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Abstract

Antibiotic resistant nosocomial infections are an important cause of mortality and morbidity in hospitals. Antibiotic cycling
has been proposed to contain this spread by a coordinated use of different antibiotics. Theoretical work, however, suggests
that often the random deployment of drugs (‘‘mixing’’) might be the better strategy. We use an epidemiological model for a
single hospital ward in order to assess the performance of cycling strategies which take into account the frequency of
antibiotic resistance in the hospital ward. We assume that information on resistance frequencies stems from microbiological
tests, which are performed in order to optimize individual therapy. Thus the strategy proposed here represents an
optimization at population-level, which comes as a free byproduct of optimizing treatment at the individual level. We find
that in most cases such an informed switching strategy outperforms both periodic cycling and mixing, despite the fact that
information on the frequency of resistance is derived only from a small sub-population of patients. Furthermore we show
that the success of this strategy is essentially a stochastic phenomenon taking advantage of the small population sizes in
hospital wards. We find that the performance of an informed switching strategy can be improved substantially if
information on resistance tests is integrated over a period of one to two weeks. Finally we argue that our findings are robust
against a (moderate) preexistence of doubly resistant strains and against transmission via environmental reservoirs. Overall,
our results suggest that switching between different antibiotics might be a valuable strategy in small patient populations, if
the switching strategies take the frequencies of resistance alleles into account.
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Introduction

The increasing prevalence of antibiotic resistance in nosocomial

infections is a serious threat for clinical care and an important

cause for mortality and morbidlity as well as a substantial driver of

health care costs [1]. Several strategies to coordinate the use of

different drugs and thereby limiting the spread of antibiotic

resistance have been proposed. The most prominent such

strategies are Cycling (sequential use of different drugs), and

Mixing (simultaneous use of different drugs in different patients).

The rationale behind cycling is that strains resistant to the

formerly used drug may decrease in frequency or even disappear

in the off-period. Mixing, on the other hand, creates a strong

environmental heterogeneity that makes it difficult for the

pathogen to adapt. Concerning these two strategies, the clinical

literature is inconclusive [2,3], while the consensus in most of the

theoretical literature is that mixing almost always outperforms

cycling [4,5,6] (see however also the discussion in [7,8,9]). The

intuitive explanation for this pattern is that mixing leads to more

heterogeneity and hence hinders the adaptation of the bacterial

population against the antibiotic agents [4]. Thus it seems that

periodic switching of treatment regimes does not help to alleviate

the burden of antibiotic resistance in hospitals. On the other hand,

treatment decisions that take institution-antibiograms into account

[10] may lead to a cycling-like pattern in which antibiotics are

withdrawn when resistance rises and re-instituted when resistance

becomes more rare. It is often recommended that resistance

surveillance should be used as a guideline for empirical therapy

(i.e. therapy that is initiated before microbiological results are

available) [11]. However, it is difficult to disentangle the effects of

this particular strategy from other simultaneously used approaches

such as restriction of antibiotic usage [12].

Here, we use an epidemiological model for a hospital ward to

show that contrary to the current views switching between

different regimes of empirical therapy (i.e. treatment before the

causative pathogen and its resistance profile are known) can

reduce antibiotic resistance. The switching regime proposed here

differs from the traditional ones in [5] and [4] by taking the

frequencies of the resistant strain in the hospital into account.

Thus in contrast with ‘‘blind’’ periodic switching strategies, we

analyze informed switching strategies (ISS) similar to the ones that

arise by antibiogram-guided therapy and show that such strategies

can serve as valuable strategy to curb resistance.

Results

In this study we use an epidemiological model (see Figure 1 and

Tables 1–2) in order to consider the impact of several different

informed switching strategies (ISS), which coordinate the use of

two broad-spectrum antibiotics A and B on the level of a single

hospital ward (see Table 3 for a mathematical characterization of

the considered treatment strategies). The common element of
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these ISS is that if the resistance mutation against one drug is

