Stem Cell Reviews and Reports (2021) 17:440-458
https://doi.org/10.1007/s12015-020-10085-8

Check for
updates

Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles
in Lung Diseases: Current Status and Future Perspectives

Haiyan Guo'® - Yue Su?@® - Fang Deng?

Accepted: 10 November 2020 / Published online: 19 November 2020
© The Author(s) 2020

Abstract

Mesenchymal stromal cells (MSCs) as a kind of pluripotent adult stem cell have shown great therapeutic potential in relation to
many diseases in anti-inflammation and regeneration. The results of preclinical experiments and clinical trials have demonstrated
that MSC-derived secretome possesses immunoregulatory and reparative abilities and that this secretome is capable of modu-
lating innate and adaptive immunity and reprograming the metabolism of recipient cells via paracrine mechanisms. It has been
recognized that MSC-derived secretome, including soluble proteins (cytokines, chemokines, growth factors, proteases), extra-
cellular vesicles (EVs) and organelles, plays a key role in tissue repair and regeneration in bronchopulmonary dysplasia, acute
respiratory distress syndrome (ARDS), bronchial asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary
fibrosis (IPF), pulmonary arterial hypertension, and silicosis. This review summarizes the known functions of MSC-EV mod-
ulation in lung diseases, coupled with the future challenges of MSC-EVs as a new pharmaceutical agent. The identification of
underlying mechanisms for MSC-EV might provide a new direction for MSC-centered treatment in lung diseases.
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Introduction

Respiratory diseases are leading causes of morbidity and mor-
tality worldwide as the lung is a vital and vulnerable organ that
is exposed to the ubiquity of pollutional environmental, occu-
pational, and behavioural inhalational exposures [1, 2].
According to an analysis for the global burden of disease
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study (GBD) 2017, more than 500 million people in the world
had a chronic respiratory disease and these diseases accounted
for approximately 4 million deaths in 2017 [3]. Regarding
acute lung injury (ALI), patients with ARDS occupy 10% of
all beds in intensive care units (ICU) and the mortality rate for
ARDS remains between 30% to 40% in most clinical research
[4]. Whatever the pathophysiology of acute lung injury or
chronic respiratory diseases, the overwhelming immune re-
sponses, and inappropriate reparative processes usually result
in an imbalance of pro-inflammatory and anti-inflammatory
cytokines, and profibrotic and anti-fibrotic factors, which give
rise to irreparable damage and exert a negative impact on the
quality of life [S]. The current therapies for acute lung injury
and most chronic lung diseases remain in the areas of anti-
inflammation and corticosteroid treatment, which have poten-
tial side effects and uncertain outcomes [6] such as increased
risk of pneumonia, oral candidiasis, tuberculosis, etc. Over the
past decades it has become clear that MSCs, regarded as “the
Next Pillar of Medicine”, are able to restore the balance of the
immune response in the process of pulmonary inflammation
by modulating the cytokine network and other humoral and
cellular effectors. They have been identified as having not
only profound immunosuppressive effects but have also dem-
onstrated an ability to facilitate wound healing in acute or
chronic lung injury. However, mounting evidence
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demonstrates that only a small number of MSCs are capable of
preferentially homing to damaged places and surviving for
over 24 h through systematic administration [7]. Moreover,
the ambiguous impacts of MSC administration, such as em-
boli formation and tumorigenic transformation, genetic insta-
bility, and the lack of standardized and optimized criteria con-
tribute to the investigation of MSC-EVs as an alternative
agent. Most importantly, in some experimental lung disease
models, MSC-EVs obtained more effective outcomes in terms
of lung vascularization and alveolarization compared to MSCs
[8-10].

In this review, we pay attention to recent insights from
preclinical experiments and clinical trials which have contrib-
uted to dissect the molecular mechanisms of MSC-EV effects,
and highlight the existing barrier of MSC-EV application as
an off-shelf agent from bench to bedside for lung diseases
(Table 1).

MSC-EVs: Definition, Characteristics
and Potential Effects in Lung Diseases

MSC-EVs are round signal molecules delimited by a lipid
bilayer membrane, which play a prominent role in extracellu-
lar communications through delivering parental cell-derived
active cargos such as bioactive proteins, mRNAs, noncoding
RNAs and organelles to recipient cells [11]. Based on the
Minimal information for studies of Extracellular Vesicles
2018 (MISEV2018), the International Society for
Extracellular Vesicles (ISEV) suggests a new nomenclature
of MSC-EVs subtypes, which is based on: 1) physical char-
acteristics of EVs; 2) biochemical composition; or 3) descrip-
tions of conditions or cell of origin [12]. However, most stud-
ies currently still use the general classification for MSC-EV
subtypes: exosomes (30-120 nm), microvesicles (100-
1000 nm), and apoptotic bodies (800-5000 nm) [13].
Recently, research on EV biogenesis and shedding has indi-
cated that exosomes and microvesicles have two different se-
cretory mechanisms, of which exosomes are derived and gen-
erated through endocytic pathway, and subsequently fuse ei-
ther with lysosomes or with plasma membrane [14, 15]. By
contrast, microvesicles are originated by plasma membrane
budding and release directly from the cell surface [16].
Furthermore, the contents of the EV cargo are dependent on
the type of their parental cells and the microenvironment of
the releasing cells [17, 18].

The lungs are the primary organ of the respiratory system
that are in contact with the external environment containing
pathogens and microbes. Pulmonary homeostasis is main-
tained by the communication between local stromal cells
and resident immune cells that sense the dynamic microenvi-
ronment. Upon the disruption of homeostasis by risk patho-
gens, resident macrophages as the first line of defense against

various pathogenic microorganisms and the primary source
for the release of proinflammatory cytokines and chemokines,
such as TNF-«, IL-1f3, and macrophage inflammatory pro-
tein-2(MIP-2), recruit neutrophils and monocytes respectively
to propagate the immune responses [19]. In an extremely un-
controlled microenvironment, excessive inflammation, aber-
rated immunomodulation or unknown etiologies call for clin-
ical intervention. To date, antibiotics, corticosteroid, and in-
vasive ventilation are primary choice for treating respiratory
disease, but multi-drug resistance, opportunistic infection, and
unrecoverable injury are main side effects to patients. In recent
years, compared to the pharmacological treatments, MSC-
EVs have exhibited immunosuppressive and reparative prop-
erties in the way of low immunogenicity, long half-life,
in vivo stability, and high delivery efficiency, which also con-
tribute to attenuate lung injury and facilitate wound closure.
Accordingly, employing MSC-EVs is likely to be a promising
approach due to their ability to reduce lymphocyte infiltration
and pro-inflammatory cytokine secretion, inhibit bacteria or
virus replication, regulate endothelial and epithelial perme-
ability, and promote tissue repair [20—22]. Moreover, accumu-
lating data have shown MSC-EVs are capable of modulating
proliferation, maturation, polarization, and migration of dif-
ferent immune effector cells depending on the context of de-
livering various cytokines, transcription mediators, and organ-
elles, which contribute to the preferential characteristics of
MSC-EVs in their immunomodulatory effects [23, 24].

