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Synthetic RNA-based logic computation in
mammalian cells
Satoshi Matsuura1,2, Hiroki Ono1,2, Shunsuke Kawasaki1, Yi Kuang1,3, Yoshihiko Fujita1 & Hirohide Saito 1

Synthetic biological circuits are designed to regulate gene expressions to control cell function.

To date, these circuits often use DNA-delivery methods, which may lead to random genomic

integration. To lower this risk, an all RNA system, in which the circuit and delivery method are

constituted of RNA components, is preferred. However, the construction of complexed cir-

cuits using RNA-delivered devices in living cells has remained a challenge. Here we show

synthetic mRNA-delivered circuits with RNA-binding proteins for logic computation in

mammalian cells. We create a set of logic circuits (AND, OR, NAND, NOR, and XOR gates)

using microRNA (miRNA)- and protein-responsive mRNAs as decision-making controllers

that are used to express transgenes in response to intracellular inputs. Importantly, we

demonstrate that an apoptosis-regulatory AND gate that senses two miRNAs can selectively

eliminate target cells. Thus, our synthetic RNA circuits with logic operation could provide a

powerful tool for future therapeutic applications.
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Synthetic biology approaches in mammalian cells have
rapidly progressed in a variety of fields, suggesting great
potential in medical applications including drug discovery,

vaccine production, disease diagnosis, and cell therapy1–4. For
example, researchers have designed several synthetic circuits that
interface with endogenous gene networks to control apoptosis,
differentiation, cell proliferation, and cell–cell communication5–8.
For future therapeutic applications, it is important to improve the
safety and specificity of the circuits, especially for the purpose of
cell therapy in the field of regenerative medicine. A delivery
method using modified messenger RNAs (modRNAs) could
provide safer means to control gene expressions compared with
DNA delivery, because modRNAs exhibit a short half-life in cells
and do not cause random genomic integration9–12.

To reduce off-target effects in non-target cells, it is important to
produce desired outputs dependent on the cell state. One strategy
is to design systems that determine the output of the circuits by
sensing cell-specific, intracellular molecules as inputs. MicroRNAs
(miRNAs) are a class of small noncoding RNAs that post-
transcriptionally regulate gene expression by binding to target
mRNAs13,14. It has been reported that more than 2600 different
miRNAs exist in humans (miRBase ver.22)15. The miRNA
expression profile is related to important biological processes,
including development16, cancer, and cell reprogramming17,18,
and thus can be used to classify the cell state5,19–21. These prop-
erties suggest that miRNA-responsive, synthetic circuits could
provide useful tools for future therapeutic applications. We have
previously designed miRNA-responsive, synthetic mRNAs
(miRNA switches) that enable the detection and purification of
target cells differentiated from human pluripotent stem cells based
on endogenous miRNA activity9,22. However, the information
from a single miRNA input may be insufficent to distinguish cells
in a heterogeneous population. In these cases, it is crucial to detect
multiple miRNA inputs and logically control the outputs (e.g. cell
fate). Although synthetic circuits using modRNAs that encode
RNA binding proteins (RBPs) have been constructed in mam-
malian cells10, complex synthetic RNA-delivered circuits that can
detect multiple miRNAs and regulate output protein through logic
computation have not been demonstrated. Thus, we aimed to
design synthetic RNA-delivered logic circuits that function in
mammalian cells by improving the performance of miRNA- and
protein-responsive modRNAs.

In this study, we construct a set of RNA-based logic circuits
with RBPs that detect multiple miRNA inputs and regulate the
output protein expression (Fig. 1a). We create five logic gates
(AND, OR, NAND, NOR, and XOR) in mammalian cells using
an RNA-only delivery approach. A 3-input AND circuit produces
the output protein only in the presence of all target miRNAs.
Additionally, we selectively control cell-death pathways between
target and non-target cells by connecting a 2-input AND gate
with apoptotic regulatory circuits.

