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Abstract: Our objective was to evaluate the seven-year results of photofunctionalized implants placed
in regular, complex, and cancer-related cases. This study was a prospective, single-center study.
Photofunctionalization was performed immediately prior to implantation with Ultraviolet (UV) light
for 15 minutes. The success rate of each patient group and the influential factors on implant failure
were analyzed. Seventy implants in 16 patients were included. Four implants were left submerged
(sleep). The seven-year success rate of 30 implants in regular cases and 21 implants in complex cases
was 100%. The success rate of 15 implants in cancer-related cases was 22.2%, in which implants were
placed in resection or reconstructed sites with or without pre- or postoperative radiation history.
Implant stability quotient (ISQ) values increased at second-stage surgery by 3.2 in regular cases and by
21.9 in complex cases, while it decreased by −3.5 in cancer cases. Multivariate analysis indicated that
bone quality, location, and cancer resection significantly influenced implant failure. A very reliable
seven-year success rate was obtained by UV-photofunctionalized implants in regular and complex
cases, even with significant site-development procedures. However, the success rate in cancer cases
was significantly and remarkably lower, suggesting remaining challenges of pathophysiologically
compromised conditions, such as bone resection, segmental defect, and radiation.

Keywords: photofunctionalization; dental implant; implant stability; osseointegration; oral cancer

1. Introduction

Biological aging of titanium is a spontaneous and unavoidable phenomenon that starts immediately
after the product is manufactured [1]. Both the smooth machine surface and acid etched surface
are affected by biological aging in the same manner, without exception. Moreover, the process of
aging is completed at just four weeks after production [2,3]. Aged titanium surfaces are covered with
hydrocarbon, although the original surface should be titanium dioxide [3]. Over 50% of carbon has
been detected on aged titanium surfaces, while the rate of titanium detection on the surface is only
less than 20% on X-ray photoelectron spectroscopy (XPS) analysis [4]. Depending on the amount of
accumulated carbon, osteoblast attachment, cell proliferation, and calcification behavior on the surface
are compromised, resulting in approximately 60% of bone-to-implant contact (BIC), even though the
BIC exceeds 90% when the titanium surface is fresh [3,4]. This suggests that hydrocarbon accumulation
on titanium surfaces possibly impairs osseointegration. However, 60% of BIC is commonly accepted in
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current dental implantology, using commercially available as-made titanium [5–7]. Higher BIC values
enable titanium to more strongly connect with bone. The mechanical strength of connection between
bone and fresh titanium surface is three times greater than that of aged titanium surfaces [4].

UV-mediated photofunctionalization has been proposed to negate the biological aging of titanium,
enhancing its adhesive property, achieving mostly 100% BIC, and increasing osseointegration strength [4,
8]. This technique has been achieved after just 15 min, by using specific-wavelength UV light, to
remove the hydrocarbon accumulated on titanium surfaces.

It has been reported that photofunctionalization could shorten the healing period without lowering
the success rate [9], establish fast and rigid secondary osseointegration without impairing stability
(so-called “stability-dip”) during the healing process [10], and develop implant stability even though
the initial stability was extremely low by performing simultaneous bone augmentation [11].

These findings of photofunctionalization raise hopes of advancing indications for dental
implant therapy in anatomically or pathophysiologically compromised bone. We hypothesized
that photofunctionalization can successfully establish secure osseointegration, even though the implant
is placed into the severely compromised bone. Severely atrophied jaws, which are considered to
be anatomically compromised sites, are frequently encountered, and a staged-approach to dental
implant therapy is often indicated, to obtain secure implant stability; however, the survival rate of
these implants is still low compared to regular placement [12–15].

Dental implant therapy for oral cancer survivors seems to be more difficult than in regular cases [16].
Difficulties depend on prior treatment, such as surgery and/or radiation. Dental implant therapy
in patients who have undergone tumor ablation could be a powerful tool to restore occlusion [16];
however, the jaw that has been anatomically and pathophysiologically compromised could be at a
disadvantage with respect to establishing stability of the dental implant. In other instances, jaw bones
could be pathophysiologically compromised by radiation therapy against oral cancer. Particularly,
implant placement is contraindicated in patients who have received radical doses of radiation [17,18].
Implant surgery has been associated with a significantly increased risk of hard and soft tissue necrosis
in the irradiated site [19]. These anatomical and pathophysiological problems could be a concern when
considering indications for dental implant placement in oral cancer survivors.