Molecular Mechanisms of MSC-EVs in Lung
Diseases

Bronchopulmonary Dysplasia

Bronchopulmonary dysplasia (BPD) is a chronic respiratory
disease most commonly seen in preterm infants and neonates
who require mechanical ventilation and oxygen therapy for
acute respiratory distress [25], characterized by a dysregulated
immune response, decreased numbers of alveoli and blood
vessels, and dysfunction of the aveolar-capillary membrane
[26]. In preclinical studies, newborn mice or rats exposed to
a hyperoxia (75%) microenvironment are widely used to mim-
ic the pathogensis of human BPD [27]. Over the years, sys-
tematic administration, or local injection (intranasal [28] or
intratracheal [29]) of MSCs have defined the beneficial impact
on attenuating experimental BPD through inhibition of N-
methyl-D-aspartic acid (NMDA) receptors [30], renin-
angiotensin system (RAS) [31], TLR4 expression [32],
decorin [29] and CTGF secretion [33], accompanied by up-
regulating the production of aminoacyl-peptide hydrolase
[34], PTX3 [35], VEGF [33], stromal cell-derived factor 1
[36], macrophage stimulating factor 1 [37], and osteopontin
[37], leading to increased survival rate, downregulated
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Table 1

Therapeutic effects of MSC-EVs in experimental models of lung diseases

Disease Study

Model

MSC sourses

Route

Dose/Volume/Frequency

mechanisms

BPD Willis et al.

[40]

BPD Porzionato

et al [8]

BPD Braun et al.

[41]

BPD Chaubey

et al. [42]

ARDS Khatri et al.

[55]

Monsel
et al. [56]

Severe Pneumonia

Hao et al.
[60]

Acute lung injury

Ischemia/reperfusion
injury

Li et al. [57]

Acute lung injury Wang et al.

[62]

ARDS Morrison

et al. [67]

Zhu et al.
[63]

Acute lung injury

Acute lung injury

@ Springer

hypoxia-exposed
mice

hypoxia-exposed
mice

hypoxia-exposed
mice

hypoxia-exposed
mice

influenza-induced
pig

Escherichia
coli-induced mice

Escherichia
coli-induced mice

hilar ligation of the
left lung-induced
mice

LPS-induced mice

LPS-injured mice

E. coli
endotoxin--
induced mice

LPS-injured mice

WIJ-MSC

UC-MSC

MSC

UC-MSC

BM-MSCs

BM-MSCs

BM-MSCs

BM-MSCs

AD-MSC

BM-MSCs

MSC

BM-MSCs

8.5 x 108 particles/50ul/Once

0.64 x 1010 Evs/50ul/Once

3.4 x 109 exosomes/50ul/Once

4.5x108/2.88 x 107
particles/100ul/twice

79+ 1 pg protein per
Kg/100 pl/Once

97 £+ 90 ng protein/90ul/Once

10 x 10° particles/90ul/Once

isolate from 2 x 10°
MSCs/30ul/Once

50 ng protein/50ul/Once

MSC-EV treated macrophage
2.5% 10°AMs

30.9+17.0 ug
protein/30ul/Once

| alveolar simplification,
fibrosis, inflammation and
pulmonary vascular
remodeling; 1 total lung
capcity, M2-polarized
macrophges, mRNA Arg-1

thickness index for the smaller
vessels,macrophage density;
1 total number of
alveoli,mean alveolar
volume

lalveolarization, airspace
subdivision, thickened
alveolar walls, cellular
infiltrates, RV hypertrophy;
1 alveolar growth,lung blood
vessel density, VEGF
secretion

| alveolar injury, total cell
count; inflammation,
neutrophil infiltration,
protein leak, septal thickness,
alveolar size,PH-induced
RVH, brain cell death; 1
Myelin binding protein,
TSG-6 production

| virus replication,
inflammation, TNF-«,
CXCL10; 1 IL-10

| bacterial load, inflammation,
lung protein permeability,
monocyte phagocytosis,
TNF-«; 1 ATP levels, COX2
and IL-10 mRNA, IL-10

| MRP1 protein of monocytes,
monocyte phagocytosis,
PGE2/LTBA4 ratio; 1 LTB4
level; miR 145 packaged in
MSC-Evs

| INOS mRNA, Caspase-3/8/9
activation,pulmonary
endothelial cell apoptosis,
expression of PTEN and
PDCD4; 1 Arginase-1;
miR21-5p packaged in
MSC-Evs

| mRNA expression of iNOS,
TNF-« and IL-1(3, NFKBI1
protein production; 1
M2-polarization, nRNA
expression of YM-1 and
CD206, macrophage
phagtosis;MSC-EVs transfer
miR27a-3p

| TNF-o and IL-8 secretion;
macrophage phagtosis, 1
macrophage oxidative
phosphorylation; MSC-EVs
transfer mitochondria to
macrophages

| Inflammatory cell influx,
proetin permeability,
alveolar MIP-2, extravasular
lung water; 1T KGF, IL-10
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Table 1 (continued)

Disease Study

Model

MSC sourses

Route

Dose/Volume/Frequency

mechanisms

Tang et al.
[64]

Lung Injury
[65]

Park et al.
[66]

Severe Pneumonia

Acute lung injury

Sepsis Song et al.

[61]

Asthma

[82]

Asthma Duet al.
[83]

Asthma Fang et al.

(84]

Asthma Ahmad

et al. [85]

COPD

COPD Kim [95]

COPD

COPD

IPF Mansouri

et al.
[106]

Gennai et al.

Yiet al. [58]

Castro et al.

