming all similar attempts previ-

ously reported. On de novo assemblies of raw RNA-Seq data from cells subjected to Ebola

virus, the area under the ROC curve varied from 0.6 to 0.86 depending on the software used

for assembly. Our classifier was able to properly classify the majority of the false hits gener-

ated by BLAST and HMMER3 searches on the same data. The outstanding performance

metrics of our model lays the groundwork for robust machine learning methods for the auto-

mated annotation of sequence data.

Introduction

Viruses are numerous [1] and only a handful have been thoroughly characterized thus far [2].

As we have entered and slowly progress through the age of automated, high-throughput geno-

mics, generation of sequence data itself is no longer of much concern, but rather accurate

annotation of these sequences is the bottleneck in the expansion of biological knowledge. Rem-

nants of viral genetics are continually integrated into host DNA where they reside as
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proviruses. Additionally, a copious number of viruses serendipitously accommodate our bod-

ies as part of our microbiome (often called the virome [3]), deftly contaminate our working

samples in the laboratory, and profoundly enrich the ecology of our environment. The scien-

tific and pathological significance of viruses is astounding. The relevance of automated and

reliable identification and characterization of highly divergent and novel viruses in laboratory

samples and metagenomic data is now greater than ever.

The bacterial 16sRNA gene tremendously aids the study of bacterial phylogeny [4]. The

lack of an omnipresent gene or genome segment that can be ubiquitously used to extract phy-

logenetically relevant data about viruses, complicates the study of virus evolution [5, 6]. There

are additional levels to the structural complexity of viral genotypes. Viral genomes stand out

from those of all other genomic entities as they can be either single, double or gapped DNA or

RNA molecules with positive, negative or ambi-sense mechanism of genomic encoding,

whereas all known realms of life exclusively rely on DNA as the genetic material. These catego-

ries of classification are built on top of the original Baltimore scheme [7] that sought to charac-

terize viral genomes with regard to expression of genetic information [8, 9].

In the search for viruses in metagenomic data, researchers have noted that the usefulness of

homology-based search tools are quickly exhausted [6, 10]. Most assembled contigs, likely to

be from viral origins, are short and fragmented with no guarantee of containing coding regions

that some of these tools rely on [11]. A number of software programs have been developed for

the purpose of identifying viral sequences that have integrated into host genomes [12–15]. All

machine learning models built for identification and characterization of viral sequences from

cell samples or metagenomic data thus far rely on DNA sequences [16, 17]. RNA viruses com-

prise a major group having great clinical and scientific importance [18]. Presently made even

more evident by the global pandemic caused by the 2019 novel SARS Coronavirus [19]. It has

been demonstrated that RNA-Seq data can be a very promising avenue for improving knowl-

edge on RNA viruses when leveraged by tactful algorithms [20]. Here, we present a novel short

k-mer based scoring function that can be applied to sequences of different types to achieve

impressive discriminatory capacity from classic machine learning models. With our scoring

function, we were able to calculate the profiles of short genetic elements (k-mers) for RNA

virus genomes and human RNA transcripts. We trained a number of classical machine learn-

ing classifiers on our sequence-derived numerical data in an attempt to classify assembled

RNA sequences of unknown origin as either viral or cellular RNA. We tested the models rigor-

ously using stringent cutoff parameters and many variable test sets including noisy de novo

assembly data of cells cultured with Ebola virus. Furthermore, we demonstrated the flexibility

of this approach by attempting to classify an RNA virus genome sequence from NCBI as either

a positive-strand (ssRNA(+)) or a negative-strand (ssRNA(-)) RNA virus. We evaluated the

performance of our selected model against nucleotide blast, protein blast and protein family

HMMER3 search. In spite of the stiff testing protocols, our k-mer based numerical features

stood out to be informative and robust datapoints for the classification of biological sequences

by machine learning algorithms.

Results

Feature selection and scaling

A total of 5460 features were contrived using the sequence scoring formula for k-mer elements

of length 1 to 6. The feature columns were tested for data normality by several methods. Q-Q

plots of the data columns were suggestive of a normal distribution (not shown but can be

found on git repository), but more robust statistical normality tests such as the Kolmogorov-

Smirnov test and Shapiro-Wilk test strongly delineated a non-normal distribution for all
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feature columns. Our features were therefore not suitable for univariate statistical analysis for

feature selection.

The in-built, tree-based feature importance values of the scikit-learn library derived from

our trained Random Forest classifier were applied for feature selection on two levels. Similarly,

the scikit-learn optimized Lasso model applied to our trained Logistic Regression classifier

with L1 penalty was also used for feature selection on two succeeding levels. Using a combina-

tion of both our tree-based selections and Lasso, we obtained a total of 6 levels of feature

importance categories (4 from the trees and Lasso themselves and 2 more for each method

leading into the other on a second level), each assigning a value of 1 to selected features and 0

to omitted ones (Fig 1). The top 3 feature sets ranked by importance from these 6 combined

levels of selection are presented in Table 1. The complete table can be viewed in S1 Table. To

simplify the model, make it more computationally scalable and remove noisy features, we

selected 68 features that scored above 4 in our feature selection table. For comparison, models

were trained on the 194 Features scoring above 3 as well, which includes the entirety of the fea-

tures in Table 1.

Performance of different classification algorithms

A total of six different types of classifier models were built- Logistic Regression Classifiers, Lin-

ear Support Vector Classifiers, Kernel based Support Vector Classifiers, Decision Tree Classifi-

ers, Random Forest Classifiers and Gaussian Naïve Bayes Classifiers. For performance

evaluation, all classifiers were trained thrice using 5460, 194 and 68 features accordingly. The

train-test split was 25% and for cross-validation we applied 10-fold cross-validation on 9:1

fractions of the training set. The train-test split on each iteration was random. However, multi-

ple iterations with new splits were carried out for all training events to ameliorate any random

split biases.