suspected to have gone extinct only this ‘‘resistance-free’’ drug is

deployed. In this way, these strategies exploit the high frequency of

stochastic extinctions of resistant strains caused by the small

population sizes in hospitals. The crucial question for the practical

value of an ISS is whether such a strategy can substantially reduce

the burden of antibiotic resistance even if it is based on the

imperfect information, which can be obtained realistically. Here

we model the following realistic scenario of how such information

may be obtained: Commonly, symptomatically infected patients

are first treated empirically with a broad spectrum antibiotic, then

a resistance profile (microbiological tests) is determined (this

usually requires 1–2 days), which guides further therapy (optimally

with a narrow spectrum antibiotic). In our model we assume that

the ISS are based on the information obtained through these

microbiological tests, which are made to guide non-empirical

therapy of individual patients. Therefore, the model makes the

realistic assumptions that i) the information on the resistance status

of a symptomatically infected patient is only available after a delay

of 2 days on average and ii) that upon the availability of these test-

results, the patient is immediately put on a narrow-spectrum

therapy regimen against which the pathogen is susceptible. We

consider two main classes of ISS: those, which are based on a

snapshot of resistance frequencies (i.e. on the frequency of

resistance mutations among the infected patients that are currently

in the ward and of which microbiological results have been

obtained) or those, which integrate information of resistance over a

certain time window. Whereas the first class of strategies is simpler

to understand from a population biological point of view, we will

argue that strategies of the second class are recommendable for

clinical practice. We use two measures to assess the success of the

ISS (see method section): the prevalence of resistance mutations in

the ward and the number of inappropriately treated patients. In

fact, it has been shown that inappropriate initial (empirical)

treatment increases mortality since severely infected patients might

die before treatment can be adjusted [13,14]. For both measures

the success of an alternative strategy is measured relative to

mixing: if mM and mA denote the value of the measure for mixing

and the alternative therapy, respectively, then the success of the

alternative therapy is quantified by Dm = (mA2mM)/mM. Thus,

the more negative Dm, the better the strategy.

In order to study the population biological basis of the ISS, we

start by considering the simpler snapshot-based ISS: The negative-

frequency-dependent informed switching, ISS-, and the mixing-

like informed switching, ISSM. Both strategies deploy only one

drug if, among the infected patients in the ward whose resistance

status is known, there are both no reports of strains resistant

against this drug and at least one report of strains resistant against

the other drug (see Table 1). If no resistance mutation is present

both drugs are used at equal frequencies. The two strategies differ

with respect to their deployment of antibiotics when both

resistance mutations are present. In this case, ISS- deploys both

antibiotics inversely proportional to the momentary frequency of

the corresponding resistance mutations, whereas ISSM deploys

both antibiotics at equal frequencies. We find that informed

switching clearly outperforms both mixing and periodic cycling

(Figure 2). By contrast the difference between the two strategies

ISS- and ISSM is marginal (Figure 2). Thus the central aspect of

the strategies is the coordinated deployment of antibiotics in those

phases when one resistance mutation is extinct in the hospital. This

fact indicates that the success of ISS is essentially a stochastic

phenomenon, as extinctions are chance effects facilitated by small

hospital sizes. In accordance with this interpretation and with

earlier work[8,9], we find that, in the deterministic version of our

model, the ISS- strategy leads to no substantial improvement over

mixing (results not shown, but see section: effect of population size).

Considering only the current symptomatically infected patients

with a microbiological test leads to an imprecise estimate of the

resistance frequencies in the ward, as these patients represent only

a small fraction of all carriers. However, as the detection of one

infection with a resistant strain is indicative of other such infections

(which often persist after the detected case has been cleared) the

imprecision can, in part, be compensated by integrating the

information over several time points. The strategies ISSK (with

K = 4,7,14,30,60,90) integrate information over several time-

points in the following way: A resistant strain is considered extinct

if no symptomatically infected patient with a microbiological test

that detected this strain has been in the hospital for the last K days

(see Table 3). Thus ISSK integrates the infection status (of patients

with a test) over the last K days. Again, if only one of resistance

mutations is considered extinct according to the above criterion,

then only the corresponding drug is used. If both or no resistance

mutation is considered extinct both drugs are used at equal
Figure 1. Flow chart of the model.
doi:10.1371/journal.pcbi.1001094.g001

Author Summary

Infections with bacterial pathogens that are resistant
against antibiotics are an important cause of mortality
and morbidity in hospitals. One possibility to minimize this
burden of antibiotic resistance is to coordinate the use of
several drugs at the level of a single hospital ward. Here,
we use a computational model of a hospital ward in order
to assess the performance of several such strategies that
take into account the frequency of antibiotic resistance in
the hospital ward. We assume that information on
resistance frequencies stems from microbiological tests,
which are performed routinely in order to optimize
individual therapy. Thus the strategy proposed here
represents an optimization at population-level, which
comes as a free byproduct of optimizing treatment at
the individual level. We find that in most cases our
informed strategy can substantially reduce the prevalence
of antibiotic resistance. We show that the performance of
an informed strategy can be improved substantially if
information on resistance tests is integrated over a period
of one to two weeks. Overall, our results suggest that
switching between different antibiotics might be a
valuable strategy in small patient populations, if the
switching strategies take the frequencies of resistance
alleles into account.