Harrell [94]

Li et al. [96]

Maremanda
etal. [10]

Ex vivo perfused
human lung

E.coli-induced Ex
vivo perfused
human lung
pneumonia

LPS-injured mice

Caecal ligation and
puncture-induced
sepsis mice

OVA-induced
CS57BL/6 mice

PBMCs from
asthmatic patient

ILC2-dominant
eosinophilic mice

Rotenone induced
allergic airway in
mice

CS-induced mice

porcine pancreatic
elastase-induced
mice

CS-exposed rat

CS-induced mice

bleomycin-induced
C57BL/6 mice

BM-MSCs

BM-MSCs

BM-MSCs

UC-MSCs

AD-MSCs

BM-MSCs

iPSC-MSCs

BM-MSCs

placental-MSCs

ASCs

ips-MSCs

MSC

BM-MSCs

co-incubation

v

it

ip.

v

isolate from 3 x 10°
MSCs/30ul/Once

165.6ug protein / 200ul/Once

9.4+0.2 x 107particles/200ul/
Once

100pg protein/300ul/Once

30pg protein/150ul/Once

37 ug protein/50ul/ Once

exosomes from
1 x 10°MSC/N/A/Once

100 pg protein/20ul/Once

1 x 10°MSC/N/A/Once

N/A/0.1 ml/S days per week
(3 weeks)

3x 10"/N/A/Once
N/A
15ug protein/N/A/daily

(10 days)

8.6+ 1 x 10° particles
/200ul/Once

| WBC, TNF-«, MIP-2
production, pulmonary
capillary permeability; 1
Ang-1 mRNA, IL-10

| Lung weight, pulmonary
artery pressure and
resisitance, PH of perfusate,
lactate elevation; T AFC rate,
lung compliance, NO in
perfusate,

| Lung protein permeability,
bacterial CFU; 1 AFC rate
and antimicrobial effect

| SAA3 expression; T
LPS-induced AEC
apoptosis; miR30b-3p
packaged in MSC-EVs

1 Survival rate,
M2-polarization; MSC-EV
packaged miR146a

| collagen fiber deposition,
il-4/5, TGF-{3, leukocyte and
eosinophil counts of BALF

1 anti-inflammatory cytokine
release (IL-10, TGF-f3),
CD4 + CD25 + Foxp3+
Tregs differenation

1 IL-9/13 prodiction, ILC2s
activation; inflammatory
infiltration, eosinophils and
neutrophils in BALF;
miR 146a-5p mediated the
observed effects in allergic
airway inflammation.

| epithelial cell stress, caspase
3/9, bronchial epithelial
apoptosis; T ATP level,
mitochondrial complex I and
IV activity; Mirol mediated
the promising effects

1 Pa0,, O, saturation, IL-10
secretion; | PaCO,,
pro-inflammatory cytokine
production (TNF«, IL-1f3,
IL-12, and IFN-y), influx of
macrophages, neutrophils,
NK and NKT cells

1 ATII cell proliferation
capacity, FGF2 expression; |
mean linear intercept

| mean linear intercept, airspace
enlargement; 1 intracellular
ATP levels

| Total cell counts, macrophage
counts, neutrophil counts,
CD4+ counts, KC, SI00A4,
PGC1o(mitochondria
biogenesis), MMP9 and
HMGBI1

|collagen content, apoptotic
cells, Ashcroft score, CCL2,
Argl, BAL total protein
content; 1 alveolar
macrophage, nonclassical
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Table 1 (continued)

Disease Study

Model

MSC sourses

Route

Dose/Volume/Frequency

mechanisms

IPF Wan et al.
[107]

PAH
[124]

PAH Klinger
etal.

[125]

PAH
[126]

PAH Lee et al.

[127]

PAH
[128]

PAH Liu et al.

[129]

PAH
[130]

Bandira
et al.
[138]

Silicosis

Silicosis
[139]

Chio et al.
[140]

Silicosis

Chen et al.

Zhang et al.

Zhang et al.

Hogan et al.

Pinney et al.

bleomycin-induced
C57BL/6 male
mice

MCT-induced SD
rats

Sugen5416-induced

SD rats

MCT-induced rats

hypoxia-exposed
mice

MCT-induced SD
rats

MCT-induced SD
rats

hypoxia-exposed
mice

MCT-induced SD

rats

silica-induced mice

silica-induced
BL/6 J mice

BM-MSCs

BM-MSCs

N/A

UB-MSC

BM-MSC

ASCs

BM-MSC

BM-MSC

BM-MSCs

BM-MSCs

BM-MSCs

100pg MSC-EVs/N/A/Once

30pg /100ul/Once
100pg/Kg

MSC-EVs/500ul/Three times

25ug/Kg
MSC-EVs/100ul/Once

10ug
MSC-exosomes/100ul/Once

N/A

30ug
MSC-microvesicles/500ul/-
Once

2%107 particles /200ul/Once

100pg /100ul/Once

40png MSC-EVs/500ul/Once

10pg /100ul/Once

monocytes; shifting the
macrophage and monocyte
profiles toward that of their
untreated counterparts.

| fibroblast activation,
hydroxyproline, «-SMA,
collagen I, FZD6

| mPAP, mRVP, RV
hypertrophy, pulmonary
arteriole thickness index and
area index

| right ventricular hypertrophy,
muscularization of peripheral
pulmonary vessels, lung
macrophages; 1T M2/M1
ratio, increased numbers of
peripheral blood vessels

|vessel wall thickness, right
ventricular hypertrophy,
pulmonary vascular
remodelling, PAEC
apoptosis, PASMC
proliferation, EndMT; 1
Wnt5a

|pulmonary influx of
macrophages,
proinflammatory and
proproliferative mediators
(MCP-1, HIMF), STAT3
activation; miRNA-17
superfamily, miR-204

|} RVSP, RV/(LV +5),
MT+IT, CSA; 1
proliferation of HPAECs;
miR191 packaged in
ASC-EVs accelerated
HPAEC proliferation
through BMPR2

| PAP, RVSP, pulmonary
vessel wall thickness index,
pulmonary vessel lumen area
index, inflammation score,
collagen fiber volume
fraction; 1 ACE2 mRNA in
lung, plasma levels of
Ang-(1-7)

| lactate, mitochondrial
damage; T amino acid
metabolism, glucose
oxidation, OCR,
mitochondrial metabolism,
PDH, GLUDI1

| mPAP, mRVP, RV
hypertrophy, pulmonary
arteriole thickness index and
area index

| Ly6Chi monocyte infiltration,
inflammatory mediators
(TNF-, IL-6), silicotic
nodules, hydroxyproline
accumulation

| wet/dry ratio, total BAL cells,
foamy macrophages/total
macrophages, inflammation
response, collagen
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inflammation- and hyperoxia-induced defective
alveolarization, and reduced lung fibrosis in experimental
BPD mice. Moreover, MSC stably transfected with a truncat-
ed version of CC chemokine ligand 2 (CCL2) promotes mac-
rophage activation, and is seen to be more effective than
MSCs alone [38]. These promising preclinical data have con-
tributed to the application of MSCs in clinical trials (Table 2).
For example, Chang et al launched a phase I dose-escalation
trial (NCT01297205) of hUCB-derived MSC transplantation
in BPD, recruiting 9 preterm infants of which three were given
a low dose (110 cells/Kg) and the other six were adminis-
trated a high dose (2#10” cells/Kg). Both groups showed that
MSC administration in treating BPD in preterm infants is safe
and feasible [39].