The aim of this prospective study was to investigate the seven-year success rate of
photofunctionalized implant placement in patients with regular, complex, and cancer-related cases.

2. Materials and Methods

2.1. Study Design

This study was a prospective study that evaluated the 7-year results of photofunctionalized
implants, which were used in patients who underwent implant therapy at Yokohama City University
Hospital, from 2011 to 2012. The same surgeon who was a nationally certified specialist in oral and
maxillofacial surgery performed all the procedures. Inclusion criteria were ≥20 years of age, signed
written informed consent, and at least one missing tooth in the jaws. Exclusion criteria were ongoing
treatment of other oral diseases, the administration of over 60 Gy radiotherapy to the missing tooth
area, taking bisphosphonate or denosumab, severe asthma or allergy, and pregnancy. The patients’ past
history that could have affected the anatomical, physiological, or pathological bone condition of their
maxilla or mandible was assessed. Bone quality and quantity based on computed tomography (CT)
data were also assessed. Bone quality was classified as follows: D1 (hard bone), >1250 Hounsfield unit
(HU); D2, 750–1250 HU; D3, 375–750 HU; D4, 150–375 HU; and D5 (soft or immature bone), <150 HU.
Bone quantity was classified as follows: A, most of the alveolar bone is present; B, moderate ridge
resorption; C, advanced residual resorption; D, moderate resorption of the basal bone; and E, extreme
resorption of the basal bone. Yokohama City University Hospital ethics committee approved the study
protocol (B110707028).
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2.2. Surgical Procedure and Implant Stability Quotient (ISQ) Measurement

All implants were loaded by using a staged approach. The healing period of implants after
placement was determined according to placement procedures performed in regular and complex
cases. A regular case was defined as implant placement into a normal site where bone augmentation
was not needed to place the implant that had a regular platform, with a length of at least 8.5 mm.
A complex case was defined as implant placement into a compromised site, such as an atrophied jaw,
in which regular placement of a regular platform implant with at least 8.5 mm in length was difficult.
Cases with simultaneous bone augmentation and implant placement into the tooth extraction socket
were also deemed as complex cases. Then, oral-cancer-related cases, in which implants were placed
into resected and/or irradiated bone, were distinctly sub-grouped. The healing period in a regular
case was two months for the mandible and three months for the maxilla. The healing period in a
complex case was six to eight months, regardless of location in the maxilla or mandible. The follow-up
period was seven years after final prosthesis. Bone condition was accessed by annual radiographic
examination. The implant systems used in this study were Brånemark System® Mark III Groovy
(67 implants) and NobelReplace® Tapered Groovy (3 implants) (Nobel Biocare, Gothenburg, Sweden).
Implant stability was measured by using resonance frequency analysis (RFA) with Ostell ISQ (Ostell,
Gothenburg, Sweden) at both implant placement (ISQ1) and secondary surgery (ISQ2). Success of
implants was assessed according to Albreksson’s criteria [20]. The overall success rate, success rate in
regular, complex, and cancer-related cases were analyzed.

2.3. Photofunctionalization and Implant-Placement Procedure

Photofunctionalization was performed immediately prior to implantation by treating the implants
with UV light for 15 min, at chairside, using a photo device (TheraBeam Affiny, Ushio, Tokyo, Japan)
(Figure 1a). The dental implant was set on the stand table, through an implant driver (Figure 1b),
the table was placed into the chamber of the device, and the button to start UV-irradiation was
pressed. After 15 min, UV treatment was followed by a 5 min treatment to clean ozone (Figure 1c),
and photofunctionalization was completed. The chamber was opened, and the photofunctionalized
implant picked up carefully. Then the implant was repositioned to the handpiece head with straight Pean
forceps (Figure 1d). After setting the photofunctionalized implant in the handpiece, the dentist carefully
placed the implant into the implantation socket, without touching any other fluid, device, and tissue.
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Figure 1. Device for photofunctionalization on dental implants: (a) TheraBeam® Affiny and (b) implant
stand. Six implants can be set. (c) Dental implant is treated with Ultraviolet light, (d) How to set a
photofunctionalized implant into a handpiece.
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2.4. Statistical Analyses

The success rate was calculated after subtracting the number of withdrawn implants from the
number of remaining implants in each study year. Multivariate regression analysis was performed
with statistical software (StatFlex, Osaka, Japan), to detect the influence of patient age and sex, implant
site, and diameter and length of implants on implant failure in both regular and complex cases.
The difference was considered as significant when the p-value was less than 0.05.