Informed Switching Decreases Resistance
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frequencies. The disadvantage of these ISSK is that they require

the choice of the length of the integration time window. An

alternative way to integrate information on resistance prevalence

over several days without this drawback is the following (ISSLast): If

at a given time-point the drug resistance-mutations against A and

B have been last detected (among the patients with known

resistance status) tA and tB days ago, then use that drug for which

this time-span is larger. If tA and tB are equal (in particular if both

resistance mutations are simultaneously present at the given time

point) then both drugs are used at the same frequency. We find

that both ways of integrating the information on resistance

frequencies can indeed substantially improve the performance of

the ISS and that the overall best results can be achieved for ISSLast

and for the ISSK with K = 7 or 14 (Figure 3). Accordingly we will

focus on these two optimal strategies ISS7 and ISSLast, when

assessing in the following the robustness of our results with respect

to several important aspects of the model.

Impact of different levels of preexistence of the resistant
strains

One of the major factors determining the success of the ISS is the

frequency of resistant strains among incoming patients. The ISS are

based on extinctions of the resistance mutations, which is

counteracted by the frequent reintroduction of these strains.

Accordingly, we find that the success of ISS decreases with increasing

influx of resistant strains (Figure 4). However, the advantage of ISS

remains substantial unless an unrealistically large fraction of

incoming patients carries the resistant strain of the pathogen.

Impact of different progression rates
The progression rate is important mainly because it affects the

fraction of symptomatically infected patients and therefore the

frequency at which the antibiotic is used. With increasing

progression rate one would expect an increasing use of the antibiotic

and hence an increasing impact of the applied strategy. Indeed, we

Table 1. Default model parameters of the model.

Parameter Explanation Default Value

pS Proportion susceptible among incoming patients 80%

pc Proportion carriers (infected and colonized) among incoming patients 20% [21]

pi Proportion of symptomatically infecteds among incoming patients 5%

pAB Proportion AB-resistant carriers among incoming infecteds and colonized patients 0%

pA0 Proportion A-resistant carriers among incoming infecteds and colonized patients 5%

p0B Proportion B-resistant carriers among incoming infecteds and colonized patients 5%

p00 Proportion carriers of the completely susceptible strain among incoming infecteds
and colonized patients

1-pAB-p0B-pA0

tR Rate with which symptomatically infected patients receive a microbiological test
and are switched to a narrow spectrum antibiotic.

0.5 d21 [22]

b transmission rate (for colonized and infecteds) 0.05 d21 *

a Rate with which empty beds are filled up 2 d21

c Rate of treatment cessation in uninfected or asymptomatically infected patients 1/5 d21

T Observation period over which results are averaged 30*365 d

cA0 cost of resistance against A 10% [23]

c0B cost of resistance against B 10% ‘‘

cAB cost of resistance against A and B 20% ‘‘

rcl Average time until carrier is not infectious when appropriately treated 2 days [24]

rp Rate of progression from colonized to infected 1/7 d21

pr Cycling period 90 d [3]

N Number of beds 20

l Discharge + Death rate for asymptomatic patients 1/7 d21**

li Discharge + Death rate for symptomatically infected patients 1/21+1/7 d21

fA0, f0B Frequency of infected patients treated with drug A or B see Table 3

Extension with environmental transmission in the hospital

cE Colonization rate of environment 1/10***

lE Turn-over rate of environment 1/30 d21[25]

bE Transmission rate from environment b* lE/cE ***

*‘‘Colonization pressure’’, i.e. the frequency of both asymptomatic and symptomatic carriers in a hospital ward has been shown to be a major risk factor for the
acquisition of a nosocomial pathogen [26]. It also has been shown for clostridium difficile, that environmental contamination occurred for both symptomatic and
asymptomatic infections [27]. Nevertheless, it is conceivable that e.g. in symptomatically infected patients with diarrhea infectivity is much higher than in asymptomatic
patients. However, since the connection between carriage and infection is established and data on potential differences in infectivity between symptomatic and
asymptomatic patients are scarce, we chose not to distinguish between these two classes.
**The average length of stay is 8 days in Switzerland (http://www.obsandaten.ch/indikatoren/5_4_1/2005/d/541.pdf, data from 2005) and 5 days in the US (http://www.
cdc.gov/mmwr/preview/mmwrhtml/mm5427a6.htm).
***cE is an arbitrary. However, in order to make the environment comparable with direct transmission, the transmission rate bE from the environment is adjusted
depending on the decay and colonization rates, such that the R0 remains constant.
doi:10.1371/journal.pcbi.1001094.t001
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find that both ISS7 and ISSLast are especially effective for fast

progressing diseases (Figure 5). However, even for moderate and

low progression rates, the ISS still confer a substantial advantage in

terms of reducing inappropriately treated patients.