Nevertheless, safety concerns regarding the transplantation
of MSC in newborns have facilitated the investigation of
MSC-EV effects in BPD. Willis et al conducted pioneering
research to assess the efficacy of MSC-exo treatment in an
experimental hyperoxia-induced BPD model and to investi-
gate mechanisms underlying the therapeutic effect [40]. They
have demonstrated that MSC-exos administrated intravenous-
ly at the concerntration of 8.5%10° particles/50ul improve pul-
monary development, ameliorate septal fibrosis, restore lung
architecture, and enhance peripheral pulmonary arterial re-
modeling through macrophage phenotype modulation [40].
Noteworthily, the other studies done by Braun and
Porzionato et al have also shown that MSC-EV injection in-
traperitoneally(3.4*10°/50ul) or intratracheally(6.4%10° EV's/
50ul) increases blood vessel number and lung size, prevents
right heart hypertrophy, and inhibits alveolar growth disrup-
tion via anti-inflammatory and pro-angiogenic mechanisms
[8, 41]. Moreover, MSCs transferred exosomal factor-TSG-6
partially restores the alveolar-capillary leakage, increasing
chord length and alveolar simplification in hypoxia-induced
neonatal BPD mouse models [42].There is an ongoing clinical
trial (NCT03857841) aiming to investigate the intravenous
infusion of BM-MSC-drived EV (UNEX-42) on preterm ne-
onates at high risk for BPD. This interventional, randomized,
and placebo-controlled phase I clinical trial will recruit 18
infants and has three dose arms: 20/40/60 pmol phospholid/
Kg body weight. Collectively, MSC-EV administration holds
great therapeutic potential for BPD by facilitating macrophage
polarization, improving alveolarization and angiogenesis, and
reducing collagen density in the experimental studies of BPD.

(Fig. 1).

Acute Respiratory Distress Syndrome and Severe
Pneumonia

Acute Respiratory Distress Syndrome (ARDS) is a form of
severe hypoxemic respiratory failure caused by several risk
factors, such as pneumonia, sepsis, and trauma, which is char-
acterized by diffuse alveolar damage (DAD) with apoptosis of

alveolar type I and II cells, accumulation of proteinaceous
oedema, and hyaline membrane formation in the alveolar
space [43]. Since the definition of ARDS was established
50 years ago, there has been remains no specific pharmaco-
logical treatment for ARDS. Data from preclinical experi-
ments have shown that MSCs prevent the development of
ARDS in vitro and in vivo in the experimental acute lung
injury (ALI))ARDS mice models which are instilled with li-
popolysaccharide (LPS) or bacteria. MSCs have been reported
to secrete various kinds of paracrine factors to restore epithe-
lial and endothelial cell permeability (Angl, IL-1ra, PGE2,
HGF) [44-46], facilitating macrophage phagocytosis (IL-6,
PGE2) [47], downregulating acute inflammation (IL-1ra,
TSG-6, IGF-1, Lipoxin A4) [48], and improving alveolar fluid
clearance (KGF7) [49, 50]. Importantly, early clinical trials
(phase I and phase II a/b) suggest that it is safe to give
MSCs to patients with ARDS [51], and the MUST-ARDS
study conducted by Athersys Inc. with a patented bone
marrow-derived adult multipotent progenitor cell product
(MultiStem) reported a significant reduction in 28-day mor-
tality accompanied by an increase in both ventilator and ICU
free days in patients who had received cell therapy [52]. More
recently, systematic MSC administration has shown its out-
standing properties in improving clinical symptoms and mod-
ulating immune responses in critically ill COVID19-ARDS
patients [53, 54].

Similarly, MSC-EVs have been shown to be beneficial to
experimental ARDS in viral- (H5N1, HIN1),
bacterial-(Escherichia coli.), and LPS-induced acute lung in-
jury (ALI). In an influenza A (H5N1)—-induced ALI, umbilical
cord derived MSC-exosomes at the concentration of 1%10'
particles/90ul have been shown to be more effective in im-
proving alveolar fluid clearance and attenuating protein per-
meability of alveolar epithelial cells than UC-MSCs due to
their greater production of Angl and HGF. Moreover, PKH-
26-labeled MSC-EVs are able to merge with epithelial cells to
suppress virus replication, virus shedding, virus-induced apo-
ptosis, and hemagglutination activity in the other influenza-
induced ALI porcine model [55]. Additionally, in an E.coli
pneumonia-mediated ALI murine model, Monsel and col-
leagues have elucidated that human MSC-derived
microvesicles (MVs) administration (97 =90 ng protein/
90ul) decreases the influx of inflammatory cells, and the level
of cytokines, protein, and bacteria, coupled with the increased
intracellular ATP production in damaged alveolar epithelial
type 2 cells, partially through KGF secretion [56]. Most of
the studies used an endotoxin (LPS)-induced animal model
to mimic the human ARDS/pneumonia microenvironment
and to evaluate the MSC-EV effects. Noteworthily, miRNAs
packaged in MSC-EVs have been found to play a key role in
attenuating ARDS lung injury. It has been reported that MSC-
EVs delivered miR21-5p [57]/miR30b-3p [58]/ miR100 [59]/
miR145a [60] /miR146a [61] to attenuate the inflammatory
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responses. Moreover, MSC-EVs also transferred miR27a-3p /
miR146a to modulate macrophage polarization [59, 62].
Besides miRNAs, Zhu et al and Tang et al have demonstrated
that MSC-EVs (30.9 + 17.0ug protein/30ul or isolated from
3*10° MSCs/30ul) are capable of reducing inflammatory cell
influx, protein permeability, MIP2 production, extravascular
lung water, and increasing IL-10 secretion in the LPS-induced
o mouse models [63, 64]. More importantly, in the ex vivo per-
fused human lung models, Gennai et al and Park et al have
shown that MSC-microvesicles (16.51g/200ul or 9.4 +
0.2%10” particles/200ul) are able to decrease pulmonary artery
pressure and resistance, lactate elevation, bacterial CFU, lung
protein permeability and lung weight, and increase alveolar
fluid clearance (AFC) rate, lung compliance and antimicrobial
effect [65, 66]. MSCs also donate functional mitochondria to
macrophages to modulate macrophage polarization through
enhancement in oxidative phosphorylation and to improve
mitochondria function of epithelial cells, resulting in wound
closure in a clinically relevant model of ARDS [67, 68].