3. Results

A total of 70 implants in 16 patients were included in this study. The average age of patients was
56.8 (range, 34–70) years. Four were female, and 12 were male. Case description is summarized in
Table 1. Two patients had diabetes, three patients were smokers, and three were oral cancer survivors
who had undergone marginal or segmental mandibular resection. One patient had undergone the
marginal mandibular resection against recurrent cancer after radiation therapy. One patient had
undergone segmental mandibular resection after preoperative radiation therapy and immediate
reconstruction using fibular free flap. The other patient had undergone the marginal mandibular
resection and bone augmentation with particulate cancellous bone and marrow (PCBM), which was
harvested from the iliac crest on cancer resection site before implant insertion. One to fourteen implants
were placed in each patient, to support a single crown, fixed partial, or complete denture.

Table 1. Case descriptions of the present study.

Groups Regular Complex Cancer

Description No site development or
cancer-related issue

Simultaneous GBR, sinus lift, or fresh
extraction sockets

No cancer-related issue

Cancer-related resection
with/without radiation

No. of implants placed 34 implants
(4 implants in sleep)

8 implants with sinus lift
2 implants after sinus lift

8 implants with GBR
2 with absorbable membrane

6 with titanium mesh
3 implants in fresh extraction socket

4 implants in augmented
bone after resection

4 implants in resection site
with radiation history

7 implants in reconstruction
site with radiation history

No. of implants analyzed 30 implants 21 implants 15 implants

GBR, guided bone regeneration.

The implant and bone profiles, such as implant length and diameter and bone quantity and quality,
are summarized in Table 2. Among the 70 implant sites, 34 were placed in regular sites, 21 were placed
in complex sites, and 15 were placed in cancer-related sites. Photofunctionalized implants attracted
blood (Figure 2a). Four implants in regular sites did not progress to secondary surgery, because
the treatment plan was changed (sleep). Besides the regular placement, 21 implants were placed
in complex sites, which were anatomically compromised, like atrophied jaw, and 15 were placed in
cancer-related sites, which were pathophysiologically compromised because of cancer therapy, such as
resection and radiation. Twenty-one implants in complex sites were placed with simultaneous/staged
bone augmentation or immediately after tooth extraction: eight were placed with simultaneous and
two with staged sinus lift, using PCBM harvested from the tibia or iliac crest; six with simultaneous
guided bone regeneration (GBR), using Ti mesh and PCBM harvested from the tibia or iliac crest
(Figure 2b–d); three in fresh extraction socket; and two with GBR, using absorbable membrane and chin
bone (Figure 2e–g). In cancer-related sites, seven were placed into irradiated sites, followed by bone
reconstruction using fibular osteocutaneous flap; four were placed into bone resection sites followed by
bone augmentation, using Ti mesh and iliac PCBM; and four were placed into resected and irradiated
bone. Three patients were withdrawn on the third to fourth year of the study period because they
required cancer treatment. Of the 34 implants in regular cases, two implants were withdrawn, and of
the 15 implants in cancer-related sites, one failed before final prosthesis and two failed three-and-a-half
years after final prosthesis, and six implants were withdrawn.
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Table 2. Implant profiles used in the present study.

Pt Impl Site Qual Qty D L HP R/C/Ca Graft Surgery Times Fo (mo) Status Cause

1 1 17 2 A 4 13 3 R 84 S
2 16 2 A 4 13 3 R 84 S
3 14 2 A 4 13 3 R 84 S
4 11 2 B 4 13 3 R 84 S
5 21 2 B 4 13 3 R 84 S
6 22 2 B 4 13 3 R 84 S
7 37 2 C 5 8.5 3 R 84 S
8 36 2 C 5 8.5 3 R 84 S
9 32 1 B 4 13 3 R 84 S