Results
Improving the performance of miRNA-responsive circuits.
RBPs can function as both the input and the output of RNA-
based regulatory devices10. For example, L7Ae, a kink-turn (Kt)
RNA binding protein, associates with the Kt of archaeal box C/D
sRNAs23,24. An L7Ae-Kt interaction at the 5′-UTR efficiently
inhibits translation of the mRNA (Supplementary Figure 1b, d, f),
probably by blocking translation initiation and ribosome
function25,26. We have previously used the L7Ae-Kt interaction to
construct modRNA-based regulatory devices that detect one
target miRNA and regulate the production of one output pro-
tein10. The circuit topology of this device consists of two types of
modRNAs (Fig. 1b); one is an L7Ae-coding mRNA with four

miRNA target sites that are completely complementary to the
mature miRNA within the 3′ untranslated region (3′-UTR), and
the other is an output-gene-coding mRNA with a Kt motif within
the 5′-UTR. We refer to this device as L7-4xTX, where 4x
represents the number of miRNA target sites, TX represents
target sites to the specific miRNA, and the position of TX in the
device name represents the location of the target site in the device
(i.e., 5′-UTR or 3′-UTR). In the absence of the input miRNAs, the
circuit produces no output protein due to L7Ae expression (OFF
state), but produces the output protein in the presence of the
input (ON state). However, the fold-change of the designed cir-
cuit between ON state and OFF state was moderate. As a first step
toward realizing robust logic circuits with modRNAs, we aimed
to improve the fold-change (ON/OFF ratio in output level) by
enhancing sensitivity to the input miRNAs and reducing leaky
protein expression, which would lead to a higher output
expression level in ON state. We found that the knockdown effect
of miRNAs on the miRNA switch is high when the target site
(antisense sequence of the miRNA) was inserted into the 5′-
UTR9,22 (Supplementary Figure 1a, c, e). Thus, we hypothesized
that the insertion of a miRNA target site into both the 5′-UTR
and 3′-UTR may have a stronger effect than insertion in only one
UTR and thus improve the fold-change between ON state and
OFF state (Fig. 2a). Accordingly, we constructed L7Ae-coding
modRNAs with miRNA target sites within both the 5′-UTR and
3′-UTR, and EGFP-coding reporter modRNA with a Kt motif
within the 5′-UTR. We tested the performance of this miR-21-
responsive RNA device by co-transfecting it with miR-21 mimic
(chemically modified RNA that mimics endogenous miRNA) into
293FT cells. iRFP670-coding modRNAs without the miRNA
target sites were also introduced as a transfection control. In this
study, we chose miR-21 along with miR-302a as representative
miRNA markers, because they are highly expressed in several
human cancer cells27 and pluripotent stem cells28,29, respectively.
We expected that the EGFP expression level would increase in a
miR-21 mimic-dependent manner because 293FT cells do not
express endogenous miR-219,30. We used 8 nM miR-21 mimic
because the proportional activity of 8 nM miR-21 mimic in
293FT cells (up to 15.3-fold, Supplementary Figure 1c) is almost
equal to that of endogenous miR-21 in HeLa cells (up to 15.8-
fold, Supplementary Figure 2), indicating that 8 nM miR-21
mimic reflects naturally occurring miRNA activity. Twenty-four
hours after the transfection, we observed the circuit performance
by flow cytometry analysis. We found that circuits with the device
that contained miRNA target sites within both 5′-UTR and 3′-
UTR (T21-L7-4xT21) showed the highest fold-change (9.2-fold)
compared with standard circuits containing miRNA target sites
only within the 3′-UTR (L7-4xT21, 2.7-fold) or within the 5′-
UTR (T21-L7, 5.2-fold) (Fig. 2b–d). The circuit with T21-L7-
4xT21 modRNA was much more effective at distinguishing cell
populations in ON and OFF states compared with the other
modRNA devices (Fig. 2c).