A pilot clinical trial (NCT04276987) regarding aerosol in-
halation of allogenic adipose MSC-exosomes for treating
COVID in critically ill patients has been completed by Rujin
Hospital, Shanghai. This forerunning phase I trial recruited 24
participants who received conventional treatment and five
times aerosol inhalation of MSC-exosomes (2#10% nano ves-
icles at day1,2,3,4,5), but no results have been posted to date.

60 weeks

Route Patients enrolled Follow up

iv.

Frequency
once

Dose
20 million

MSC type
BM-MSC

Bronchial Asthma

Phase

Bronchial asthma is one of the most common and chronic lung
diseases in children and adults, whose pathophysiology is
underpinned by a chronic inflammation of the airway walls
accompanied by mucus hypersecretion, epithelial shedding,
metaplasia and hyperplasia of goblet cells, increased collagen
deposition, and hypertorophy and hyperplasia of airway
smooth-muscle [69, 70]. The current treatments for asthmatic
patients are largely symptomatic and ineffective, and diverse
side effects of these therapies has led researchers and clini-
cians to seek safe and effective candidates for this chronic
disease. Studies into the effect of MSC on bronchial asthma
have shown great potential in attenuating the major pathologic
characteristics of asthma including airway immune responses,
hyperresponisveness, and remodelling.

Boldrini-Leite et al have found that in the ovalbumin
(OVA)-induced asthma BALB/c mice model, the MSC-
treated group is able to reduce the amount of eosinophil, lym-
phocyte, total protein, H,O,, IL-5, IL-13 and IL-17a in the
BALF [71]. Similarly, Abreu et al and Song et al have dem-
onstrated that MSCs are capable of reducing lung inflamma-
tion and tissue remodeling through promoting the production
of anti-inflammatory cytokines and angiogenic factors (IL-4,
IL-13, TGF-3, VEGF, VCAM-1, ICAM-1) [72, 73], activat-
ing TGF-3 signaling to induce M2-like macrophage

mesenchymal stem cells in the treatment
of idiopathic pulmonary fibrosis (MSC

in IPF)
Allogenic human cells (hMSC) in patients Phase 1

A study to evaluate the potential role of
with idiopathic pulmonary fibrosis via
intravenous delivery (AETHER)

Lung Diseases Name of Clinical Trial

PAH

Table 2 (continued)
Clinical Trial ID
NCT02013700
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Fig. 1 Therapeutic effects of MSC-EVs in BPD. MSC-exosomes deliver
biological molecules to modulate macrophage polarization, shifting into
an anti-inflammatory (M2) phenotype. TSG-6 packaged in MSC-EVs
downregulates neutrophil infiltrates, alveolar-capillary leak, septal thick-
ness, and PH-induced RVH. Arg-1 mRNAs wrapped in MSC-EVs

polarization [74], decreasing oxidative stress, the thickness of
basement membrane, epithelium, subepithelial and smooth
muscle layer as well as the number of mast cells and goblet
cells [75-77]. Moreover, in house dust mite-induced allergic
asthma, MSCs attenuate the secretion of epithelial cell-derived
alarmins IL-ra, pro-Th2 cytokine IL-25, and the number of
activated and antigen-acquiring CD11c¢ + CD11b + dendritic
cells [78, 79]. Additionally, MSC-conditional medium has
also shown beneficial effects in decreasing pathologic scores
of the OVA-injuried lung by elevating the mRNA expression
of T-bet and IFN-y, while decreasing the GTAT3 mRNA
expression [80]. Unfortunately, although the preclinical evi-
dence has shown the beneficial effects in asthema and several
clinical trials in asthmatic patients are ongoing, there remains
no data of clinical trials published to date [81].

Compared to MSCs, MSC-EVs (50ul) isolated from
1*#10°> AD-MSCs show a similar capacity to reduce lung in-
flammation and a reversal of injured tissue remodelling in the
OVA-induced (20pg) asthmatic model by reducing the
amounts of eosinophils, collagen fiber in airways, TGF-f3
production in lung tissue, and CD3 + CD4+ T cells counts in
the thymus [82], and also promote the proliferation and im-
munosuppressive ability of Treg cells [83]. Fang and col-
leagues have demonstrated that MSC-sEVs (2 x 10'° sEVs/
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promote total lung capacity and alveolar simplification and decrease the
production of pro-inflammation cytokines (CCL2, CCL7, IL-6, TNF-x).
Meanwhile, MSC-EVs deliver VEGF to damaged tissue to regulate alve-
olar growth and lung blood vessel density.

M2-polarized
macrophage

100pg protein) exhibit a significant impact in inhibiting in-
flammatory cell infiltration, airway hyper-responsiveness,
mucus secretion, and downregulating T help 2 cytokines and
the function of group 2 innate lymphoid cells (ILC2s), More
specifically, miR 146a-5p packaged in the sEVs has been re-
vealed to mediate the above effects to rejuvenate ILC2s-
dominant allergic airway injury [84]. In the rotenone (Rot)-
mediated (0.3 mg/kg) airway injury and allergic airway mu-
rine model, Mirol, a mitochondria Rho GTPase 1, is capable
of facilitating mitochondria transfer from MSCs to damaged
epithelial cells to reverse mitochondria dysfunction [85].
Altogether, MSC-EVs serve as important mediators which
target on the immunomodulation and airway reconstruction,
but their mechanisms of action are still under investigation.