Preexistence of doubly resistant strains
The preexistence of doubly resistant strains among incoming

patients has been argued to render treatment strategies futile, i.e.

strategies perform equally bad when doubly resistant strains are

Table 2. Summary of the different types of events underlying the stochastic implementation of the model.

event class Description of event Characterization of event (Ei) Rate of event (Ri)

1 Admission of uninfected patients S00?S00z1 a nfb pS

2 Admission of asymptomatically infected patients C00
x ?C00

x z1 a nfb pC (1{pI )px

3 Admission of symptomatically infected patients Iy
x?Iy

x z1 a nfb pC pI pxfy for y = A0 or y = 0B

4 Discharge of uninfected patients Sy?Sy{1 l Sy

5 Discharge of asymptomatically infected patients Cy
x?Cy

x{1 l Cy
x

6 Discharge of symptomatically infected patients Iy
x?Iy

x {1 lI Iy
x

7 Colonization of uninfected patient Sy?Sy{1

Cy
x?Cy

xz1

0 if strain x is susceptible to treatment
y lxSy otherwise

8 Progression of untreated asymptomatically
infected patients

C00
x ?C00

x {1

Iy
x?Iy

xz1

rpfyC00
x for y = A0 or y = 0B

9 Progression of treated asymptomatically
infected patients

Cy
x?Cy

x{1

I�yy
x?I�yy

xz1

rpCy
x for y = A0 or y = 0B (�yy~0B for y~A0

and �yy~A0 for y~0B)

10 Microbiological test results become available and
patient is put on narrow spectrum treatment

Iy
x?Iy

x{1

IN
x ?IN

x z1

tRIy
x for y = A0 or y = 0B

11 Clearance of symptomatically infected patient Iy
x?Iy

x{1

Sy?Syz1

rcl I
y
x if strain x is susceptible to

treatment y 0 otherwise

12 Cessation of therapy in uninfected patients Sy?Sy{1

S00?S00z1

c Sy for y=00

13 Cessation of therapy in asymptomatically
infected patients

Cy
x?Cy

x{1

C00
x ?C00

x z1

c Cy
x for y=00

This table follows the description and notation of Gillespie’s Direct Algorithm in Box 6.3 of [28]. If not stated otherwise the subscripts x range over the four possible
strains 00, A0, 0B, and AB and the superscripts y over the treatment states 00, A0, 0B and N (thus an event class can contain several events). Furthermore
nfb~N{(

P
y

Syz
P
x,y

Cy
xz

P
x,y

Iy
x ) denotes the number of free beds, and lx~b(1{cx)

P
y

(Iy
xzCy

x)zbE (1{cx)Ex the force of infection for strain x.

doi:10.1371/journal.pcbi.1001094.t002

Table 3. Characterization of deployment strategies.

Strategy Characterization

mixing fA0 = 12M f0B = 12M

cycling Alternating between (fA0 = 0, f0B = 1) and (fA0 = 1, f0B = 0) with period 90 days

Negative frequency dependent ISS: ISS-- fA~
QA

QAzQB

, fB~
QB

QAzQB

Mixing-like ISS If QA = 0 and QB.0 then fA0 = 1 and f0B = 0

If QB = 0 and QA.0 then f0B = 1 and fA0 = 0

Otherwise fA0 = M and f0B = M

ISSK If t-tA.K and t-tB#K then fA0 = 1, f0B = 0

If t-tB.K and t-tA#K then f0B = 1, fA0 = 0

Otherwise then fA0 = M, f0B = 12M

ISSLast If tA.tB then fA0 = 1, f0B = 0

If tB.tA then f0B = 1, fA0 = 0

If tB = tA then fA0 = 0.5, f0B = 0.5

M is a pre-specified constant, characterizing the relative use of drugs A and B in mixing phases (if not stated otherwise M = 0.5). QA (QB) refers to the frequency of the
strain resistant to A (B) among patients with a known resistance profile (i.e. patients in treatment class N). Thus, QA~IN

A0zIN
AB and QB~IN

0BzIN
AB . t is the current time

point and tA (tB) the latest time-point at which resistance mutations against A (B) have been detected. In terms of the model described in Table 2, the time tA (tB) is given
by the latest time-point at which an event of class 10 with y = A0 (y = 0B) has occurred.
doi:10.1371/journal.pcbi.1001094.t003
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present [4,5]. To some extent, this also applies to the ISS discussed

above. Specifically we find that the beneficial impact of the ISS

decreases substantially as the fraction of incoming patients with a

doubly resistant strain increases (Figure 6). The figure, however, also

shows that the ISS can still substantially reduce the prevalence of

drug resistance even if the frequency of the doubly resistant strain is

as high as 5% among colonized and infected patients.