To investigate whether the T21-L7-4xT21 circuit can detect
endogenous miRNAs, we transfected it into HeLa cells, which
express endogenous miR-219,30. The increased fold-change and
cell separation between ON and OFF (with 8 nM miR-21
inhibitor) states with the T21-L7-4xT21 circuit was confirmed
in HeLa cells (from 1.1- to 3.1-fold) (Fig. 2e, f). In addition, we
used the T302a-L7-4xT302a circuit to detect another type of
miRNA (miR-302a). We confirmed a significant fold-change
between ON and OFF states (from 4.6 to 9.0-fold) in 293FT cells
(Supplementary Figure 3). The results were consistent with those
for miR-21 (Fig. 2), confirming that the improvement of the
circuit performance by using modRNAs that contain the miRNA
target site within both 5′- and 3′-UTR is independent of the
miRNA sequence or cell line.
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Construction of logic circuits using modRNA-delivered device.
Next, we constructed a modRNA-deliverable set of logic circuits
that can sense the activities of multiple miRNAs to regulate
output protein production. First, we designed a 2-input (miR-21
and miR-302a) AND circuit with EGFP as the output (first row in
Fig. 3). The AND circuit expresses the output only in the presence
of both miRNAs (input pattern [11] in the truth table of Fig. 3).
The circuit consists of miR-21- or miR-302a-responsive L7Ae-
coding mRNAs, and EGFP-coding mRNA with a Kt motif (Kt-
EGFP). We tested the performance of the circuit in 293FT cells,
which have no activity for either miRNA, thereby enabling
examination of the conditional four input patterns (denoted as
[00], [10], [01], and [11]) by treatment with miR-21 (302a)
mimics. As expected, the AND circuit functioned only in the
presence of both miRNAs (Fig. 3 and Supplementary Figure 4).
Because L7Ae efficiently represses translation of Kt-EGFP
mRNA25,26 (Supplementary Figure 1b, d, f), we found that the
presence of either L7Ae-coding mRNA was sufficient to repress
EGFP expression. The fold-change was calculated by dividing the
averaged output levels in each ON state ([11] for AND gates) by
that in each OFF state ([00], [10] and [01] for AND gates) and
found it to be 7.1-fold (Fig. 3). We next designed an OR circuit
(second row in Fig. 3), which expresses the output when either
one or both inputs are present (ON state= [10], [01], or [11]).
This circuit consists of miR-21- and/or miR-302a-responsive
single mRNA and EGFP-coding mRNA with a Kt motif. The
designed OR circuit functioned with a fold-change of 5.4 (Fig. 3).

To generate more complex circuits, we next used a bacter-
iophage MS2 coat protein, MS2CP31, as a second translational
repressor protein in addition to L7Ae. First, we improved the
response of MS2CP-responsive mRNA by engineering the
surrounding sequence containing the binding motif (MS2box).
The sc2xMS2box motif-inserted mRNA, which consists of two
MS2box motifs and a scaffold structure to stabilize the MS2CP-

binding motif32, showed the highest fold-change (14.7-fold)
compared with that of other MS2CP-responsive mRNAs, which
had one (1.85-fold, 1xMS2box) or two (2.8-fold, 2xMS2box)
MS2box motifs inserted into the 5′-UTR (Supplementary Figure 5).
From this inclusion, we designed NAND, NOR, and XOR circuits
(Fig. 3) by connecting L7Ae- and MS2CP-responsive mRNAs.
NAND (Not AND) and NOR (Not OR) circuits can be designed
by inverting the output of AND and OR circuits, respectively. We
used MS2CP-coding mRNAs with a Kt motif (Kt-MS2CP) and
EGFP-coding mRNA with two MS2CP binding motifs within the
5′-UTR (sc2xMS2box-EGFP) as a second repressor device. The
NAND circuit should produce no output only if both input
miRNAs are present ([11]). The NOR circuit should produce
outputs only when both inputs are absent ([00]). The XOR
(eXclusive OR) circuit produces outputs only when exactly one
input miRNA is present ([10] or [01]). Our NAND, NOR, and
XOR circuits worked as expected, with fold-changes of 3.1, 3.5,
and 5.5, respectively (Fig. 3). From these results, we confirmed all
the designed basic circuits (AND, OR, NAND, NOR, XOR)
worked in mammalian cells using a modRNA-delivery approach
(Fig. 3 and Supplementary Figure 4).

In addition, we designed a 3-input AND circuit using miR-21-,
miR-302a-, and miR-206-responsive, L7Ae-coding mRNAs with
Kt-EGFP mRNAs (Fig. 4a). As expected, the circuit produced
output EGFP production only in the presence of all three
miRNAs, with a fold-change of 4.4 (Fig. 4b and Supplementary
Figure 6).