10 31 1 B 4 13 3 R 84 S
11 41 1 B 4 13 3 Ca 84 S
12 43 1 B 4 13 3 Ca 84 S
13 46 1 C 5 10 3 Ca 45 F Periimplantitis
14 47 1 C 5 10 3 Ca 45 F Periimplantitis

2 15 45 2 B 4 13 3 C Chin GBR/Memb 1 84 S
16 46 2 B 4 13 3 C Chin GBR/Memb 1 84 S

3 17 24 2 A 4 10 3 R 84 S

4 18 16 1 E 4 13 6 C PCBM Sinus 1 84 S
19 14 1 E 4 13 6 C PCBM Sinus 1 84 S
20 13 1 D 4 15 6 C PCBM GBR/TiMesh 1 84 S
21 23 2 B 4 15 6 R 84 S
22 24 1 E 4 13 6 C PCBM Sinus 1 84 S
23 26 1 E 4 13 6 C PCBM Sinus 1 84 S
24 37 2 A 4 13 Sleep R - W Sleep
25 47 2 A 4 13 Sleep R - W Sleep

5 26 16 2 B 4 10 3 R 84 S
27 17 2 B 4 10 3 R 84 S

6 28 36 1 E 4 13 3 Ca Fibular 5 F Not integrate
29 35 1 E 4 13 3 Ca Fibular 44 W Ca treatment
30 33 1 E 4 13 3 Ca Fibular 44 W Ca treatment
31 32 1 E 4 15 3 Ca Fibular 44 W Ca treatment
32 31 1 E 4 15 3 Ca Fibular 44 W Ca treatment
33 41 1 E 4 15 3 Ca Fibular 44 W Ca treatment
34 43 1 E 4 15 3 Ca Fibular 44 W Ca treatment
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Table 2. Cont.

Pt Impl Site Qual Qty D L HP R/C/Ca Graft Surgery Times Fo (mo) Status Cause

7 35 16 3 B 4 13 6 C PCBM Sinus 1 84 S
36 12 3 EXT 4 13 6 C PCBM GBR/TiMesh 1 84 S
37 22 3 B 4 13 6 C PCBM GBR/TiMesh 1 84 S
38 24 3 B 4 13 6 C PCBM GBR/TiMesh 1 84 S
39 26 3 EXT 4 13 6 C PCBM Sinus 1 84 S
40 27 3 E 4 10 6 C PCBM Sinus 1 84 S
41 31 1→5 E→C 4 15 6 Ca PCBM GBR/TiMesh 2 84 F Periimplantitis
42 41 1→5 E→C 4 15 6 Ca PCBM GBR/TiMesh 2 84 F Periimplantitis
43 43 1→5 E→C 4 15 6 Ca PCBM GBR/TiMesh 2 84 F Periimplantitis
44 44 1→5 E→C 4 15 6 Ca PCBM GBR/TiMesh 2 84 F Periimplantitis
45 46 2 EXT 4 13 6 C 84 S
46 47 2 D 4 13 Sleep R - W Sleep

8 47 15 2 B 4 13 8 R 84 S
48 14 2 EXT 4 13 8 C PCBM GBR/TiMesh 1 84 S
49 13 2 B 4 13 3 R 84 S
50 11 2 B 4 13 3 R 84 S
51 24 2 EXT 4 13 8 C PCBM GBR/TiMesh 1 84 S
52 26 2 C 4 13 8 C PCBM Sinus 1 84 S
53 36 2 EXT 4 13 3 C 84 S
54 34 2 EXT 4 13 3 C 84 S
55 32 2 C 4 13 3 R 84 S
56 42 2 C 4 13 3 R 84 S
57 45 2 A 4 13 3 R 84 S
58 46 2 A 4 13 3 R 84 S

9 59 26 1→4 E→A 5 10 6 C PCBM Sinus 2 84 S
60 27 1→4 E→A 5 10 6 C PCBM Sinus 2 84 S

10 61 45 2 A 4.3 10 2 R 84 S
62 46 2 A 4.3 10 2 R 84 S

11 63 15 1 B 3.5 10 3 R 84 S

12 64 41 3 C 4 13 3 R 36 W Ca treatment
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Table 2. Cont.

