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1 |  INTRODUCTION

Reliable seizure detection methods to be used chronically 
(ie, over periods of months or years), in ambulatory patients 
going about their daily activities, are generally considered 
an important objective for persons with active epilepsy.1 A 
few US Food and Drug Administration–approved or CE-
marked noninvasive devices are already available for the 
detection of generalized or bilateral tonic-clonic seizures 
(GTCSs),2–10 but none yet for the detection of focal seizures 
without GTCSs (which will be referred to as FSs in this re-
view). This reflects the greater complexity of detecting FSs 

due to their large variety and less dramatic ictal semiology 
as compared to the very stereotyped and prominent ictal 
features observed during GTCSs. However, GTCSs only 
affect a minority of patients with active epilepsy, and also 
account for a minority of seizures in most patients with 
focal epilepsy and focal to bilateral tonic-clonic seizures. 
In a meta-analysis of adjunctive antiepileptic drug (AED) 
randomized controlled trials in uncontrolled focal epilepsy, 
which collated 20 studies with information on the propor-
tion of patients with GTCSs, only 36% of 6643 patients 
suffered at least one GTCS during baseline.11 In a more 
recent population-based Swedish study, 51% of patients 
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Abstract
Reliably detecting focal seizures without secondary generalization during daily life 
activities, chronically, using convenient portable or wearable devices, would offer 
patients with active epilepsy a number of potential benefits, such as providing more 
reliable seizure count to optimize treatment and seizure forecasting, and triggering 
alarms to promote safeguarding interventions. However, no generic solution is cur-
rently available to reach these objectives. A number of biosignals are sensitive to 
specific forms of focal seizures, in particular heart rate and its variability for sei-
zures affecting the neurovegetative system, and accelerometry for those responsible 
for prominent motor activity. However, most studies demonstrate high rates of false 
detection or poor sensitivity, with only a minority of patients benefiting from ac-
ceptable levels of accuracy. To tackle this challenging issue, several lines of techno-
logical progress are envisioned, including multimodal biosensing with cross-modal 
analytics, a combination of embedded and distributed self-aware machine learning, 
and ultra–low-power design to enable appropriate autonomy of such sophisticated 
portable solutions.
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with seizures in the past year did not suffer GTCSs during 
that period.12 Thus, moving from the detection of GTCSs 
to that of only FSs appears highly desirable. In this review, 
we will address the expected clinical benefits, current stage 
of development, and foreseeable future of specifically de-
tecting FSs without secondary generalization during ultra-
long noninvasive recordings using wearable devices in 
ambulatory patients, thus excluding the field of electroen-
cephalography (EEG)-based FS detection during in-hos-
pital or home-based short-term (ie, hours to weeks) EEG 
monitoring.

2 |  POTENTIAL BENEFITS OF FS 
DETECTION

One of the strong rationales for detecting GTCSs is the pos-
sibility of triggering an alarm and allowing timely interven-
tion from a family member or caregiver to reduce the risk 
of GTCS-induced morbidity and mortality, including sudden 
unexpected death in epilepsy patients (SUDEP). SUDEP 
most often occurs in the immediate aftermath of a GTCS, 
and appears likely to be prevented by early peri-ictal inter-
vention.13,14 It should be noted, however, that no controlled 
study has yet demonstrated that the use of GTCS detectors 
prevents the risk of SUDEP.

Risks entailed by FSs differ from those associated with 
GTCSs, with lower incidence of traumatizing falls and in-
halation, and no available video-EEG evidence that FSs 
without GTCSs can lead to SUDEP. However, FSs can be 
responsible for severe trauma and burns, as well as drown-
ing,15 which might be partly prevented by an alarm-trig-
gered timely intervention of a caregiver. Whether the 
magnitude of FS-related injuries and their preventability 
justify the development of FS detection remains uncertain. 
For instance, a Canadian study showed that the 12-month 
weighted prevalence of injuries was not different in per-
sons with epilepsy (14.9%) than in the general population 
(13.3%).16