Apoptosis regulatory 2-input AND circuit. Finally, we validated
whether RNA-based circuits can control cell-death signals
through a logic operation. We designed a 2-input (miR-206 and
miR-302a) AND circuit with human Bax (hBax), a pro-apoptotic
gene, as the endpoint output. In addition, Bcl-2, an anti-apoptotic
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gene was fused with L7Ae through P2A peptides to reinforce the
repression of apoptosis against leaky hBax expression in OFF
states (Fig. 5a, b). In this design, we expected that the circuits
should kill cells only in the presence of both target miRNAs ([11]
state). We co-transfected the circuits with miR-206 and/or miR-
302a mimics into 293FT cells. Twenty-four hours after the
transfection, we stained the cells with SYTOX red for dead cells
and Annexin V for apoptotic cells to quantitatively assess the
apoptosis level. The circuits induced apoptosis only when both
input miRNAs were present. The apoptosis level in ON state was
comparable to hBax mRNA transfection (Fig. 5c, d). Thus, our
apoptosis regulatory 2-input AND circuit can selectively regulate
cell death by sensing two target miRNAs.

Discussion
In this study, we designed and constructed multi-input logic
circuits that can distinguish differences in the activities of

multiple miRNA in a cell with an RNA-only delivery approach.
We found that several basic logic circuits (AND, OR, NAND,
NOR and XOR gates) can be constructed with a set of RBPs and
mRNAs without the requirement of DNA-based transcriptional
regulation by improving the performance of RNA regulatory
devices (Figs. 3 and 4). To quantitatively evaluate the perfor-
mance of each circuit, we calculated the cosine similarity and net
fold-change (Supplementary Figure 7). Cosine similarity is an
index for evaluating the error between the ideal implementation
and observed behavior in a circuit33 (see Analysis of cosine
similarity and net fold-change in Methods). The net fold-change
was defined as the ratio of the averaged output level in ON and
OFF states. From the analyses, AND and OR circuits showed
better performance in net fold-change and cosine similarity,
respectively, compared with NAND and NOR circuits (Supple-
mentary Figure 7), which we attribute to circuit complexity. All of
the circuits showed statistically significant performance (Supple-
mentary Tables 1, 2, and 3).
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Although DNA-based circuits have great potential for appli-
cations such as designer cells7,34 (e.g., CAR-T cells), RNA-
delivered circuits have an advantage in terms of safety, which
makes them preferable for therapeutic applications in the field of
regenerative medicine, such as the elimination of unwanted cells
and purification of target cells from a heterogenous population
differentiated from human pluripotent stem cells9,22. MicroRNA-
responsive circuits will be especially useful, because miRNA
expressions are signatures of the cell identity and cell state.
However, to date, most studies using synthetic circuits have
required a DNA delivery method5,35–38. We and others have
developed synthetic RNA-delivered, miRNA-responsive cir-
cuits10. To control cell fate more precisely, multi-input circuits
with logic computation is necessary, as demonstrated in DNA-
based systems5,33,39,40. However, the construction of logic circuits
in cells with RNA-only delivery has not been achieved previously,

because previous RNA-based circuits show relatively low fold-
change (ON/OFF ratio in outputs) and have a limited repertoire
of devices with high repression capacity. By improving sensitivity
to the input miRNA (Fig. 2) and engineering a repressor device
(MS2CP-responsive mRNA) to increase the ON/OFF ratio
(Supplementary Figure 5), here we report five kinds of 2-input
basic logic circuits compatible with RNA-only delivery. These
basic logic circuits which are composed of simple two types of
repressor (miRNA- and protein-responsive mRNAs) are an
important milestone toward the construction of scalable and
more complex RNA-only circuits.