Fig 1. Feature selection algorithms applied on succeeding levels to scale the model. Tree-based and Lasso regularization-based feature selection applied on

two levels successively yielded 6 total sets of features on the corresponding criteria of selection.

https://doi.org/10.1371/journal.pone.0239381.g001
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For NCBI-viruses and human transcriptome data, all models displayed robust performance

with high discriminatory capacity among the two classes (Table 2). The effects of feature

reduction on the models can be viewed in the AUROC curves in Fig 2 and the S1 Fig. The

poorest performing model was the Gaussian Naïve Bayes classifier trained on all 5460 features.

The macro-averaged f1-score for the model was 88% and the binary f1-score was 81.83%.

Among the others, the decision tree models with 5460 and 194 features and the Naïve Bayes

model trained with 68 features were the only models to obtain binary f1-scores below 95%. All

other models displayed resounding accuracy on both their cross-validation and test sets.

Model selection

The best performing models were the logistic regression model with 194 features, the linear

SVM model with 194 features and Kernel SVM models with 194 and 68 features, all displaying

perfect classification accuracy on many random train-split-evaluate iterations (Table 2). The

virus data set consisted of a total of 56 ssRNA(+) and ssRNA(-) families. It is common practice

with such classifiers to carry out a separate cross-validation where the classifier is trained on

the data set leaving out viruses belonging to a family to later use that family of viruses as an

exclusive test set for evaluation [16, 21, 22]. We performed this leave-one-out cross-validation

procedure for all 18 built classifiers. The complete results can be viewed visually on Fig 3 and

numerically on S2 Table. Out of the four best-performing models previously mentioned, the

logistic regression model with 194 features and the Kernel SVM model with 68 features dis-

played the best evaluation scores on the leave-one-family-out cross-validation test. Because the

performance of the 194-feature logistic regression model is only slightly improved than the 68

feature Kernel SVM model, and because it is much more computationally demanding to

Table 1. Top 3 k-meric features sets when ranked by feature importance instated by our feature selection flow-

chart.

Summed Feature

Importance

Features

6 TTGACG, TAGCGT, ATACGC, CAAT, AAAAA, CCAAT, CATACG, TGAT,
CGATA, AAAAAA, TCAATC, CAATTG, CGGTAA, GTTGA, GTTGAC,
CGATAG, CCAATT, GGTTGA, ACCAAT, TCAA, TTGTCG, CGTCAA,
CGGTTA, CAATCG, CGTTGA, TGTCGA, CGCAAT, CAAC, GTCGAA, GGTA,
GTTG, GGTT

5 CAATC, TCCAAT, GCAATC, TTGAC, CGTAGT, ACGGTT, TTGA, GTTGGT,
CATCAA, ATACGG, ATCGTA, CGATAA, CGATTA, GTTGAT, CGAT, CGATC,
CGGTT, GCGTAC, CGCGTT, TTGCG, CGTCGA, CAATCT, ATCAAC, ATTGG,
ATAGCG, GATC, TTGCGC, GGTTG, TCGGTT, GTCAAT, ATCAAT, TTCGAC,
CCGTTA, CCGATA, TCGA, GCGTTA

4 ATCATA, ACAATC, CGTA, TCGT, ATGGTA, GGTAGT, TGGT, CTGT,
GTCGA, AGCTG, GTCAA, AAATAA, TCCTG, CAGC, TATCCG, CTGGA,
CAATT, TCGGTA, AGGAA, ATCAA, ATAACG, TCCAAC, AATTGG, AAATG,
TGGTTC, AACC, TTGATG, GGCGTA, TGGTT, CGTTGC, GTCGAC, TCAAC,
CAGA, TCAATT, CAGAG, TCAAT, AGGTTG, TCAACC, CGCGTA, ATCCAA,
GGTACG, GTCATA, ATTGGT, GCATAC, GGTATG, GATTGG, GTACGC,
AACCGA, TCGCAA, TTTTTA, ACATCG, GCGTAA, TTTTTT, ACCGGT,
GTTGAG, TAACAC, ATAGGG, CGCAA, CCGCAA, CGGTTG, TATGGT,
AACGGT, TAGGGT, CTAACG, CGGTA, GTTGT, GGTTC, ACGATA, TTCGCA,
CTCGAT, TCGAGT, AAAATG, TCCAT, GTCAAA, AATAAA, TTGGCG,
GTTGC, GGTCAA, CTGTA, ACGCAA

The summed feature score is obtained by summing the total number of times the feature appears in the six filtered

feature sets we obtained from our selection algorithm. The remainder of the table can be found in S1 Table.

https://doi.org/10.1371/journal.pone.0239381.t001
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calculate 194 feature scores than to calculate 68, we select our 68 feature Kernel SVM model as

the final model for ultimate evaluation on real data.

Ability to generalize across species

The performance of the classifiers at this point far exceeded the outcomes of other classifiers

built for the same task in previous studies [11, 16, 17, 21]. Given that the focus of these previ-

ous classifier were genomic DNA data, in order to test whether this performance amplification

was entirely attributable to the greater homogeneity RNA sequences and their shorter lengths

compared to genomic DNA sequences, we studied the performance of the classifier on

Table 2. Performance metrics of 18 models fitted and the selected model.