One of the main benefits expected from seizure detection 
devices is to provide reliable seizure count to guide adjust-
ment of therapy.17 According to video-EEG monitoring stud-
ies, more than half of patients with epilepsy fail to report all 
their seizures, with overall underreporting exceeding half of 
seizures.18 How this issue impacts the quality and efficacy 
of treatment decision remains uncertain, however. One might 
argue that physicians should attempt to optimize therapy in 
patients suffering seizures, regardless of their true seizure 
frequency, and that unnoticed paucisymptomatic seizures, 
like interictal epileptiform discharges, do not necessarily re-
quire adjustment of AEDs. Here again, studies will be needed 
to demonstrate that detection of FSs leads to significantly im-
proved patients’ outcome. In any event, reliable FS detection 

would improve the quality, and possibly reduce the sample 
size, of randomized controlled trials of add-on antiseizure 
drugs in drug-resistant epilepsy.

Detection of FSs might have a greater role in empow-
ering patients against the many consequences of seizure 
apparent unpredictability. A seizure-triggered alarm can 
reduce the burden of not being able to indicate the occur-
rence of a seizure to witnesses. It might help in self-con-
trolling the propagation of the ictal discharge, aborting it, 
and reducing the risk of secondary generalization. FS de-
tection could also automatically trigger a therapeutic inter-
vention, although such a noninvasive closed-loop solution 
would risk adversarial attack. Finally, a reliable detection 
of FSs could leverage the possibility of identifying individ-
ual patients’ cycle of seizure recurrence and lead to effec-
tive seizure forecasting.19,20 All of the above could reduce 
the anxiety and overall handicap resulting from epilepsy, 
and lead to greater quality of life.

Overall, empirical evidence suggests that persons with 
FSs are likely to benefit from the development of reliable 
solutions for detecting their seizures, although such benefit 
cannot be considered guaranteed and will need to be firmly 
demonstrated in the future.

3 |  CURRENT STAGE OF FS 
DETECTION

As previously mentioned, no currently available noninva-
sive device enables a reliable detection of FSs in general. 
However, a number of studies, summarized in this section, 
have evaluated the capacity to detect FSs using various meas-
urements of neurovegetative functions (heart rate [HR], elec-
trodermal activity [EDA], respiration), body movements, or 
ear-EEG.21

Key Points
• Detection of focal seizures in ambulatory patients 

with active epilepsy might provide a number of 
clinically relevant benefits

• However, no FDA-approved or CE-marked port-
able noninvasive devices have yet shown reliabil-
ity for detecting focal seizures

• Effective detection of such seizures is likely to 
require the combination of neurovegetative and 
movement-based sensing

• Personalized algorithms will likely prove manda-
tory to achieve an acceptable level of detection 
accuracy
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4 |  HR-BASED FS DETECTION 
USING PHOTOPLETHYSMOGRAPHY 
OR ELECTROCARDIOGRAPHY

Among potential extracerebral indicators of FS-related autono-
mous changes, tachycardia is of primary interest due to its com-
mon co-occurrence with seizures, reflecting propagation of ictal 
discharges to central autonomic and limbic networks, and pos-
sibly, seizure-induced catecholamine release.22,23 Tachycardia 
is related to increased sympathetic activity and has been re-
ported in up to 80% of all seizures, occurring consistently in 
GTCSs but also in many FSs.22,24–29 These studies monitored 
HR using either electrocardiography (ECG) or photoplethys-
mography (PPG) from wearable sensors.30,31

Although sensitive, tachycardia is not a specific marker, 
because of inevitable changes in HR with daily life activities 
like walking, climbing stairs, or emotional states. Another 
HR-related biomarker of interest is HR variability (HRV). 
HRV is controlled by reciprocal sympathetic and parasympa-
thetic influences and serves to adapt cardiovascular function 
to external and internal demands.32 Most of the studies ana-
lyzing HRV are retrospective and have used linear time and 
frequency domain signal processing for feature extraction, as 
well as nonlinear parameters to assess the changes and the 
dynamics of RR intervals.30,33–37 Their sensitivities and false 
alarm rate (FAR), presented in Table 1, range respectively 
from 77% to 96.4% and from 0.5/h to 5.4/h.