Pt Impl Site Qual Qty D L HP R/C/Ca Graft Surgery Times Fo (mo) Status Cause

13 65 15 3 A 4 10 3 R 84 S

14 66 25 3 B 3.75 10 3 R 84 S
67 26 3 B 3.75 10 3 R 84 S

15 68 14 3 B 4 13 3 R 34 W Ca treatment
69 17 3 B 4 8.5 Sleep R - W Sleep

16 70 14 2 B 4 13 3 R 84 S

Notes: Impl, implant number; Site, FDI style, location to place implant; Qual, quality of the bone; QTY, quantity of the bone; D, diameter of the implant; L, length of the implant; HP,
healing period (month) between implant placement and secondary surgery; slept, implant that did not proceed with secondary surgery. R/C/Ca, regular (R), complex (C), or cancer-related
(Ca) sites; Graft, source of the graft bone; PCBM, particulate cancellous bone and marrow (if applicable); Surgery, procedure of the bone augmentation; Sinus, sinus elevation; GBR/Memb,
guided bone regeneration with absorbable membrane; GBR/TiMesh, guided bone regeneration with titanium mesh (if applicable); Times, timing of the bone augmentation procedure,
1 = simultaneous bone augmentation and 2 = bone augmentation before implantation (staged approach) (if applicable); Fo, follow-up period (month); Status, implant condition after
five-year follow-up; S, success; F, failure, implant that deviates success criteria (if applicable); W, withdrawn, implant that was not used prosthesis (sleep) or renounced to follow because of
other disease treatment. Cause, reason of the failure of withdrawn (if applicable).
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Figure 2. (a) Photofunctionalized implant attracts blood. (b) Simultaneous bone augmentation
with PCBM and titanium mesh in atrophied maxilla. Computed tomography before (c) and after
(d) placement with simultaneous bone augmentation (a–d; Pt.No.7). Orthopantomography before
implantation (e) and after prosthesis (f) (Pt.No.4). Orthopantomography (g) and computed tomography
(CT) (h) before implantation. Orthopantomography (i) five years after final prosthesis (g–i; Pt.No.2).

The cumulative overall success rates according to survival implants are shown in Table 3.
The success rate was over 90% up to the third year of the observation period. Eight implants were
withdrawn at three−four years of the follow-up period because the patients needed to undergo
treatment for other diseases. The overall seven-year success rate of implants was 87.9%, and the
success rates of implants in regular and complex cases were 100%. The success rate of implants
placed into cancer-related sites was 22.2% (see Table 4). The ISQ 1 of overall and in regular, complex,
and cancer-related sites was 52.6 and 67.2, 30.5, and 62.1, respectively. The ISQ 2 of overall and in
regular, complex, and cancer-related sites was 66.3 and 70.4, 52.4, and 58.6, respectively. ISQ increase
or decrease in overall and in regular, complex, and cancer-related sites was 13.7 and 3.2, 21.9, and
−3.5, respectively (see Table 5). Multivariate analysis indicated that bone quality and location (implant
site) significantly influenced implant failure. Surgical resection of the jaw was the main factor that
influenced implants’ success. Hard (D1) or soft (D5) bone and placed in the mandible and posterior site
were significant risk factors for implant failure (p < 0.05). Then, radiation therapy considerably and
possibly influenced implant failure, although it was not statistically significant (p = 0.092) (see Table 6).
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Table 3. Life table of photofunctionalized implants.

Time
Number of Implants Cumulative Overall

Success Rate (%)Total (Survival) Failure (Lost) Withdrawn

Placement
-Loading 70 0 4 100

Loading
-Prosthesis 66 1 (1) 0 98.5

Prosthesis
–1y (year) 65 0 0 98.5

1y–2y 65 0 0 98.5

2y–3y 65 4 0 92.3

3y–4y 65 2 (2) 8 87.9

4y–7y 55 0 0 87.9

Table 4. Success rates of implant in each category.

7-Year Success Rate (%)

Overall 87.9
-Regular cases 100

-Complex cases (atrophied jaw or extraction socket) 100
-Cancer-related sites 22.2

Table 5. Implant stability quotient (ISQ) measurement score at implant placement and secondary
surgery in overall, regular, complex, and cancer-related sites.

ISQ1 ISQ2 ISQ Increase/Decrease

Overall 52.6 66.3 13.7
Regular 67.2 70.4 3.2

Complex 30.5 52.4 21.9
Cancer-related 62.1 58.6 −3.5

Table 6. Results of the multiple regression analysis.