Transmission via an environmental reservoir
As the success of the ISS is essentially a stochastic effect, one

would expect that it becomes weaker in the presence of an

environmental reservoir. This is because an environmental

reservoir exhibits a slower turnover of strains (see Table 1) and

hence reduces the extinction risk of resistant strains, i.e. the

reservoir can act as a ‘‘seedbank’’ for resistant strains. Indeed, we

find that the ISS perform slightly worse in the presence of such a

reservoir (Figure 7). However this decrease in the strategies’

efficiency is very weak and the improvement achieved by applying

ISS7 remains substantial even if transmission is uniquely mediated

by an environmental reservoir. This indicates that even if the

turnover rate of strains in the ward is reduced to that of the

reservoir (here: 1/(30 days)) stochastic effects are strong enough to

ensure the efficiency of the ISS.

Impact of population size
The way in which the benefit conferred by the ISS depends on

population size confirms the stochastic nature of this effect: As

expected the benefit essentially disappears for very large population

sizes when stochastic effects are expected to be small (Figure 8).

Regarding the fraction of inappropriately treated patients the

magnitude of the benefit decreases monotonically with increasing

population size. Regarding the prevalence of resistance, we observe

however a slight increase in the magnitude when increasing the

population from 20 to 50. Although it is not entirely clear what

causes this increase, it might be that for very small population sizes

the subpopulation of patients with microbiological tests gives a very

inaccurate picture of the resistance prevalence even if integrated

over time. An alternative explanation is that in very small

populations, extinction events impede resistance emergence, such

that resistance is infrequent regardless of the treatment regimen. In

Figure 2. Relative change in prevalence of resistance mutations and of inappropriately treated patients compared to mixing for
different snapshot-based alternative strategies. Points correspond to the mean over 104 simulations, error-bars correspond to the 95%
confidence interval of the mean, inferred through 1000 bootstrap samples. Color indicates the prevalence of the resistant strains (pA0+p0B) among
incoming infected and colonized patients (black: 2% green: 10% blue: 20%).
doi:10.1371/journal.pcbi.1001094.g002

Figure 3. Relative change in prevalence of resistance mutations and of inappropriately treated patients compared to mixing for
different ISS that integrate resistance frequencies over time. Points correspond to the mean over 104 simulations, error-bars correspond to
the 95% confidence interval of the mean, inferred through 1000 bootstrap samples. Color indicates the prevalence of the resistant strains (pA0+p0B)
among incoming infected and colonized patients (black: 2% green: 10% blue: 20%).
doi:10.1371/journal.pcbi.1001094.g003
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this case, the additional reduction of resistance may be small.

However, as soon as the population size exceeds 100 the magnitude

of the effect decreases strongly (with regard to both measures) and

becomes negligible at population sizes of 500 and beyond.

Asymmetrical scenarios
For simplicity, we assumed so far that both resistance genes are

symmetrical, i.e. that resistance-costs and prevalence among

incoming patients carrying the resistant strain are identical for

drug A and B. If this assumption is relaxed, the optimal mixing

strategy does not deploy the two drugs at equal frequencies but

gives preference to the drug whose resistance mutation is more

frequent among incoming patients and less costly. We make the

realistic assumption that these two properties coincide: i.e. the less

costly mutations are more frequent. We find that in such an

asymmetric scenario, the ISS still considerably outperform even

the optimal mixing strategy (Figure 9). Interestingly, this scenario

provides the only example (apart from a very narrow parameter

region in Figure 3) in which the ISS7 strategy can outperform the

ISSLast strategy. However, the difference is rather small and

depends sensitively on choosing the correct mixing strategy for

those phases in which the ISS7 deploys both drugs simultaneously

(see definition of ISS in Table 3).