In the context of vagus nerve stimulation with cardi-
ac-based seizure detection, two epilepsy monitoring unit 
(EMU)-based series have established the prevalence of var-
ious levels of ictal tachycardia, and their respective rate of 
false detection.38,39 For the most liberal threshold of 20% in-
crease in HR, sensitivity ranged from 43% to 52.3%, with a 
false detection rate between 7.15/h and 9/h.38,39 In contrast, 
for a more conservative threshold of 60% increase in HR, 
sensitivity ranged from 8% to 13%, with a false detection rate 
of 0.5/h and 0.49/h.38,39

Two phase 2 studies used a wearable ECG device and 
HRV measurements to detect FSs. In the first one, 53.5% of 
patients were considered responders based on the observation 
of prominent HR changes during seizures. In this subgroup, 
sensitivity was 90.5%, with an FAR of 1/24 hours.40 In the 
second study, the performance of ECG- and PPG-based de-
tection was compared, with the former providing 70% sen-
sitivity and FAR = 2.11/h, whereas the latter only achieved 
32% sensitivity with FAR = 1.8/h.30

A few commercially available systems based on the non-
invasive monitoring of ECG have been developed for seizure 
detection, including the Proguardian from Livanova using 
a chest-worn patch, and the Neuronaute from Bioserenity, 
using a smart T-shirt with textile electrodes. To the best of 
our knowledge, no clinical study has been reported with these 
devices.

5 |  FS DETECTION BASED ON 
OTHER NEUROVEGETATIVE 
BIOSIGNALS, INCLUDING EDA 
AND PERIPHERAL OXYGEN 
SATURATION

EDA refers to the dynamic of skin electrical conductance, 
including slow changes in basal conductance level and tran-
sient skin conductance responses. In contrast to cardiac regu-
lation, EDA depends solely on sympathetic control of sweat 
gland function.41,42 It is closely linked to emotional and men-
tal arousal. Thus, EDA also offers the possibility of assessing 
the patient's stress level in general, and might be capable of 
detecting stress patterns that could trigger seizures and help 
in their forecasting. An increase in EDA has been reported in 
some FSs, although of much lower degree than in GTCSs.42 
Thus, although EDA has become one of the most reliable 
ways to detect GTCSs, it does not appear capable of reliably 
detecting other seizure types in isolation. Accordingly, there 
is no study testing EDA for FS detection.

Respiratory changes during seizures result from abnormal 
activation of the respiratory centers in the brain or brainstem 
and might result in tachypnea, bradypnea, apnea, hypoven-
tilation, and hypercapnia.43 These changes can occur during 
both GTCSs and FSs and are especially common in seizures 
originating from the mesial temporal structures.44 Seizure-
induced tachypnea appears to follow a specific pattern that 
differs from increased ventilation during activities of daily 
living.26 Hypoxemia, more easily captured than the other re-
spiratory abnormalities using pulse oximetry (to measure pe-
ripheral oxygen saturation [SpO2]), has been the most studied 
peri-ictal respiratory biomarker. In several studies, hypox-
emia < 90% was observed in about one-third of FSs.45–49

To perform an appropriate alarm setting for a continuous 
pulse oximeter, a study assessed cardiopulmonary measures 
of patients in the EMU. Through systematic evaluation, an 
optimal balance between true detection and false alarms was 
achieved with an SpO2 threshold of 80%-86%, detecting 
81%-94% of focal to bilateral tonic-clonic seizures, and 25%-
36% of FSs without bilateral spread. FAR ranged from 0.41 
to 2.43/h.50

6 |  MOVEMENT-BASED FS 
DETECTION USING THREE-
DIMENSIONAL ACCELEROMETRY, 
ELECTROMYOGRAPHY, VIDEO, 
AND BED SENSORS

A large variety of involuntary body movements can occur 
during seizures and be detected by three-dimensional (3D) 
accelerometry (ACC), electromyography (EMG), video, 
and bed sensors. Although these can vary between patients, 
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detected events are often highly reproducible across seizure 
episodes within the same individual. Surface EMG proved 
to reliably detect GTCSs, in particular when placed over 
the biceps,2,51 but was also found to be useful for detecting 
tonic seizures when positioned on the deltoid. Its sensitiv-
ity was 100% in four of six patients, but with a high FAR 
of 7.9/h.52