Part 1: Performance of 18 fitted models on cross-validation and test sets

Model Features Correct/TP False

Positives

True

Negatives

False

Negatives

cv_bina

mean

cv_bin

stde
cv_macb

mean

cv_mac

stde
f1binc f1macd

Logistic

Regression

5460 1049 4 3844 1 0.997559 0.001668 0.998457 0.001054 0.997622 0.998486

Logistic

Regression

194 1020 0 3878 0 0.999194 0.001485 0.999489 0.000942 1 1

Logistic

Regression

68 1025 10 3851 12 0.983759 0.005604 0.989727 0.003549 0.989382 0.993267

Linear SVM 5460 1010 2 3885 1 0.995825 0.000784 0.997351 0.000498 0.998517 0.999066

Linear SVM 194 1081 0 3817 0 0.99885 0.001281 0.999275 0.000808 1 1

Linear SVM 68 954 13 3922 9 0.985245 0.005137 0.990608 0.003267 0.988601 0.992902

RBF Kernel

SVM

5460 995 1 3897 5 0.996293 0.00178 0.99765 0.001127 0.996994 0.998112

RBF Kernel

SVM

194 1049 0 3848 1 0.99656 0.001552 0.997829 0.000978 0.999524 0.999697

RBF Kernel

SVM

68 1012 0 3883 3 0.997572 0.001661 0.998463 0.001051 0.99852 0.999067

Decision Tree 5460 964 51 3817 66 0.939809 0.007824 0.961954 0.005977 0.942787 0.963846

Decision Tree 194 1006 67 3775 50 0.947326 0.006255 0.966403 0.004345 0.945045 0.964892

Decision Tree 68 1013 54 3786 45 0.943388 0.009383 0.964025 0.006727 0.953412 0.970253

Random Forest 5460 1032 0 3847 19 0.989437 0.003518 0.991985 0.002445 0.990879 0.994208

Random Forest 194 973 1 3911 13 0.991293 0.003575 0.994484 0.002069 0.992857 0.995535

Random Forest 68 987 3 3886 22 0.988948 0.003525 0.993217 0.001624 0.987494 0.992144

Naïve Bayes 5460 973 377 3493 55 0.81459 0.013953 0.877261 0.009596 0.818335 0.880049

Naïve Bayes 194 997 23 3867 11 0.982157 0.005434 0.988655 0.003468 0.983235 0.989429

Naïve Bayes 68 970 95 3812 21 0.942488 0.012554 0.963099 0.0081 0.94358 0.965126

Part 2: Performance of the Selected Model and our Random Forest Model on Divergent Data

Model Features True

Positives

False

Positives

True

Negatives

False

Negatives

f1bin f1mac

rbf-SVM68 68 1855 92 11259 677 0.82830989 0.897644

RF68 68 1814 32 11319 718 0.8286889 0.898311

Part 1 lists the performance metrics on the test splits of the training data and Part 2 lists the performance on the divergent data comprised of viruses of other genotypes

and mouse RNA transcripts.
a binary f1 score in cross-validation sets.
b macro averaged f1 score in cross-validation sets.
c binary f1 scores in test sets.
d macro f1 scores in test sets.
e standard deviation.

https://doi.org/10.1371/journal.pone.0239381.t002
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systematically divergent data sets. We scored the sequences of total 77 other families (S3

Table) of viruses having DNA, cRNA and dsRNA genomes of similar length, and 11351

Fig 2. AUROC for 18 fitted models trained while varying the number of features selected. (a) Performance of all classifiers with all features. (b)

Performance with 194 features after first round of selection. (c) Performance with 68 selected features. The weakest performing model was the Gaussian Naïve

Bayes model displaying 0.96 AUC. No significant decline in model performance was noted when feature numbers were shrunk from 194 to 68.

https://doi.org/10.1371/journal.pone.0239381.g002

Fig 3. Leave-one-family-out cross-validation results heatmap. For every RNA virus family on the horizontal axis, there is a performance score for each model

in the vertical axis. Other than the Decision Tree and Naïve Bayes models, performance was reasonably uniform all throughout the map.

https://doi.org/10.1371/journal.pone.0239381.g003

PLOS ONE Short k-mer abundance profiles yield robust machine learning features and accurate classifiers for RNA viruses

PLOS ONE | https://doi.org/10.1371/journal.pone.0239381 September 18, 2020 6 / 23

https://doi.org/10.1371/journal.pone.0239381.g002
https://doi.org/10.1371/journal.pone.0239381.g003
https://doi.org/10.1371/journal.pone.0239381


putative-expressed RNA sequences of similar length from the Mus musculus whole transcrip-

tome (S3 Table).

The 68 feature rbf-SVM model was able to accurately classify 13114 of 13883 test sequences

with 1855 true positives, 92 false positives, 11259 true negatives and 677 false negatives with an

AUROC of 0.95 (Fig 4). The f1-macro score was 0.89 and the f1-binary score was 0.83 (Table 2

Part 2). Performance of this magnitude on novel divergent data concerns one to be critical of

the evaluation procedure and the presence of possible internal biases within the data set. How-

ever, this leaves out any possibility of overfitting of the model itself. Tree-ensemble models are

known to stand out to be good discriminators in biological data [15, 23], particularly because

of their propensity against overfitting. Our 68-feature random forest model displayed impres-

sive classification accuracy and an AUROC of 0.96 on this divergent test set (Fig 4).

Evaluation of performance against nucleotide BLAST

The unfaltering performance of the model in tests carried out thus far led us to suspect system-

atic biases present in the available RNA sequence data and however stringent, question our

Fig 4. Performance of the rbf-SVM68 and RF68 models on divergent data set. To assess the capacity of our models to generalize to new examples, we

attempted to confound the model with sequence data from viruses of other genotypes (having other than plus and minus RNA genomes) and RNA transcripts

from mice (Listed in S3 Table). The robustness of the model performance metrics was still found to be intact.

https://doi.org/10.1371/journal.pone.0239381.g004
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testing protocols. For final evaluation it was indispensable that the model be put to the test

against noisy real-word RNA-seq data lacking the meticulous curation that our previous data

sets had. We collected de novo transcriptome assembly data for cultured human (H. sapiens),
mice (M. musculus) and human cell lines incubated with an ssRNA(-) virus, Ebola virus from

a previous cross-study on de novo assembly of RNA-seq data [24].