Discussion

Previous theoretical studies suggest that from the point of view of

preventing the spread of resistance mutations, mixing strategies

perform at least as good as strategies that switch between different

antibiotics [4,5]. However, selecting treatment based on cumulative

ward antibiograms has been shown to increase adequate therapy

[15]. Here, we have shown that such a strategy does not only benefit

the single patients receiving appropriate therapy, but may also be

used to counteract the spread of resistance. In the highly stochastic

setting of small hospital wards, mixing (random treatment) can be

substantially outperformed by informed switching strategies, which

take the frequency of antibiotic resistance mutations into account.

Factors that promote the success of such ISS include the absence of

multiply resistant strains and a low frequency of singly resistant

strains among the incoming patients. However, even if these

conditions are not fulfilled, ISS can still substantially alleviate the

burden of drug resistance. Moreover, we found that the magnitude

of the effect of ISS decreases with increasing fitness cost, remains

however substantial even for large fitness costs (results not shown).

Given that, especially in the long term, resistance carries very small

costs if any [16], the default fitness cost chosen here (s = 0.1) can be

considered as an upper bound yielding thus a conservative

assessment of the effect of ISS.

In our view, the most promising version of an informed switching

strategy is ISSLast. Apart from the fact that this strategy

outperformed the other versions in almost every setting, it has the

advantage that its implementation would be relatively simple:

Essentially, it would only require that the dates at which resistant

Figure 4. Relative change of resistance prevalence(left column)
and inappropriately treated patients (right column) compared
to mixing for ISS7 (green points) and ISSLast (black points). The
figures show the change induced by ISS7 and ISSLast as a function of the
resistance prevalence among incoming carriers, pA0+p0B, (x-axes) and
for different fractions of carriers, pC, among incoming patients (rows).
Points correspond to the mean over 104 simulations, error-bars
correspond to the 95% confidence interval of the mean, inferred
through 1000 bootstrap samples.
doi:10.1371/journal.pcbi.1001094.g004

Figure 5. Relative change of resistance prevalence and inappropriately treated patients compared to mixing for ISS7 (green points)
and ISSLast (black points). The figures show the change induced by ISS7 and ISSLast as a function of the rate of progression, rP, (x-axes). The right
panel shows how treatment frequency increases as a function of the rP. Points correspond to the mean over 104 simulations, error-bars correspond to
the 95% confidence interval of the mean, inferred through 1000 bootstrap samples.
doi:10.1371/journal.pcbi.1001094.g005

Informed Switching Decreases Resistance

PLoS Computational Biology | www.ploscompbiol.org 6 March 2011 | Volume 7 | Issue 3 | e1001094



strains have been detected in a given ward are recorded, and that for

every new patient that drug is used for which the last isolation date is

most distant. The main case in which we found this strategy not to

be the best choice, was if among incoming patients resistance

mutations against one drug was much more common than

resistance mutations against the alternative drug. In this situation

ISSLast clearly outperformed mixing. However, it was slightly worse

than the following alternative strategy: Always using the antibiotic

less common among incoming patients, except if a resistance

mutation against this drug has been detected in the past seven days,

in which case only the alternative drug has to be deployed (formally

this corresponds to ISS7 with M = 0, see Table 3). However the

additional improvement conferred by this strategy was modest and

does in our view not outweigh the larger simplicity and robustness

(independence of an integration time-window) of ISSLast.

The benefit conferred by the ISS is a result of the underlying

stochasticity of resistance prevalence in the hospital. This is

demonstrated by our finding that the magnitude of the effect

becomes negligibly small as soon as the population size is above

500–1000. This is consistent with the findings of [8,9] which found

in a deterministic model no (or no substantial) improvement is

conferred by an ‘‘adaptive’’ strategy similar to the ISS used here.

The fact that ISS are very effective for small population sizes but

have limited success at large population sizes, suggests that

switching strategies should be implemented at the ward level

rather than at the hospital level, especially in large hospitals.

The information underlying the switching strategies considered

here is a byproduct of microbiological resistance tests, which are

usually done in clinical practice in order to optimize individual

treatments. While the recent HICPAC guidelines, ‘‘Management of

Multidrug-Resistant Organisms in Healthcare Settings,’’ [11]

recommend at least annual updates, the strategies proposed here

are not based on discrete updates. Instead the information acquired

from microbiological tests would have to be integrated into the

decisions as it is generated in the course of optimizing individual

treatments. Also, in accordance with current recommendations

[17,18] we follow resistance in one single hospital ward, not in the

whole institution, such that the cumulative antibiogram of the

respective wards should be chosen for informed switching. As the

success of an informed switching strategy depends on the quality of

the information on the frequencies of resistance genes, the success of

the strategy can be further improved by sampling also asymptom-

atically infected patients (results not shown). However, we think that

the strategies we have proposed in this study represent the most

Figure 6. Relative change of resistance prevalence and inappropriately treated patients compared to mixing for ISS7 (green points)
and ISSLast (black points). The figure shows the change conferred by ISS7 and ISSLast as a function of pAB, the prevalence of the doubly resistant
strain among incoming carriers (x-axes). Points correspond to the mean over 104 simulations, error-bars correspond to the 95% confidence interval of
the mean, inferred through 1000 bootstrap samples.
doi:10.1371/journal.pcbi.1001094.g006