3D accelerometers have proved reliable to detect specific 
seizure-related movements during FSs. In an early study, ac-
celerometers attached to both arms and legs detected 95% of 
simple motor seizures, such as myoclonic, clonic, and tonic 
types.53 In a subsequent study, the authors could distinguish 
myoclonic from clonic and tonic seizures, with a success rate 
of 80%.54 Using wrist- and ankle-worn accelerometers in a 

T A B L E  1  Validity of extracerebral seizure detection methods for focal seizures

Seizure type Biosignal Publication Device Patients Performance Phase

Focal seizures ECG Boon et al (2015)39 Hospital ECG & 
VNS Aspire SR

16 For HR increase > 20%: 
sensitivity = 52.3%, FP = 7.2/h

2

Focal seizures ECG Fisher et al (2016)38 Hospital ECG & 
VNS Aspire SR

16 For HR increase > 20%: 
sensitivity = 43%, FP = 9/h

2

Focal seizures ECG Fujiwara 
et al (2016)34

Hospital ECG 8 Sensitivity = 91%, FP = 0.7/h 1

Focal seizures ECG Qaraqe et al (2016)36 Hospital ECG 10 Sensitivity = 96.4%, FP = 5.4/h 1

Focal seizures ECG Pavei et al (2017)35 Hospital ECG 12 Sensitivity = 94%, FP ≤ 0.5/h 1

Focal seizures ECG De Cooman 
et al (2018)33

Hospital ECG 19 sensitivity = 77%, FP = 1.24/h 1

Focal seizures ECG Jeppesen 
et al (2019)40

ePatch ECG 43 In the 53.5% of responders, 
sensitivity = 93%, FP = 1/24 h

2

Focal seizures ECG
PPG

Vandecasteele 
et al (2017)30

Hospital ECG, 
180° eMotion, E4 
Empatica

11 ECG: sensitivity = 57%, 
FP = 1.92/h; 180°: 
sensitivity = 70%, FP = 2.11/h; 
E4: sensitivity = 32%, FP = 1.8/h

2

Focal seizures ECG 
EMG

Fürbass 
et al (2017)28

Hospital EMG, ECG 55 EMG: sensitivity = 25%, 
FP = 0.3/24 h; ECG: 
sensitivity = 40%; FP = 0.6/24 h

1

Tonic, tonic-clonic, 
hypermotor

ECG
ACC

van Andel 
et al (2017)70

Shimmer 42 Sensitivity = 56%-71%, FP = 2.3-
5.9/d, depending on type of signal

1

Tonic, myoclonic, 
complex partial

ACC Nijsen et al (2005)53 ADXL202E 18 Sensitivity = 0%-100%, depending 
on patient

1

Myoclonic ACC Nijsen et al (2010)54 ADXL202E 36 Sensitivity = 34%-80%, 
PPV = 15%-16%, depending on 
algorithms

1

Hypermotor ACC Van de Vel 
et al (2013)55

Custom-made ACC 
wristbands

7 Sensitivity = 70%-100%, 
PPV = 48%-65%, depending on 
patient

1

Tonic, myoclonic, 
hypermotor, 
complex partial

ACC, 
pressure 
audio

Patterson 
et al (2015)9

Medpage MP5
Medpage ST-2 
Smartwatch, Emfit

41 Sensitivity: 0%-37%, depending on 
seizure type and device

2

Seizures with 
motor component

Pressure Poppel et al (2013)6 Emfit bed mattress 45 Sensitivity = 0%-100%, depending 
on seizure type

2

Seizures with 
motor component

Pressure 
audio

Fulton et al (2013)58 Medpage MP5
Medpage ST-2

15 Sensitivity = 0%-13%, depending 
on seizure type and device

2

Myoclonic Video Cuppens 
et al (2012)57

Near infrared 3 Sensitivity = 77%, PPV = 87% 1

Tonic EMG Larsen et al (2014)52 Hospital EMG 6 Sensitivity = 100%, 
FP = 0.08-7.9/h

1

Focal seizures EEG Gu et al (2017)21 Behind the ear EEG 12 Sensitivity = 94.5%, FP = 0.52/h 2