The best current standard for sequence-based taxonomic identification is the BLAST align-

ment algorithm [25]. Many correlated evolutionary forces govern both the conservation and

divergence of sequence data, and as an artifact of these forces, even across the most divergent

species, many gene families are shared and homologous sequences are found. This compro-

mises the ability of sequence alignment protocols to properly label sequences that might have

originated from highly divergent sources that are yet to be characterized and annotated in the

current data repositories.

In the Homo sapiens transcriptome assembly, carried out on GM12878 human gamma-

herpes virus 4 transformed B-lymphocyte cell lines, nucleotide blast query against our sequence

database of ssRNA(+) and ssRNA(-) viruses yielded 135 false positives (S4 Table). These false

positives were attributed to sequence regions of bovine viral diarrhea virus, giraffe pestivirus

and a betacoronavirus that shared homology with some human ubiquitin gene transcripts and

heat-shock protein 40 gene transcripts. Our 68 feature rbf kernel SVM model correctly classified

101 of these false positives giving us an accuracy of 75% on the unary data. When feeding the

entirety of the human cell line assembly into our classification pipeline we achieved an accuracy

of 63% for transcripts of all sizes and a much-improved value of 95% when taking transcripts of

the same length range as our training data (Table 3). Similarly, nucleotide blast had given 130

false positives on the Mus musculus transcriptome assemblies (S5 Table), whereas our model

accurate classified 93 examples with 72% accuracy on the unary class.

In the 23-hour Ebola virus with cells incubate, local nucleotide BLAST against our in-house

RNA virus database had 10675 unique hits. Upon a second local nucleotide blast of these

10675 results against our human transcriptome training data, we obtained 3483 unique hits.

Since we previously found only three virus sequences that originally had blastn hits against the

whole human transcriptome, we labelled these second hits as belonging to the human class.

This left us with a test set of 7146 positive class transcript examples for RNA viruses and

1172471 negative class examples of human transcripts in the whole 23-hour cell incubate with

Ebola virus. The area under the ROC curve was 0.807 and 0.777 for all transcript sets and tran-

script sets of lengths resembling the training data respectively (Fig 5). The AUC improves

more drastically when only human transcripts are filtered leaving all the virus transcripts still

in the test set, owing to the minimized skew of the separate classes (Fig 5). The classification

metrics from all instances are presented in Table 3.

Given the reported generalization prowess of the classifier from the original test set split

and leave-one-out cross-validation, the classifier was expected to perform better on the real

transcript data. Discordant with the previously observed success rate of the model, it per-

formed better on the human samples compared to those of viral origin (Table 3). To further

investigate the despondence of the model, we assessed the performance of the 10 assembly

software separately. This revealed that performance varied significantly between the different

assembly software that joined the contigs (Fig 6). Table 3 lists the performance metrics on the

10 assembly software based on virus/human labels instated from nucleotide BLAST results.

Evaluation of performance against protein BLAST and HMMER3

For characterization of viral genomic data, protein BLAST or NCBI blastx is often used [26,

27]. Hidden Markov Model based multiple-alignment-profiling methods have also drawn the
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interest of researchers for the task [22, 27, 28]. These methods rely on primary protein

sequences for distinction between virus and non-virus data. Although protein primary

sequences are more reliable and informative because they lack noisy repeats and ‘junk’ that is

characteristic of nucleotide sequence data, the dichotomy for their use in taxonomic classifica-

tion lies in the fact that they share more homology across species than general sequence data.

For these protein-based detection methods, it is common procedure to first weed out the

Table 3. Performance metrics of rbf-SVM68 model on real data.

data set Transcript/

Software Filters

Total Number

of Transcripts

True

Positives

False

Positives

True

Negatives

False

Negatives

f1binary f1macro AUROC Unary

Accuracya

Unary Homo Sapiens

Transcriptome Assembly

All 6303331 N/A 2327082 3976249 N/A N/A 0.38681 N/A 63%

Unary Homo Sapiens

Transcriptome Assembly

Length Filtered 146382 N/A 7067 139315 N/A N/A 0.487632 N/A 95%

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

All 1179617 5318 331849 540622 1828 0.03089 0.432644 0.799 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

Both Class

Length Filtered

142803 49 3799 138906 49 0.024835 0.505587 0.776 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

Only Human

Length Filtered

149851 5318 3799 138906 1828 0.684 0.817074 0.951 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

bridger 83744 16 20252 63452 24 0.001576 0.431906 0.6 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

idba-tran 78116 30 19860 58182 44 0.003005 0.42847 0.604 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

soap-trans-

default

131711 19 44147 87538 7 0.0086 0.399727 0.793 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

rna-spades 206133 372 71543 134089 129 0.010274 0.39969 0.775 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

spades 93814 4488 25645 62559 1122 0.251126 0.537447 0.843 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

trinity 97849 32 22936 74839 42 0.002778 0.434846 0.611 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

oases 178498 180 34721 143373 224 0.010197 0.450784 0.691 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

trans-abyss 213005 171 68268 144346 220 0.004969 0.406611 0.583 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

binpacker 12291 7 800 11468 16 0.016867 0.491256 0.657 N/A

Homo Sapiens Cell Incubate

with Ebola Virus

Transcriptome Assembly

shannon 84456 3 23677 60776 0 0.00253 0.418611 0.862 N/A

a Unary accuracy is used to assess performance for test sets containing only one class of examples and thus rendering f1 scores uninformative.

https://doi.org/10.1371/journal.pone.0239381.t003
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profiles/protein-families against a negative control as they would otherwise display a great pro-

pensity towards false positives hits [20].