Figure 7. Relative change of resistance prevalence and inappropriately treated patients compared to mixing for ISS7 (green points)
and ISSLast (black points). The figure shows the change conferred by ISS7 and ISSLast for different relative impacts of the environmental reservoir
(x-axis). The relative impact of the reservoir is measured as the relative fraction of the force of infection that is mediated via the reservoir. Points
correspond to the mean over 104 simulations, error-bars correspond to the 95% confidence interval of the mean, inferred through 1000 bootstrap
samples.
doi:10.1371/journal.pcbi.1001094.g007
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realistic option, given that they come at no additional cost other

than compiling the available data from microbiological tests.

Furthermore, the inclusion of isolates from asymptomatic patients

is not recommended by the Clinical and Laboratory Standards

Institute [CLSI] [19]. Thus although the extent of information is

important for informed switching strategies, a realistic and often

available degree of knowledge seems to be sufficient for a successful

implementation of the strategy.

In summary, we have shown that coordinated informed

switching of the antibiotic deployed in a hospital ward can

outperform mixing as a strategy to limit the spread of antibiotic

resistance of nosocomial pathogens. This theoretical result is

especially interesting, since the impact of surveillance-guided

therapy is often difficult to assess [12].

Methods

We consider a compartmental epidemiological model that

describes a single hospital ward. We further consider two empirical

broad spectrum antibiotics, to which we refer as drug A and B.

Accordingly, we follow four genotypes: wild type (sensitive to both

drugs), resistant against A and sensitive to B, resistant against B

and sensitive to A, and resistant against both drugs. Patients are

classified as being susceptible (S), colonized (C; i.e. asymptomatic

carriers), or infected (I; i.e. symptomatic carriers). Furthermore,

the compartments are subdivided according to the treatment status

and (for I & C) according to the genotype of the carried strain. In

addition, we follow a pathogen reservoir outside the patients (E),

which describes environmental contamination but may also

describe the dynamics resulting from the transient colonization

of health care workers; although these are not modeled explicitly.

Finally, we assume that symptomatically infected patients undergo

a microbial test (with a rate tR) after which they are switched to an

appropriate narrow spectrum antibiotic for which we assume that

resistance is negligible. These test-results provide the information

on resistance frequencies upon which the ISS are based.

Figure 1 summarizes the population dynamics of the model for a

single strain and Table 1 lists the parameters and their default values

(which are used if not declared explicitly otherwise). We used

parameter values from clinical literature as far as they are available.

Figure 8. Relative change of resistance prevalence and inappropriately treated patients compared to mixing for ISS7 (green points)
and ISSLast (black points). The figure shows the change conferred by ISS7 and ISSLast as a function of N, the number of beds in the ward. In order to
keep the R0 constant across different population sizes the transmission rate is assumed to be inversely proportional to the number of beds (i.e. b,1/
N). Points correspond to the mean over 104/(N/20) simulations (the number of samples was chosen inversely proportional to the population size
because, with the Gillespie algorithm used, simulation time increases proportionally with population size whereas the level of stochastic variation
decreases with population size), error-bars correspond to the 95% confidence interval of the mean, inferred through 1000 bootstrap samples.
doi:10.1371/journal.pcbi.1001094.g008

Figure 9. Relative change of resistance prevalence and inappropriately treated patients compared to mixing for ISS7 (green points)
and ISSLast (black points). The figure shows the change conferred by ISS7 and ISSLast for an asymmetric scenario in which pA0 = 0.1*2/3, p0B = 0.1*1/
3, cA0 = 0.2 *1/3 and c0B = 0.2*1/3 (i.e. the less costly mutant is more abundant). The x-axis corresponds to the mixing frequency M (see Table 3). Note
that the mixing and ISS7 depend on M, whereas ISSLast is independent of M. Points correspond to the mean over 104 simulations, error-bars
correspond to the 95% confidence interval of the mean, inferred through 1000 bootstrap samples.
doi:10.1371/journal.pcbi.1001094.g009
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We assume a fixed number of 20 beds in the hospital ward. As

soon as a bed is free, patients of all classes carrying pathogens of all

genotypes may be admitted at frequencies that are assumed to be

constant over the observed timeframe (see Table 1). The proportion

of incoming patients belonging to the three main compartments S,

C and I is determined by the parameters pS, pC and pI (see Table 1).