Chronic Obstructive Pulmonary Disease (COPD)

COPD is a common, preventable, and treatable lung disease
that is characterized by mucous hypersecretion and ciliary
abnormalities, airflow obstruction and hyperinflation, gas
change dysfunction and pulmonary hypertension, which dam-
ages airways (bronchitis-bronchiolitis) and alveoli (emphyse-
ma), leading to chronic inflammatory responses, persistent
respiratory symptoms and airflow limitations [86, 87].
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Cigarette smoke (CS) has been recognized as the foremost
risk factor contributing to COPD development. The global
strategy for the diagnosis, management, and prevention of
COPD 2017 (GOLD2017) elucidated that COPD is projected
to be the third leading cause of death worldwide by 2020 [88].
Current pharmacological agents are are poorly responsive to
the disease’s progress and mortality [88]. Based on a growing
body of evidence, it has been clear that MSCs have brought
hopeful and promising effects in COPD. Shigemura et al were
the first to establish that adipose tissue-derived stromal cells
(ASCs) secrete HGF to repair pulmonary emphysema, and
improve gas exchange and exercise tolerance [89].
Simultaneously, MSCs also modulate gene expression pro-
files of adjacent cells to reduce airway inflammation and re-
store alveolar architecture. In addition, Kim and colleagues
have shown that compared to a control group, 834 genes were
differentially expressed after human cord blood-derived-MSC
administration in a smoke-induced COPD mouse lung model,
more specifically, the genes (Hbb and Hba) with oxygen
transport and antioxidant functions are significantly increased
on day 1 and day 14 [90]. In an elastase-induced emphysema
model, MSC administration facilitates the protease/anti-
protease balance and decreases the activity of matrix metallo-
proteinase 9 [91]. Additionally, MSCs overexpressed with the
all-trans retinoic acid (ATRA) combined with p-70S6 kinase-
1 (p70S6k1) enhances the therapeutic effects in elevating stat-
ic lung compliance, alveolar surface area, and decreases mean
line intercepts [92]. A large amount of promising results con-
tribute to MSC application in COPD patients. To the best of
our knowledge, the first clinical trial (NCT00683722) was
initiated by Weiss and colleagues, which is a Phase II,
multicentre, randomized, double-blind placebo-controlled
study, study involving sixty-two patients with GOLD stage
IT and IIT COPD patients. After a 2-year follow up, no
infusional toxicities or serious adverse events related to
MSC administration were deemed to have happened, and a
significant decrease in C-reactive protein (CRP) level was
observed in MSC-injected patients [93].

MSC-EVs have also exhibited protective effects in exper-
imental COPD. Based on a chronic CS-induced COPD mice
model, MSC-exosomes were shown to significantly improve
lung function, including elevated O2 saturation, pH, PaO2,
IL-10 secretion, and to decrease pro-inflammatory cytokine
production (TNF-«, IL-12), the total number of lung-
infiltrated macrophages, the capacities of antigen-presenting
alveolar macrophages, IL-17A producing-NK/NKT cells,
neutrophils to attenuate inflammation. Moreover, the
exosomes are capable of affecting the migratory and
antigen-presenting properties of DCs, which contribute to
the attenuated activation of CD4+ and CD8+ T lymphocytes.
Importantly, this study has also demonstrated that inhalation
of MSC-exosomes indicate an improved FEV1, PEF, 6-min
walking distance (6MWD) and quality of life in COPD

patients, with alleviated emphysematous changes, including
less hyperexpanded lung, less flattened diaphragms and re-
duced centrilobular and paraseptal emphysema [94]. In what
could be another mechanism for MSC-EVs in COPD, Kim
et al have shown that unlike MSC-derived natural exosomes,
MSC-derived artificial nanovesicles (3 x 107 artificial
nanovesicle particles generated from 7 x 10’ ASCs) display
a more efficient regenerative capacity to reduce the mean lin-
ear intercept (MLI) primarily through activating the FGF-2
signalling pathway [95]. In addition, functional mitochondria
packaged in EVs have recapitulated MSC effects in preclinical
models of COPD. iPSC-derived MSCs transfer their mito-
chondria to human bronchial epithelial cells through tunnel-
ling nanotubes to alleviate CS-induced damage and to rescue
the dysfunctional mitochondria of human airway smooth mus-
cle cells in rats [9, 96]. Maremanda et al have demonstrated
that MSC-exosomes also modify mitochondrial genes in bron-
chial epithelial cells, including enhancing fusion gene expres-
sion (mfnl, mfn2, and opal) [10] (Fig. 2). To date, MSC-EVs,
as a new frontier, have provided convincing evidence of pos-
itive effects in COPD by modulating chronic inflmammtion,
inhibiting emphysema, and restoring dysfunctional
mitochondria.

Idiopathic Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is defined as a chronic,
degenerative and progressive lung disease characterized by
alveolar epithelial cell dysfunction, fibroblast proliferation,
extracellular matrix collagen accumulation, and interstitial in-
flammation, leading to exertional dyspnoea, dry cough,
weight loss malaise and arthralgia [97]. The comprehensive
understanding of IPF pathogensis and effective treatments re-
mains elusive. Available data have shown that MSC adminis-
tration restores a bleomycin-induced lung injury model with a
reduction in inflammatory response and collagen deposition,
and an improved Ashcroft score [98, 99]. Reddy and col-
leagues have demonstrated that MSCs are capable of amelio-
rating the expression of pro-inflammatory (IL-1b, TNF-f3,
etc.), pro-fibrotic (bFGF, CTGF, etc) transcripts in injured
lungs, and maintaining MMP-TIMP balance [100], correcting
the inappropriate epithelial-mesenchymal relationships
through stanniocalcin-1 to ameliorate oxidative stress and en-
doplasmic reticulum stress [101]. Moreover, Akram et al have
reported that MSC-CM promotes human small airway epithe-
lial cell (SAEC) wound repair by secreting an array of proteins
(Fibronectin, Lumican, Periostin, IGFBP) [102], increasing
the amount of Tregs, decreasing cytotoxic T cells coupled
with a concomitant suppression in «-smooth muscle actin
(x-SMA) [103], contributing to a reduced hydroxyproline
(HYP) deposition, myeloid differentiation primary response
gene 88 (MyD8S), and TGF-f3 signaling activation [104].
Recently, Gad et al. have shown that the therapeutic anti-
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Chronic
_ Bronchitis_

Fig.2 Role of MSC-EVs in COPD. MSC-EVs elevate O2 saturation, pH,
Pa02, IL-10 secretion, and decrease pro-inflammatory cytokine produc-
tion (TNF-«, IL-12). Functional mitochondria are donated by MSCs to
bronchial epithelial cells through nanotubes, contributing to enhance ox-
idative phosphorylation of the targeted cells. MSC-EVs uptake by

fibrotic properties of MSCs are mediated through the inhibi-
tion of SMAD-3/TGF-f3 signalling [105].