BLASTx employs a built-in 6 frame-translation algorithm. In order to gain more control

over the protocol, we built a Python based in-house six-frame ORF translator with biopython

that uses the standard genetic code table (ncbi-translation table ID 1). Short ORFs that are not

part of any genes, do not code for proteins and occur entirely due to chance are dispersed

throughout genomes. By plotting the frequency of proteins discovered against the protein

length cutoff threshold, it was evident that at a length of about 100 amino acids, non-genic ran-

dom ORF numbers significantly subside (Fig 7). Using this 100-amino-acid cutoff for 6-frame

in-silico translation, we translated our entire ssRNA sequence data set and all human de novo

transcriptome assemblies to proteins. Querying the complete human proteome for these trans-

lated protein sets yielded vast numbers of false positives with very low expect values. We found

1083 in-silico translated viral proteins to have hits with human proteins with a 0.01 e-value

cutoff and 27023 proteins with no cutoff. We sifted out these 1083 proteins showing multiple

Fig 5. Performance on RNA-Seq assembly data from human cells cultured with Ebola virus. The model performed the best with AUC of 0.95 when human

transcripts below the training range length were left out. Filtering the short virus transcripts out as well as the human transcripts resulted in a drop in the curve

owing to the skew in the number of examples belonging to the human class.

https://doi.org/10.1371/journal.pone.0239381.g005

PLOS ONE Short k-mer abundance profiles yield robust machine learning features and accurate classifiers for RNA viruses

PLOS ONE | https://doi.org/10.1371/journal.pone.0239381 September 18, 2020 10 / 23

https://doi.org/10.1371/journal.pone.0239381.g005
https://doi.org/10.1371/journal.pone.0239381


uninformative hits and created a new in-silico viral protein database of only informative pro-

teins. We were left with 38483 predicted proteins in the database. blastp searches on our infor-

mative in-silico viral protein database yielded 505794, 3392 and 34 false positives with cutoffs

of 10, 0.01 and 0.0001 respectively. Our rbf-SVM68 classifier showed a modest 62%, 64.2% and

70.6% recall in classifying these false hits as human transcripts in the unary data set (Table 4).

In the same manner, we sorted out 2346 uninformative vFams from the high performance

vFams vFam A available at http://derisilab.ucsf.edu/software/vFam/. Using hmmsearch on our

informative vFams against the de novo assembly data set yielded 26003 false hits. Our model

was able to correctly classify 14089 of these false hits as human transcripts as noted in Table 4.

Binary classification of plus and minus-strand RNA viruses

To demonstrate the flexibility of our computational pipeline for sequence classification, we

separately evaluated the selected model’s ability to distinguish positive and negative sense

RNA viruses with 5460, 194 and 68 features respectively. The models were able to very

Fig 6. Performance on RNA-Seq assembly of human cells cultured with Ebola virus based on the software for assembly. There is significant variation in

performance across the different assembly software. Spades had the most uniform performance where performance was modest whereas more popular

assembly tools such as trinity, oases and trans-abyss had poorer but similarly uniform performance.

https://doi.org/10.1371/journal.pone.0239381.g006
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Fig 7. Visualizing count of detected ORFs in RNA virus sequences changing in relation to the minimum length cutoff that was set. We would expect all

viral genomes to encode a minimal set of proteins necessary for successful replication and the number of these proteins to deviate minimally across viruses of

different types. The graph depicts that at a cutoff range between 100 and 150, we achieve the optimal cutoff point where only important ORFs that have greater

probability of being involved in the information pathway of the virus are considered.

https://doi.org/10.1371/journal.pone.0239381.g007

Table 4. Performance evaluation of rbf-SVM68 against BLAST and HMMER3.

Tool Cutoff Query Subject False

Hits

Our

Model

False

Positives

True

Negatives

Accuracy

BLASTn None Human Transcriptome De novo

Assembly

RNA Virus Sequence

Database

135 rbf-

SMV68

34 101 75%

BLASTn None Mouse Transcriptome De novo

Assembly

RNA Virus Sequence

Database

130 rbf-

SMV68

37 93 72%

BLASTx None Human Transcriptome De novo

Assembly

Informative Proteins

Only

505794 rbf-

SMV68

191958 315528 62%

BLASTx 0.01 Human Transcriptome De novo

Assembly

Informative Proteins

Only

3392 rbf-

SMV68

1214 2178 64.20%

BLASTx 0.0001 Human Transcriptome De novo

Assembly

Informative Proteins

Only

34 rbf-

SMV68

10 24 70.60%

hmmseach on informative

vFams

None Human Transcriptome De novo

Assembly

Informative vFam

Profiles Only

26003 rbf-

SMV68

11914 14089 54%

https://doi.org/10.1371/journal.pone.0239381.t004
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precisely classify positive and negative sense RNA viruses even when trained on a minimalist

data set with a train-test divide of 1:5 (Fig 8). The macro averaged f1scores were above .95 in

all test cases and the macro scores for the cross-validation set were also convincingly high with

low standard deviation. The classification reports are delineated in Table 5. Fig 9 delineates the

complete computational pipeline utilized in this study.

Discussion

The concept behind this study originated from similar k-mer based prototypes we built for

classifying positive and negative sense RNA viruses. We later found that in the past, Random

Forest classifiers for 16S rRNA classification based on similar k-mer based principles had dis-

played outstanding performance metrics [29]. Machine learning attempts at sequence classifi-

cation have been sparse in the past. But as of late, there is more activity in the field primarily

due to advances brought about by next-gen sequencing and growing interest in metagenomics

[21, 30, 31], symbionts [11] and microbial colonies [28]. Bzhalava et al. [21] attempted to

detect viral sequences in human metagenomic data sets and although their classifier found

very promising contrast on GenBank data, the model performed very poorly on a real metage-

nomic data set. Our models trained on NCBI data displayed 0.8 to 0.95 AUROC on real test

data (Fig 5), which is a big improvement form their AUROC of 0.51. k-mer based Random

Fig 8. Performance of the rbf-SVM model trained with the same computational pipeline for classifying positive and negative sense RNA viruses. (a)

Performance on different train-test splits when trained with all 5460 features. (b) Performance when trained with 194 features. (c) Performance when trained

with 68 selected features. All models exhibit a great ability to specify the different sequence classes demonstrating the flexibility of our pipeline.

https://doi.org/10.1371/journal.pone.0239381.g008

Table 5. Performance of rbf-SVM in classifying positive and negative sense RNA viruses.