The proportion of patients carrying the genotypes wt, A, B, and AB

is given by the parameters pAB, pA0 and p0B. Upon admission

patients are not treated unless they are symptomatic carriers (i.e. we

focus on non-prophylactic treatment). Upon transition to the

‘‘infected’’ compartment all patients are treated with a broad-

spectrum antibiotic according to the current treatment strategy

(Mixing, Cycling or informed switching). After clearance of the

pathogen, treatment is ceased at a rate of 1/5 d21.

Detailed model description
Here we consider a stochastic version of the model described above.

Specifically, the state of the patient-population in the ward is given by

the discrete variables Sy,Cy
x,Iy

x referring to the number of susceptible

(S) asymptomatically infected (C) and symptomatically infected (I)

patients with treatment status y and infection status x. The infection

status can be either ‘‘infected with the strain susceptible against both

drugs’’ (x = 00), ‘‘infected with the strain susceptible against A but

resistant against B’’ (x = 0B), ‘‘infected with the strain susceptible

against B but resistant against A’’ (x = A0), or ‘‘infected with the strain

resistant against both drugs’’ (x = AB). The treatment status can be

either ‘‘treatment with no drug’’ (y = 00), ‘‘treatment with drug A’’

(y = A0), ‘‘treatment with drug B’’ (y = 0B), or ‘‘treatment with a

narrow spectrum antibiotic’’ (y = N). We assume that the narrow-

spectrum antibiotic is only administered after microbiological tests and

that hence the infection status of patients in this treatment class is

known. The state of the environmental colonization is given by the

density Ex of the strain x in the environment.

The patient population is simulated stochastically according to

Gillespie’s Direct Algorithm[20]. The full characterization of this

model is given by Table 2, which lists the different events (and

rates) that constitute the model. The following points should be

noted concerning these events:

N Symptomatically infected patients are always subject to

monotherapy, thus I00
x ~0 for all x and accordingly the

dynamics of these variables is not considered.

N According to the model dynamics, asymptomatically infected

patients are never treated with narrow spectrum antibiotic

hence the variables CN
x are constantly 0 and therefore ignored

in the model.

N Upon admission or progression, symptomatically infected

patients are first treated with a broad-spectrum antibiotic

(empirical therapy) (see event classes 3,8, and 9 in Table 2).

Then these patients receive microbiological tests with a rate tR
and are switched to a narrow spectrum-treatment as soon as

these test results are available (event class 10).

N If an asymptomatically infected patient becomes symptomatic

despite treatment with a broad-spectrums antibiotic, then the

broad-spectrum drug used for that patient is switched (from A

to B and from B to A)(event class 9).

N The rates for several event-classes (classes 7 and 11) depend on

whether strain x is sensitive to treatment y. Strain 00 is

susceptible against all drugs. Strain A0 is susceptible against

drug B and against the narrow-spectrum antibiotics (N). Strain

0B is susceptible against drug A and against the narrow-

spectrum antibiotics (N). Strain AB is only susceptible against

narrow-spectrum antibiotics (N).

N The broad spectrum antibiotics are A and B are used at

frequencies fA0 and f0B. These frequencies are determined by

the treatment strategy deployed. A summary of treatment

strategies is given in Table 3.

As the dynamics of the environmental compartment is not

directly affected by the fluctuations of the patient population, the

variables Ex describing the environmental reservoir are updated

according to the ODE system

_EEx~cE

X

y

(Iy
xzCy

x){lEEx

The success of the treatment strategies (summarized in Table 3)

is measured by their impact on the prevalence of resistance

given by
P
y

(I
y
A0zC

y
A0zI

y
ABzC

y
AB)z

P
y

(I
y
0BzC

y
0BzI

y
ABzC

y
AB)

(note that double resistant strains are counted twice) and by their

impact on the number of inappropriately treated patients given by

(IA0
A0 zIA0

AB)z(I0B
0B zI0B

AB). (Note that for this measure we take only

symptomatically infected patients into account, because it is in that

group that inappropriate treatment will have the most severe clinical

consequences).
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