Factor Beta Coefficients SE t p

Age −0.113 0.335 −0.063 0.412 0.683
Sex −0.813 0.980 −0.114 0.746 0.459

Site1 −0.613 0.234 −0.326 2.138 0.042 *
Maxilla/Mandible

Site2 0.182 0.333 0.074 3.483 0.021 *
Anterior/Posterior

Bone quality −2.190 0.192 −0.219 2.928 0.030 *
D2–4 or D1, 5
Bone quantity 0.027 0.123 0.108 0.025 0.924

Diameter 0.711 1.023 0.061 0.387 0.299
Length 0.041 0.689 0.113 0.545 0.881

Healing period 0.926 1.032 −0.328 0.592 0.138
Resection 0.087 0.209 0.428 3.972 0.007 **
Radiation 1.876 1.992 0.133 1.433 0.092

* p < 0.05; ** p < 0.01.

4. Discussion

The present study was the first prospective study of seven-year results of photofunctionalized
implants. The overall seven-year success rate of photofunctionalized implant was 87.9%, which is
equivalent or relatively lower than previous studies [21], even though the success rate in regular and
complex cases was 100%. The reason for the low overall success rate was considered that the success
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rate of cancer-related sites was remarkably low, suggesting that cancer-related treatment to the jaws
contributed to the reduced success rate.

The present study included a few oral cancer survivors. Fifteen implants were placed into oral
cancer treatment sites (resected or resected and irradiated site), but only two implants successfully
survived for five years. Dental implant therapy for oral cancer survivors seems to be more difficult
compared to regular cases [16]. Particularly, implant placement is contraindicated in patients who
have received radical doses of radiation [17,18]. In the present study, four implants were placed
into irradiated bone, but two of them resulted in late failure because of peri-implantitis. In addition,
reconstruction of the tumor ablative region was also characteristic when a dental implant was indicated
in oral cancer survivors [22]. Seven implants were placed into fibular bone flap, and four were placed
into the bone previously reconstructed with PCBM. However, the implant into the fibular bone flap
failed to integrate, and all implants into the augmented bone with PCBM caused peri-implantitis.
A common point of these failures in irradiated and reconstructed cases was that the implants were
placed into the bone with poor quality. Two failed and one non-integrated implants were placed into
hard bone (bone quality D1), and four failed implants were placed into soft bone (bone quality D5).
In other words, photofunctionalized implants placed into the bone, which was pathophysiologically
compromised because of cancer-related treatment, could not establish long-term stability, suggesting
photofunctionalization could never be an omnipotent technique that can result in dental implant
success in any bone quality. Some cases in the present study were unable to continue follow-up
for seven years because of other diseases, and this could be a reason for the relatively low success
rate. Their dental implants were successfully observed during the follow-up period, indicating they
would have been deemed a “success” had they completed the required follow-up. Dole et al. [23]
reported that 3-, 7-, and 11-year implant survival rate in oral cancer patients was 94.9%, 92.5%, and
90.8%, respectively. They also reported that tumor ablative surgery followed by radiochemotherapy
significantly reduced implant survival rate. The present result of cancer-patients-related implant was
remarkably low compared to their study. However, in terms of “survival rate” (not “success rate”),
our result of “survival rate” was 100% at four years, even in cancer-related cases. Linsen et al. [24]
also reported that 5- and 10-year implant survival rate following radical oral cancer was 96.6% and
86.9%. Both reports [23,24] gradually reduced the survival rate around the 10-year follow-up period, in
common, suggesting difficulties of management of dental implant after oral cancer treatment. However,
a recent study of implant for non-oral-cancer cases but other regular and complex cases showed a high
long-term success rate of 96.8% at five years [25] and 92.3% at 10 years [26]. Then, Cotic et al. [27]
reported bone transplantation after oral cancer surgery was a significant risk factor for implant failure,
indicating only reconstructing bone defects was still far from enough for success of dental implant in
oral cancer patients. A lack of keratinized gingiva, saliva, and neuromuscular system are thought to
reduce success and survival rate of dental implants. Therefore, careful attention on poor bone quality
should be paid even though the bone quantity was sufficient in cancer-related cases.