Number of

Features

Train-Test

Split

True

Positives

False

Positives

True

Negatives

False

Negatives

cv_binary

mean

cv_binary

std

cv_macro

mean

cv_macro

std

f1binary f1macro

5460 4:1 145 0 1422 6 0.972715 0.012229 0.985083 0.006681 0.97973 0.988812

5460 2:3 308 0 3445 21 0.966849 0.028873 0.981788 0.015834 0.967033 0.981997

5460 1:5 416 0 4587 29 0.950275 0.056018 0.97274 0.03045 0.966318 0.981584

194 4:1 125 0 1435 13 0.9759 0.013335 0.986788 0.007303 0.95057 0.973031

194 2:3 298 0 3453 23 0.968434 0.010478 0.982572 0.005786 0.962843 0.979762

194 1:5 389 0 4575 68 0.924052 0.043204 0.95789 0.023325 0.919622 0.956122

68 4:1 125 3 1430 15 0.945588 0.026894 0.970244 0.014663 0.932836 0.963291

68 2:3 281 6 3444 43 0.924708 0.031719 0.958641 0.01733 0.919804 0.95637

68 1:5 383 9 4575 65 0.896827 0.065865 0.943638 0.035787 0.911905 0.951941

https://doi.org/10.1371/journal.pone.0239381.t005
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Forest models by the same team using k-mers of lengths 1 to 7 achieved the best AUROC of

0.875 with k-mers of length 6 [16], which is significantly lower than the metrics of our Random

Forest models. VirFinder is a k-mer based machine learning tool that can identify prokaryotic

viral contigs from metagenomic data [11]. The performance of VirFinder was evaluated with

varying k-mer lengths, class skews and contig lengths. Our models trained on varying numbers

of features and large class discrepancies display more consistent and robust performance met-

rics on average across all tests concerning NCBI data. The AUROC for our models on the

Fig 9. Diagrammatic representation of our complete experimental design.

https://doi.org/10.1371/journal.pone.0239381.g009
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divergent data set comprised of mouse transcripts and DNA viruses was 0.95 to 0.96 compared

to their 0.90 to 0.98 on an analogous simulated data set.

The features we constructed from short k-mers displayed strong discriminatory capacity

among the sequence classes. This has stood out to be the case in all tests carried out in this

study including those that were left out from the final paper. Both positive and negative sense

RNA viruses must produce complementary strands of reverse polarity in order to replicate. In

positive sense viruses, the reverse complements are necessary for making new copies of their

genome since all polymerases are unidirectional from the 5’ end to the 3’ end and in negative

sense viruses the necessity of making reverse complements goes beyond DNA replication as

their primary genetic information pathway relies on the synthesis of the reverse complement

that codes for viral proteins. It felt necessary to include the reverse complements of the viral

genomes as we would undoubtedly encounter remnants of them in whatever virus infected cell

we sought to explore. The increase in training examples did not hurt the model by relegating

bias upon it, as evident from the generalization tests.

The scikit-learn library offers feature importance scores from the Random Forest tree

ensemble. It is calculated from the selection criterion based on the gain of information by the

split at the nodes. We selected the entropy criterion as our measure of information gain

because of the heterogeneous nature of our features. The disadvantage of tree-based feature

selection is the decrease in weight assigned to correlated features. The smaller k-mers are all

slices from the larger k-meric words and hence the are highly correlated. We thus sensed the

need for going beyond solely tree-based selection approaches. The only drawback of our

model stood out to be the moderate computational power necessary to calculate all the fea-

tures. For short RNA virus sequences, it took us a few minutes on a 4 core third-generation i5

computer. Based on our results, the design of the model proved to be highly flexible and we

make a strong case for the use of similar k-mer scoring profiles for classification of other clas-

ses of sequence data. It was thus necessary to scale down the model by reducing the number of

features so it could comfortably adapt to much longer sequence classes. In order to scale the

model, we went beyond tree-based methods and employed Lasso regularization. Feature selec-

tion by Lasso stems from linear regression models by penalizing the coefficients of the vari-

ables. Using a combination of these selection methods on multiple levels, we were able to

shrink the model down into only few features while only minimally compromising

performance.

Overfitting is always a concern when applying ML models to biological data. The first

impressions on the high accuracy of the classifiers suggested a case of overfitting in the model.

The bootstrap aggregating or bagging meta-algorithm employed in Random Forest classifica-

tion is particularly resistant to high variance and overfitting. Although Decision Trees employ

the same bagging principle, because of their larger depths, they are more prone to higher vari-

ance and overfitting. Many random sampling events generate subsets of data known as boot-

strap samples. Isolated Decision Trees are trained on these bootstrap samples to construct the

Random Forest ensemble. A majority vote from the members of the ensemble generates pre-

dicted classifications for test sets. Since our random forest models performed noticeably better

than the decision tree model, it would lead us to believe that overfitting does not account for

the fidelity of our models. Stronger evidence against a case for high variance comes from the

model’s impeccable performance when tested against viruses not belonging to the RNA virus

groups and mRNA from mouse transcriptomes. These test sets substantially varied from the

training data and a highly biased model would have displayed a moderate decrease in perfor-

mance. High performance metrics on very small training sets in our positive and negative

sense RNA classification tests are also good evidence against high bias in the model.
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Our Gaussian Naïve Bayes models had the poorest performance metrics. This is easily

explained by heterogeneous and nonuniform nature of our features. When tested for gaussian

normalcy, all features failed to show a distribution resembling the normal distribution. Hence,

the performance of the Gaussian Naïve Bayes models was poor owing to the non-continuous

datapoints in our feature sets. The improvement in its performance after the reduction in the

number of features is suggestive of a non-linear nature of the numerical values and the pres-

ence of random noise, which is customary to biological data sets. The superior performance of

Logistic Regression models and both Support Vector Machine models suggest a discontinuous

polar segregation for the feature values in their respective classes.