To further engineer and improve synthetic RNA-based circuits
that can respond to multiple miRNA targets, three issues
regarding the circuit design should be considered. First, to
increase the fold-change between ON and OFF states, we need to
reduce undesired leakiness in the protein expression prior to
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miRNA-mediated post-transcriptional repression. For this pur-
pose, the circuit may benefit by adding a post-translational system
that controls the stability of the output protein products (such as
the degron system41). As an alternative approach, the insertion of
multiple miRNA target sites into the 5′-UTR of the sensor
mRNAs may enhance the miRNA sensitivity and circuit perfor-
mance30. Although we do not know the reason why the insertion
of a miRNA target site into the 5′-UTR and 3′-UTR together
results in enhanced downregulation of the target mRNAs42, we
assume that each designed miRNA target site is completely
complementary to the miRNA of interest, which would thus
induce AGO2-mediated mRNA cleavage43. Second, to perform
more complexed logic computation in cells, we need to scale-up
the RNA-based circuits by using a set of orthogonal RBPs. Cur-
rently, the limited availability of translational repressors, such as
L7Ae or MS2CP, makes it difficult to design more complex cir-
cuits. Finding new RBP-mediated repressors, such as CRISPR-Cas
effector Cas13, may expand the repertoire of RNA-based cir-
cuits44–46. Lastly, it is important to choose appropriate input
miRNAs in order to detect and control the target cells in a het-
erogenous population. For this purpose, we need to measure not
only the expression profiles, but the activity profiles of the miR-
NAs, because many miRNAs detected by RNA sequencing or
microarray have weak or little activity according to reporter
analyses42,47,48.

In conclusion, we have developed a framework for constructing
basic logic circuits with RNA-only delivery, expanding the
potential of RNA-based gene circuits to detect and control the cell
state. We demonstrated that 2-input AND circuit with an
apoptotic gene as the output regulated cell death according to
differences in the two miRNA activities. Such a multi-input sys-
tem enables us to purify target cells or control cell fate more

precisely compared with a single miRNA-input system9,22. Syn-
thetic mRNA-based, multi-input miRNA-responsive circuits will
contribute to the development of more sophisticated circuits for
future medical applications.

Methods
Cell culture. 293FT cells (Invitrogen, USA) were cultured in DMEM high glucose
(Nacalai Tesque, Japan) supplemented with 10% FBS (JBS, Japan), 0.1 mM MEM
non-essential amino acids (Life Technologies, USA), 2 mM L-glutamine (Life
Technologies) and 1 mM sodium pyruvate (Nacalai Tesque). HeLa CCL2 cells
(ATCC) were cultured in DMEM High Glucose (Nacalai Tesque) supplemented
with 10% FBS (JBS). All cell lines were cultured at 37 °C with 5% CO2.

RNA transfection. All transfections were performed in 24-well format using
Stemfect RNA Transfection Reagent Kit (Stemgent, USA) or Lipofectamine®
MessengerMAX (Thermo Fisher scientific, USA) according to the manufacturer’s
protocol. Opti-MEM (Thermo Fisher scientific) was used as buffer for Messen-
gaerMAX. The MessengerMAX reagent and buffer were mixed for 10 min. The
mRNAs with or without miRNA mimics or miRNA inhibitors diluted with buffer
were mixed with the above reagent for 5 min. 293FT cells (1 × 105 cells per well)
and HeLa cells (5 × 104 cells per well) were seeded in 24-well plates at 24 h before
the transfection for all experiments. The medium was not changed before and after
the transfection. All subsequent assays were performed 24 h after the transfection.
The transfection details for each experiment are shown in Supplementary Table 4.

Preparation of DNA template for in vitro transcription (IVT). A DNA template
for IVT was generated by PCR using KOD-Plus-Neo (TOYOBO, Japan). A forward
primer containing the T7 promoter and a reverse primer containing 120-
nucleotide-long poly(T) tract transcribed into a poly(A) tail were used. PCR pro-
ducts amplified from the plasmids were subjected to digestion by DpnI restriction
enzyme (TOYOBO). The PCR products were purified using a MinElute PCR
purification Kit (QIAGEN, UK) according to the manufacturer’s protocol.