Abbreviations: ACC, accelerometer, ECG, electrocardiogram; EEG, electroencephalogram; EMG, electromyogram; FP, false positive; HR, heart rate; PPG, 
photoplethysmography; PPV, positive predictive value; VNS, vagal nerve stimulation.
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pediatric population, hypermotor seizures could be detected 
with a sensitivity of 95.7% and a positive predictive value 
of 58%.55 Subsequently, these authors used a subject-specific 
model in seven patients, achieving a classification rate of 
95%, and a positive predictive value of 60%.56 Movements 
such as myoclonic jerks can also be detected by appropriate 
algorithms using only video signal coupled with spatiotem-
poral interest points, achieving a sensitivity of >75% and a 
positive predicate value of >85%.57

In contrast, in a phase 2 study, the Smartwatch 3D ac-
celerometer (Smartmonitor) was found to detect only 24% 
of hypermotor seizures and no myoclonic/myoclonic-tonic 
seizures.9 Several phase 2 studies were performed using bed 
mattress sensors. In a series of 15 patients, the Medpage ST-2 
was found to detect only one of 10 motor seizures, and none 
was detected by the Medpage MP5.58 Using another bed mat-
tress device (Emfit), a greater proportion of motor seizures 
could be detected, including 57% of simple motor seizures, 
27% of tonic seizures, 25% of complex partial seizures with 
motor involvement, and 8.3% of myoclonic-tonic seizures.6

7 |  MULTIMODAL DETECTION 
OF FSS

Combining the outputs of several sensors into one seizure de-
tection method might optimize the sensitivity and reduce the 
FAR. Only very few studies have addressed this issue.59,60 In 
a phase 1 study, detection of FSs was 27% with an FAR of 
0.7/d when using ECG only, and 8% with an FAR of 0.4/d for 
EMG alone; the combination of both sensors raised sensitiv-
ity of 89% but also the FAR to 16.4/d.28 To the best of our 
knowledge, no phase 2/3 study has yet tested a multimodal 
sensor device for the detection of FSs.

8 |  TOWARD AMBULATORY VERY 
LONG-TERM EEG FOR DETECTING 
FSS

Until very recently, there was no available material enabling 
ambulatory scalp-EEG recordings over ultra-long periods of 
time (ie, months or years), and the stigmatizing appearance 
of a scalp-EEG cap had not been addressed. However, over 
the past few years, systems based on subcutaneous or intra-
auricular electrodes have been developed, which might even-
tually provide reliable chronic EEG recordings.61 However, 
the prevalence of movements and muscular artifacts in am-
bulatory patients is likely to represent a huge challenge for 
these technologies. Furthermore, although a large variety of 
algorithms developed for in-hospital EEG seizure detection 
have demonstrated a good sensitivity (75% and 90%), they 
have consistently suffered from FARs  >  2/d,62 well above 

what is acceptable for very long-term monitoring. Thus, it is 
the view of the authors that future solutions for ambulatory 
FS detection are unlikely to use EEG in isolation but rather to 
combine it with non-EEG biosignals.

9 |  THE FUTURE OF FS 
DETECTION

As illustrated by the low accuracy of most previously tested 
solutions summarized above, the main challenge of FS de-
tection lies both in the large variety of seizure types and in 
the limited impact on most available biosignals. These chal-
lenges translate into the following issues and related objec-
tives for the foreseeable future of FS detection:

1. The most salient ictal phenomenology will effect dif-
ferent biosignals across patients, thus requiring different 
biosensors to be detected. Some FSs are primarily char-
acterized by prominent movements (hypermotor seizures), 
which would be best captured by 3D ACC or video in 
the home environment. Others are not associated with 
significant movements, but lead to remarkable autonomic 
changes reflected in biomarkers extracted from HR, EDA, 
and/or respiratory functions. Finally, some seizures fail 
to translate into detectable body motion or vegetative 
changes, and are only captured by EEG.