When progressing to real RNA-Seq assembly data, the previously robust, infallible perfor-

mance of the model began to wane. In the assemblies from the human cell line, filtering the

transcripts to conform to lengths resembling the original training set solved the issue and the

robustness of the classifier became apparent again. But yet, performance on the 23-hour Ebola

virus cell incubate was less impressive. This can be easily explained by the incongruity of the

assembly software, the unwanted mixing of contigs from either source during assembly and

the irregularities in the lengths of the assembled contigs. The false negative results were also

higher than we expected. It would have been a matter of concern if these misclassifications

were a result of the very high mutation rates characteristic of RNA viruses [32], but the evi-

dence from the cross-validation and generalization studies and error analysis within the real

data set (not discussed) lead us to believe that such is not the case. We postulate that as de

novo assembly tools improve, the classification performances of our models would tend

towards that observed in curated sequence data. Since all human training data was composed

of gene transcripts, whereas the sequences in the virus training set were mostly comprised of

non-genic regions, we hypothesized that this could be a cause for greater numbers of false neg-

atives because the majority of virus sequences in the cell-virus incubate would also inevitably

be viral gene transcripts as a consequence of the infectious activity of the Ebola virus, rather

than the whole genome or sequencing with long non-genic regions. However, including RNA

virus transcripts separately downloaded from NCBI into the training set only marginally

improved performance on the Ebola virus and cell incubate sample (not discussed). This was

more evidence to support our claim that the poor performance is greatly justified by shortcom-

ings in the assembly of the RNA-Seq data itself.

Conclusion

In this study, the use of short k-mer profiles as machine learning features proved to be very

resourceful for training sequence classification models. Machine learning and deep learning

models that train on sequence data more commonly treat biological sequences as lifeless vec-

tors of binary information. The sequence of nucleotide bases in nucleic acids does not occur

randomly and independently with identical probability. Rather, a confluence of biophysical

and biochemical forces actively dictates the nature of this evolution. Our results question this

approach for training sequence classifiers and sheds light on the elegance in the emergence

and evolution of genomes centered around short k-meric repeats. The evaluation metrics from

the classification results in the leave-one-family-out experiments, the performance on the

divergent sequences and the ability to differentiate plus and minus strand viruses even when

trained on very small data sets, is good evidence that is greatly suggestive of a robust set of

numerical machine learning features. The pipeline depicted on Fig 9 can be applied to any two

classes of sequence data having considerable taxonomic distance to train machine learning

models that can accurately report the presence of either class in unknown sequence data.
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Nucleotide blast is still the best tool at our disposal for characterization of unknown

sequence data. But due to the homology omnipresent in biological sequences even between

distinct orders of life, false positives and ambiguous results are always prevalent. The draw-

backs of this approach include, the very limited number of viral genomic diversity that has

been so far catalogued, the uncertainty of there being a known homolog or close ancestor in

the database, and the prevalence of many viral genomic remnants in the genomes of host

organisms. We can also reasonably conclude that protein-based methods such as protein blast

or pfams are not suited to the task of taxonomic classification of greatly divergent RNA

sequences. Pertaining to the nonuniformity of the overlap between the results from our classi-

fier and the tools it was compared to, we propose that a combinatorial approach employing

multiple tools simultaneously is currently the best option for segregating sequence data by tax-

onomy (Fig 10).

De novo assembly of RNA-Seq data facilitates the discovery of novel transcripts and splice

variants. It can offer great promise in the discovery of novel RNA viruses without prior

sequence information. Software packages that carry out de novo assembly of RNA-Seq data

are still improving. The 10 assembly tools we tested our model on were still highly variable in

spite of assembling the same raw sequence data. For the identification of divergent viruses, the

use of robust and highly specific methods such as PCR, immunoassays or microarrays are not

Fig 10. Suggested approach for acquiring the best automated annotations. Our explorations indicate that there is no single annotation tool that can produce

the best results without requiring further curation. Perhaps the best way to use these tools is by stacking the results on top of each other to remove maximum

number of false positives while consolidating the true positive results.

https://doi.org/10.1371/journal.pone.0239381.g010
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suitable [33]. Deep sequencing of metagenomes and metatranscriptomes broadens the land-

scape available for novel virus detection by many orders of magnitude. With the promise of

third-gen sequencing [34], this uncharted landscape of sequence data will keep expanding,

necessitating the need for novel tools for mining and annotating sequence data. We envision

that as the accuracy of RNA sequencing technologies advance, the software that are used to

assemble them will also upgrade and models such as ours that facilitate the annotation of the

assembled data will be expected to catch up to these advancements.

Methods

Contriving features using k-mer abundance profiles

For the DNA letters ‘A’, ‘C’, ‘G’ and ‘T’, we use all possible k-mers of length 1 to 6 to derive fea-

ture scores for each sequence. We use DNA letters instead of RNA letters where Thymidine

(T) is replaced by Uracil (U) because by convention most sequence data formats are encoded

using DNA letters and this is also true for RNA transcripts and RNA genomes. The number of

features for any sequence is thus the total number of possible k-mers, or in our case 5460, as

shown below.

X6

i¼1

4i ¼ 5460

Through dynamic programming, our algorithm simulates the task of sequentially matching

a k-mer against a sequence from start to end, going along the sequence like a sliding window,

one ribonucleotide base at a time. For any sequence q and k-mer e, we obtain a total count

Cq
j ðeÞ when allowing exactly j total mismatches or gaps.