Unfortunately, research into MSC-EV effects on IPF is
limited. Mansouri and colleagues have presented that MSC-
EVs are able to reduce the degree of whole lung apoptosis,
reverting pulmonary fibrosis, improving the Ashcroft score,
and increasing the number of alveolar macrophages (CD206)
and nonclassical monocytes. Additionally, bioinformatics
analysis has revealed that eighty-four peptides varied signifi-
cantly between MSC-EV treatment and fibroblast-derived EV
treatment with myeloid/monocyte cells [106]. More recently,
Wan et al have conducted research on MSC-EV effects on
pulmonary fibroblasts, and have demonstrated that the EVs
suppress fibroblast proliferation, migration, invasion, and dif-
ferentiation in IPF, confirmed by Cell Counting Kit (CCK-8),
Transwell assay, and gain- and loss-of-function assays
through overexpressing miR-29-3p [107].

Pulmonary Arterial Hypertension
Pulmonary arterial hypertension (PAH) is a chronic and dev-
astating disease in which extensive obliterative changes are

associated with elevated pulmonary arteries pressure, pulmo-
nary vascular resistance, and right ventricular (RV)
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Alveolar type II cells stimulate FGF2 intracellular signalling activation.
MSC-EVs also downregulate the pro-inflammatory cytokine secretion
(TNF-«, IL-12), deactivate CD4+/CD8+ T cells, and suppress the migra-
tion and antigen presenting property of dendritic cells.

dysfunction, resulting in vascular fibrosis and stiffening
[108, 109]. Mounting evidence has shown that treatment with
rat MSC or human MSC treatment is able to decrease pulmo-
nary vascular resistance, improve vascular endothelial func-
tion and right ventricular function in the monocrotaline or
Su5416/hypoxia-injured lung [110-113] through regulating
[Ca®"]i signal-associated cellular behaviours [114], normaliz-
ing the expression levels of apoptosis (active-caspase-3), cel-
lular proliferation (p-38 MAPK and ERKS), and inflammation
markers (TNF-c, IL-13, IL-6) [115], suppressing TLR-4 sig-
nalling [116], expressing Heme Oxygenase-1 (HO-1), en-
hancing let-7a expression [117], and dampening endothelial-
mesenchymal transition (EndMT) [118, 119]. Moreover, high
throughput sequencing has demonstrated that six miRNAs of
MSCs (upregulated: miR573 and miR1246; downregulated:
miR206, miR-133a-3p, miR-141-3p and miR-200a-3p) are
differentially expressed with co-culturing with human pulmo-
nary arterial endothelial cells (HPAECs) [120].
Simultaneously, there have been several clinical trials com-
pleted aiming at the MSCs effects on IPF patients.
Tzouvelekis and colleagues conducted a prospective, non-ran-
domized, no placebo-controlled, phase 1b clinical trial
(EHD33/1SC/16-02-2010) to investigate the safety of MSCs
in IPF, which showed that MSC administration is an
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acceptable safe treatment regimen to IPF. However, this study
did not deteriorate in functional parameters and indicators of
quality of life [121]. Similarly, the other dose-escalation phase
1b trial (NCT01385644) has indicated there is no significant
change in forced ventilation capacity (FVC), diffusing capac-
ity of the lungs for carbon monoxide (DLCO), 6 MWD and CT
fibrosis score of the IPF patients compared with baseline after
6 months [122]. Nevertheless, the AETHER trial
(NCT02013700), the allogeneic human MSCs in patients with
IPF via intravenous delivery, has demonstrated a 3.0% decline
in % predicted FVC and 5.4% mean decline in % predicted
DLCO. More recently, the first-in-human high-cumulative-
dose stem cell therapy in IPF patients was conducted by
Averyanov and colleagues. Twenty patients with a current
FVC>40% of predicted and DLCO >20% with a lung func-
tion decline (FVC and DLCO) >10% over the last 12 months
were recruited into a phase I/Ila study, and received two in-
travenous doses of MSCs (2#10® cells) every three months
(total amount: 1.6%107 cells). After the study was completed,
no significant adverse effects were found in the MSC-
administrated group, and they were observed having a better
outcome for the 6MWD, for DLCO in 26 weeks, and for FVC
in 39 weeks compared with the placebo group [123].

Intravenous injection of MSC-EVs in the monocrotaline-
induced PH (MCT-PH) rat model has indicated similar effects
to those of MSCs in ameliorating the mean pulmonary artery
pressure (mPAP), mean right ventricle pressure (mnRVP), RV
hypertrophy, the pulmonary arteriole area index (Al) and the
thickness index (PI) [124], enhancing macrophage polariza-
tion [125], and deactivating EndMT [126]. According to the
research investigating paracrine mechanisms, MSC-EVs are
capable of suppressing the signal transducer and activator of
transcription 3 (STAT3), and upregulating the miR17 super-
family and miR204 in the context of PAH rats [127]. In addi-
tion, MSC-exosome packaged miR191 restores monocrota-
line pyrrole (MCTP)-induced lung injury by repressing bone
morphogenetic protein receptor 2 (BMPR2) [128]. Moreover,
microvesicles derived from MSCs promote ACE2 mRNA and
plasma levels of Ang- (1-7) in the injured lung [129], and
MSC-exosome administration increases the expression of py-
ruvate dehydrogenase (PDH) and glutamate dehydrogenase 1
(GLUDL), leading to improved mitochondrial health in the
hypoxia-induced PAH mouse model [130]. However, even
though many promising data support MSC therapeutic effects
for PH, to date, no clinical trials in this area can be found in
“ClincalTrials.gov”.

Silicosis

Silicosis is a preventable but chronic, progressive, and fatal
occupational respiratory disease caused by the long-term in-
halation of respirable crystalline silica dust, which lacks spe-
cific pharmacological treatment and potentially increases the

morbidity of pulmonary tuberculosis [131]. Mounting evi-
dence has shown that MSC transplantation contributes to a
remissive effect on silica-induced lung fibrosis [132, 133]
through decreasing the level of Caspase-3 protein [134],
downregulating the expressions of fibrosis marker proteins
(Vimentin and «-smooth actin) [135], the mRNA levels of
collagen I, collagen III, and fibronectin, and the secretion of
TGF-f3 and hydroxyproline [136], in parallel with elevating
the ratio of Bcl-2/Bax, the expression of epithelial marker
protein (E-cadherin, cytokeratin19). Due to the low preva-
lence rate, only one clinical trial (NCT01977131) was found
to assess the MSC effect in patients with pulmonary silicosis.
Autologous BM-MSCs transfected with human HGF ¢cDNA
(MSCs/HGF) were administrated intravenously at a dose of
2*10°/kg in four patients. It has been found that MSCs/HGF
were capable of ameliorating the symptoms of cough and
chest distress, and improving pulmonary function.
Moreover, in the labtorary tests of peripheral blood from the
patients, the ratio of the peripheral CD4+/CD8+ was in-
creased, and serum IgG levels were decreased [137].