Unlike photofunctionalized implants placed into cancer treatment sites, the implants placed into
atrophied bone were successful when the bone condition of the residual bone was healthy (D2–4).
Considering that the success rate of dental implants placed with bone augmentation was generally
low compared to regular implant placement [9], we see that the present result might provide the
motivation for the strong advancement of this procedure, suggesting that photofunctionalization can
expand the indications for simultaneous implant placement with bone augmentation, even in severely
anatomically compromised bone. The essence of photofunctionalization is to clean the titanium
surfaces, which are spontaneously contaminated with natural hydrocarbon over time, to optimize
the ability to establish osseointegration, regardless of the surface property. The carbon accumulation
on aged titanium surface reduces up to less than 20%, and the original form of titanium dioxide is
exposed [4]. Osteoblast attachment on photofunctionalized titanium surface remarkably increases,
and consequently, rigid bone integration has been achieved with mostly 100% BIC [4]. Clinically,
we previously reported that even with initial bone support of less than 25% of implant length or
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ISQ of less than 30, photofunctionalization can achieve secure secondary stability [11], indicating
that photofunctionalization can overcome extremely low initial stability and/or less bone support.
The reason why photofunctionalized implants achieve secure secondary stability even when the initial
stability is quite low is that photofunctionalized implant achieves faster and higher osseointegration
compared to as-received implants [10]. Photofunctionalization negates temporal decreases in implant
stability during the healing process in what is known as the “stability dip” [10]. The key essence of
osseointegration on photofunctionalized titanium surface is its superhydrophilicity, its being carbon
free, and its positively charged electrical status [8]. Superhydrophilic surfaces can effectively attract
blood to support the achievement of osseointegration [11], and a positively electrically charged surface
allows osteoblasts to rigidly attach to the surface, because osteoblasts are negatively charged [28].
Then, photofunctionalization significantly reduces bacterial contamination and biofilm formation on
aged, as-made titanium surface [29,30]. Not surprisingly, bacterial contamination on titanium surfaces
is an unfavorable event when trying to avoid peri-implantitis. However, hydrophobicity is a main
driving force for bacterial adhesion [31]. Therefore, converting hydrophobic to superhydrophilic
surfaces by photofunctionalization has an antibacterial effect. Then, photofunctionalization could
restore osseointegration in patients with type 2 diabetes [32].

In addition, photofunctionalization reduces the production of reactive oxygen species (ROS),
which could induce cell apoptosis [33], resulting in enhancement of osteoblastic behavior attached
on titanium surfaces. The advantageous bone healing on photofunctionalized titanium implant was
also revealed by using a gap-healing model-assumed insertion for the extraction socket [34]. In that
model, photofunctionalized implants effectively attracted new bone formation into the gap, indicating
that the titanium surface can recruit and retain more osteogenic cells for direct bone formation at the
implant surface in what we call “contact osteogenesis” [35]. In the augmentation model using titanium
mesh, the exposed part of the photofunctionalized implant attracted blood during surgery and was
eventually covered with bone tissue, suggesting that the photofunctionalized implant functioned
as a guide for bone regeneration [35]. Fast and strong osseointegration and the advantages in
bone-healing mechanisms on photofunctionalized implants surface could support the establishment of
osseointegration in the study patients with seriously compromised bone conditions. That is to say,
photofunctionalization could be a powerful tool to establish secure osseointegration when the implant
is placed with simultaneous bone augmentation.

Photofunctionalized implant in non-oral-cancer-related cases, but other regular and complex cases,
showed long-term 100% success rate, which was not inferior to previous studies [25,26]. However,
photofunctionalization could not increase success rate in oral-cancer-related cases in which not only
bone and mucosa but also the salivary gland and neuromuscular system were compromised, indicating
that pathophysiologically compromised oral condition is still a challenging aspect for dental implant
treatment, particularly for long-term success.

5. Conclusions

Photofunctionalization of dental implants showed a promising result on regular and complex cases
when the residual bone was not compromised due to oral cancer treatment. In cases of cancer-related
sites, photofunctionalization could not show a promising effect to establish long-term success.
Further clinical advancement and the development of additional techniques for photofunctionalization
can be strong tools for the establishment of long-term implant stability, even in cancer-related
pathophysiologically compromised jaws.
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