Our final sequence score Wq(e) for element e, and sequence q, is calculated by the formula

given below where n is the length of sequence q.

Wq eð Þ ¼
X3

j¼0

Cq
j ðeÞ
2j =n

This final score is used as the pre-scaled value for feature e in sequence q in all constructed

machine learning models in this study.

Data preprocessing

We sourced all available virus sequences from NCBI [35]. Taxonomical data related to virus

genomic architecture was retrieved from the ICTV website [36]. We found 3145 unique

viruses having either ssRNA(+) and ssRNA(-) genomes, with 2862 belonging to the plus-

strand group and 283 to the minus-strand. The complete human reference transcriptome was

obtained from NCBI. All predicted and non-putative RNA sequences from the reference tran-

scriptome were omitted. In compliance with the general length of animal viruses, to build a

human/virus binary RNA classifier, only putative and expressed human RNA ranging from

2000 to 35000 in length were selected for the study. For sequences sharing greater than 85%

similarity, only the longest sequence was selected for use while omitting all others. We were

left with 4114 unique viral genomes and 15476 human RNA transcripts (S6 Table). The reverse

complement of the RNA(+) strand in ssRNA(+) viruses is a mandatory intermediate in its rep-

lication and the reverse complement of the RNA(-) strand in ssRNA(-) viruses is a mandatory

intermediate in both replication and the information pathway. We therefore included the

reverse complements of the working RNA virus genomes in our data set.
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Libraries and parameters

Python’s biopython module was used for all sequence manipulation tasks. For all statistical

analysis we used the scipy.stats module in Python and scikit-learn was used for all machine

learning implementations. Plots were drawn using matplotlib’s pyplot. Train-test splits were

always 4:1 for training set and test set respectively, unless specifically mentioned in the results.

Standard scaling was employed to scale the features. 10-fold cross-validation was carried out

within the training sets and both mean and standard deviation of the macro average f1 score

and binary f1 score was reported. Similarly, for the test set, both macro averaged f1 scores and

binary f1 scores were reported. For skewed classes it is classic convention to label the smaller

class as the positive example. Hence, in all training and test examples in this study, viruses

were set as the positive binary class. In the classification of positive and negative sense RNA

viruses, there were 2862 examples in the positive RNA class and 283 examples in the negative

RNA virus class. The negative sense RNA viruses were considered the positive binary class.

Logistic Regression models were trained with L2 penalty and 2000 max iterations. For the

Support Vector Machine classifiers, both linear and RBF penalization were separately

employed. The probability parameter for the SVC class of sklearn was set to True in order to

acquire probability scores for drawing ROC curves where needed. The tree-based models,

Decision Trees and Random Forest were trained using the default information entropy func-

tion as criterion. The number of estimators was set at 200 for Random Forest. For any parame-

ters not explicitly stated, the library defaults were used.

Testing and performance evaluation

For cross-validation and generalization tests 11351 putative, expressed mRNA transcripts

between 2000 and 35000 sequence length and sharing no more than 85% similarity with any

other transcript were selected from the Mus musculus whole transcriptome available in NCBI.

As divergent viruses, 2532 viruses between the specified sequence length range not having pos-

itive or negative strand RNA genomes were selected. All information about the 77 virus fami-

lies and mouse transcripts can be found in S3 Table. De novo RNA-Seq assembly data was

sourced from experiments by Hölzer et al. [24] available at https://doi.org/10.17605/OSF.IO/

5ZDX4.

The following single-number evaluation metrics were used as a measure of model

performance.

F1-score. A measure of balance between precision and recall defined as
2�ðprecision�recallÞ
ðprecisionþrecallÞ .

F1-binary. The F1 score where only the predictions of the positive class are considered.

F1-macro. The macro-averaged F1 score where the unweighted mean for each class label

is taken into account to adjust for an imbalance of class size.

CV_bin and CV_macro. Set of F1-binary and F1-macro scores for cross-validation tests

respectively. Both the mean and standard deviation are reported.

AUROC. An abbreviation of Area Under the Receiver Operating Characteristic Curve. A

graphical representation of the discriminatory capacity of a binary classifier. A random predic-

tor would have an AUROC of 0.5.

Accuracy. Accuracy in this paper is specifically reserved for cases where the proportion of

correct class predictions is reported. Hence, accuracy ¼ correct classifications
total number of examples.

Unary accuracy. Accuracy for a data set where all relevant datapoints belong to the same

class.

Command-line BLAST+ [25] was used for sequence alignments with blastn and blastp. All

alignment tasks were carried out locally. For both blastn and blastp, false hits were first isolated
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by query against a negative control database (i.e. human transcriptome for RNA viruses and

our RNA virus sequence database for the de novo assembly data) and only informative hits

were considered in the final counts. For blastp, cutoff for minimum ORF length was set at 100

bases. The command-line HMMER3 [37] application was employed for Hidden Markov Pro-

file searches. The hmmsearch command was first carried out on virus protein family align-

ments known as vFams [22] against our negative control human transcriptome, to remove any

alignment profiles that might be uninformative. Later, only the filtered informative protein

profiles were used for the final search in metagenomic data. Informative vFams are deposited

in the git repository as a.hmm file.

The ten assembly tools that have been evaluated are BinPacker [38], Bridger [39], Shannon

[40], rnaSPAdes [41], SPAdes [42], idba-tran [43], SOAPdenovo-Trans [44], Trans-Abyss

[45], Trinity [46] and Oases [47]. All computational tasks were carried out on a third-genera-

tion Intel core-i5 machine having 8GB of RAM. All source-code, data and executed commands

for this project including the trained classifiers are available on github at https://github.com/

DeadlineWasYesterday/V-Classifier.
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