2. In a significant proportion of FSs, a single biosignal is likely 
not to be sufficient to reliably distinguish seizures from 
physiological activities. There, the combination of multiple 
biosignals will be necessary to make such a distinction, as 
illustrated in the following example. A patient might pre-
sent with seizures primarily characterized by centrally trig-
gered tachycardia while not moving. The intensity and type 
of tachycardia might be comparable to that observed during 
physical exercise, and thus not able to distinguish seizure 
from such exercise. Conversely, the information provided 
by coupling HR and movement measurements will allow 
firmly ascribing the non–movement-related tachycardia to a 
seizure. With at least six raw biosignals currently available 
to assess brain and body outputs (movements, HR, other 
ECG features, SpO2, EDA, EEG), the potential for enhanc-
ing cross-modality informativeness is huge. Thus, we need 
not only a multibiosignal solution, but also effective cross-
talk between these biosignals.

3. All of the above developments will generate a very large 
number of options and parameters to adapt to individual pa-
tients and specific situations. The sentinel biosignal and se-
quence of secondarily activated sensors will likely differ as 
a function of ictal signs but might also vary within the same 
individual as a function of sleep-wake cycle. The same ap-
plies to the algorithmic features that will provide an optimal 
accuracy in seizure detection. Although some adjustments 
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might be preset, the potential for personalizing such settings 
is likely to strongly benefit from embedded machine learn-
ing applied at the individual level. FS detectors will thus 
progressively learn the very unique and stereotyped charac-
teristics of each patient's seizure, as well as of nonepileptic 
activities leading to false alarms (eg, tooth brushing, a typi-
cal movement mimicking convulsive seizures, is likely to 
demonstrate person-specific characteristics).

4. Although seizure detection and forecasting are viewed as 
distinct objectives bringing complementary benefits to 
patients with epilepsy, their underlying solutions appear 
highly interdependent and synergistic. To achieve forecast-
ing, one needs a reliable account of seizure events during a 
sufficiently long period of time (varying across patients as 
a function of their individual cycle of seizure recurrence), 
which is often missing in most patients. As a consequence, 
developing a reliable FS detection solution will be easier and 
will allow leveraging the potential of seizure forecasting. 
Reciprocally, once reliable seizure forecasting has been es-
tablished in a given patient, the resulting statistical features 
can be used to optimize the classification of seizure versus 
nonseizure events and the overall performance of seizure de-
tection. Thus, seizure detection and forecasting algorithms 
should ideally be integrated into the same system.

5. All of the above developments require significant improve-
ment in several core aspects of wearable hardware and soft-
ware technologies, including low power requirements. The 
energy consumption of high-frequency sampling processes 
can be reduced by novel event-triggered63 and adapted 
compressed sensing paradigms.64 Alternatively, emerging 
technologies might distribute the complex and energy-con-
suming machine-learning computations among distrib-
uted levels of machine learning, combining both smart 
wearables or edge artificial intelligence and intermediate 
server levels at home (ie, fog computing). Such technol-
ogy might improve >10× the system lifetime with respect 
to data transmitted to the central cloud medical system, 
and reduce the system latency by up to 60%.65,66 Recent 
findings also demonstrate that multimodal wearables with 
multiparametric machine-learning techniques can detect 
seizures by selectively performing cross-modality analyses 
(ie, self-aware learning) with different types of algorithms 
according to the classification confidence and target sys-
tem devices.67 Cutting edge self-learning algorithms, such 
as generative adversarial networks, which proved highly 
effective for image processing, might also carry significant 
progress in FS detection and forecasting.68 Such approaches 
would benefit from the next generation of ultra–low-power 
multicore platforms with embedded machine-learning ac-
celerators, which can offer many advantages in terms of 
parallelization capabilities to execute complex algorithms 
and process multimodal data inputs in complex real-life 
wearable setups.69

The ideal solution delineated above is not yet available 
and will require some years to be developed, tested, and vali-
dated. Intermediate suboptimal devices that could prove use-
ful to a subgroup of patients (eg, hypermotor seizures) are 
welcome and shall bring important knowledge to the field. 
Another important key to the successful development of re-
liable FS detection lies in the capacity to collect and share 
much larger amount of data than currently done in the field, 
similar to what has been successfully achieved in the field of 
epilepsy and genetics. A similar level of international collab-
oration is thus advocated.
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