MSC-EVs have also shown a therapeutic effect on silica-
induced experimental silicosis as a cell replacement of MSCs.
Bandeira et al have stated that MSC-EVs lead to a reduction in
collagen fiber content, lung static elastance, size of granulo-
ma, and the number of macrophages inside granuloma and in
the alveolar sept in the silica intratracheal instillation of
C57BL/6 mice [138]. Moreover, intravenous administration
of human MSC-exosomes is capable of reducing the extent of
Ly6C™ monocyte infiltration into the injured lung, the size of
silicotic nodules, the total number of white cells in BALF, and
the expression of inflammatory (TNF-«, IL-6) and pro-
fibrotic genes (COL1AL1) in the lung tissue [139]. However,
Choi et al have shown that even though MSC-microvesicles
present beneficial effects to silica-mediated silicosis, their
therapeutic efficiency is less than that of MSC transplantation
[140]. Finally, it has become clear that MSCs or MSC-EVs
have shown therapeutic potential to pulmonary silicosis, but
dissecting the compensive biological mechanisms is the next
milestone for the application in clinicial work.

Challenges in MSC-EV Application in Clinics

Despite the wealth of promising preclinical results for MSC-
EV application in lung diseases, unfortunately, until now there
have been only two clinical trials in regard to evaluating
MSC-EV effects on SARS-CoV2-induced severe pneumonia
and BPD. To date, there have been no large, randomized, and
placebo-controlled clinical trials aimed at assessing the effect
of MSC-EVs on lung diseases due to a limited understanding
of the molecular mechanisms involved. As a cell-free alterna-
tive therapeutic agent, research into MSC-EV remains in its
infancy and many questions need to have definitive answers.
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Among the most urgent questions are: 1) which linage or
origin is the best to isolate the EVs? 2) which systemic (intra-
venous, intraperitoneal) or local (intratracheal, intrabronchial,
intrapleural, intranasal) routes are suitable for various kinds of
lung diseases? 3) Of single or multiple administration, which
is superior? 4) Does MSC-EV therapy play a protagonist or
adjuvant role in different lung diseases? 5) Which quali-
quantitative compositions play key roles in the biological ef-
fects of MSC-EVs? 6) What are the gold-standard animal
models for human lung diseases to confirm the MSC effects?
For instance, in research into the effect of MSC-EVs on IPF,
bleomycin-induced lung injury is mostly chosen to mimic the
IPF microenvironment. This is regarded as the animal model
which is most akin to the human pathophysiology of IPF, but
the processes that drive IPF are complex, and bleomycin-
induced lung injury is widely used in pulmonary fibrosis with-
out considering its pathogenesis.

The other challenge of MSC-EV application in lung dis-
eases for rapid translation from bench to bedside is the ab-
sence of standardized and consolidated criteria of EV produc-
tion and separation. The differences in EV isolation and char-
acterization retain a great deal of heterogeneous features that
are at odds with the homogeneity required for the clinic. The
members of four academic societies (ISCT, ISCT, ISBT, and
SOCRATES) have identified the key defining physical and
biological characteristics of MSC-sEVs in a position paper,
but it did not mention how to predict the therapeutic potency
of MSC-EVs within quantifiable and reproducible parameters
[141]. Obtaining a deep understanding of MSC-sEV biology
and developing an appropriate functional assay to test its ther-
apeutic properties will facilitate the development of MSC-
sEVs as an off-the-shelf alternative treatment for lung
diseases.

What still remains a mystery is the appropriate therapeutic
doses for each lung disease. Due to the lack of standard pro-
tocols of EV isolation and characterization, studies from dif-
ferent institutes are using various methods to quantify MSC-
EVs. Protein concentration or particle amount of MSC-EVs
are widely used to illustrate the dose of MSC-EVs in a large
number of publications. The lack of standard protocols con-
tributes to the doubtful and confusing results for clinicians if
they plan to design clinical trials. Furthermore, the optimal
dose for the phenotypes of lung diseases is also largely un-
known. For example, ARDS subphenotypes, comprising
hypo-inflammatory and hyper-inflammatory phenotypes,
have been identified by Calfee et al [142], but which
subphenotype is more suitable for MSC-EV treatment remains
uncertain.

Finally, further investigations into how to scale up and
develop the specific protocol of good manufacturing practice
(GMP) for MSC-EV production are required as they are need-
ed in large quantities based on the experimental respiratory
animal model. Furthermore, it has been identified that the

@ Springer

senescence of BM-MSCs, ADSCs or UC-MSCs may limit
their use for isolating large-scale MSC-EVs, but embryonic
stem cell-derived MSCs have shown the ability to produce
large amounts of MSC-EVs with no changed in quantity and
quality [143, 144]. Nevertheless, even though these publica-
tions provide some instructions for the biomanufacturing of
MSC-EVs [145, 146], the field of large-scale EV
biomanufacturing schemes remains unexplored.

Future Perspectives

Respiratory diseases still threaten millions of people in all re-
gions of the world and the strategies for their prevention and
control are urgently required. More public attention and re-
search funding should be given to respiratory diseases due to
the increasing population and deteriorating environment. The
findings concerning MSC-EV effects on pulmonary regenera-
tion are consistent, and their potent capacities in
immunomodulation are evident. The fact that MSC-EVs show
less potential for immunogenicity and tumorigenicity contrib-
utes to the possibility of their clinical application in lung dis-
eases, and the beneficial effects of their targeting immunoreg-
ulation and tissue repair result in the possibility of numerous
biological advantages in the treatment of acute and chronic lung
injury. Accordingly, substantial work in dissecting the exact
molecular mechanisms of MSC-EV effects is required by fur-
ther investigation. Otherwise, MSC-based cell-free alternative
therapeutic regimens will remain imprecise and speculative.
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