Preparation of modified mRNA. All mRNAs were generated using the above PCR
products and MEGAscript T7 Kit (Ambion, USA). In the reaction, pseudouridine-
5′-triphosphate and 5-methylcytidine-5′-triphosphate (TriLink BioTechnologies,
USA) were used instead of uridine triphosphate and cytosine triphosphate,
respectively. For IVT of the MS2CP-responsive mRNA used in Fig. 3, N1-
methylpseudouridine-5′-triphosphate (m1pU) (TriLink BioTechnologies) was used
instead of uridine-5′-triphosphate. Guanosine-5′-triphosphate was 5-fold diluted
with an anti-reverse cap analog (TriLink BioTechnologies) before the IVT reaction.
Reaction mixtures were incubated at 37°C for up to 6 h and then mixed with
TURBO DNase (Ambion), and further incubated at 37°C for 30 min to remove the
template DNA. The resulting mRNAs were purified using a FavorPrep Blood/
Cultured Cells total RNA extraction column (Favorgen Biotech, Taiwan), incu-
bated with Antarctic Phosphatase (New England Biolabs) at 37 °C for 30 min, and
then purified again using an RNeasy MinElute Cleanup Kit (QIAGEN).

Synthetic miRNA mimics and inhibitors. MiRNA mimics are small, chemically
modified double-stranded RNAs that mimic endogenous miRNAs. The RNA
mimic of human miR-21-5p, miR-302a-5p and miR-206 and negative control
miRNA were used (Thermo Fisher Scientific). The negative control mimic is a
random sequence validated not to have any downstream mRNA target for
repression. MiRNA inhibitors for miR-21-5p (Thermo Fisher Scientific) were used
in experiments using HeLa cells.

Fluorescent microscopy. Fluorescent images were taken at 24 h after the trans-
fection by IX81 microscopy connected to a CDD-camera (Olympus, Japan). Images
were edited to change the brightness and contrast using ImageJ software (NIH,
Bethesda, MD, USA).

Flow cytometry and data analysis. All flow cytometry measurements were per-
formed 24 h after the transfection using BD Accuri™ C6 (BD Biosciences, USA). For
all fluorescence assays, clumps and doublets were excluded based on forward and
side scatter. EGFP and iRFP670 were detected by FL1 (533/30 nm) and FL4 (675/
25 nm) filters, respectively. The data were analyzed using FlowJo 7.6.5 software.

The output level was calculated by the following formula:

Mean EGFP intensity in iRFP670þ cells
Mean iRFP670 intensity in iRFP670þ cells

ð1Þ

iRFP670+ gating was determined from the mock sample with 99.9% cells outside
the gate. Each data set was normalized by an appropriate control sample and then
averaged by 3 data sets.

Apoptosis and cell death assays. Sample cells including those in the supernatant
were collected 24 h after the transfection, washed with PBS and stained with
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Annexin V, Alexa Fluor 488 conjugated (Life Technologies) and SYTOX red (Life
Technologies) for 15 min at room temperature. The cells were analyzed by BD
Accuri™ C6. Annexin V, Alexa Fluor 488 conjugate was detected with FL1 filter,
and SYTOX red dead-cell staining was detected with FL4 filter.

Analysis of cosine similarity and net fold-change. In Supplementary Figure 7,
the correctness of multi-input logic circuits was quantitatively evaluated by cal-
culating the cosine similarity between vectors x and y using the following formula:

cos θ ¼ x � y
xj j yj j ð2Þ

x is a truth table vector that has ideal output (=0 or 1) for each state ([00], [10],
[01], and [11]) as a vector. For example, x= (0 0 0 1) for AND circuit. y is an
output signal vector that carries the observed output levels (=EGFP/ iRFP670) of
each state ([00], [10], [01], and [11]). Thus, cos θ ranges from 0 (worst) to 1 (best).
Net fold-change was calculated by dividing the averaged output level in each ON
state by that in each OFF state.

Statistical analysis. All data are presented as the mean ± s.d. Unpaired two-tailed
Student’s t-test was used for the statistical analysis in Fig. 2 and Supplementary
Figure 3. Tukey’s method was used for the statistical analysis in Figs. 3–5 (Sup-
plementary Tables 1, 2 and 3). The levels of significance are denoted as *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001, and n.s., not significant (P ≥ 0.05). All
statistical tests were performed using R.

Data availability
All relevant data are available from the corresponding author upon reasonable
request. Primer sequences are provided in Supplementary Table 5.
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