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Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by selective loss of dopamine neurons in the
substantia nigra pars compacta of the midbrain. Reports from postmortem studies in the human PD brain, and experimental PD
models reveal that endoplasmic reticulum (ER) stress is implicated in the pathogenesis of PD. In times of stress, the unfolded or
misfolded proteins overload the folding capacity of the ER to induce a condition generally known as ER stress. During ER stress,
cells activate the unfolded protein response (UPR) to handle increasing amounts of abnormal proteins, and recent evidence has
demonstrated the activation of the ER chaperone GRP78/BiP (78 kDa glucose-regulated protein/binding immunoglobulin
protein), which is important for proper folding of newly synthesized and partly folded proteins to maintain protein homeostasis.
Although the activation of this protein is essential for the initiation of the UPR in PD, there are inconsistent reports on its
expression in various PD models. Consequently, this review article aims to summarize current knowledge on neuroprotective
agents targeting the expression of GRP78/BiP in the regulation of ER stress in experimental PD models.

1. Introduction

Parkinson’s disease (PD) is a neurological disorder char-
acterized by degeneration of dopaminergic neurons in the
substantia nigra pars compacta (SNpc) of the midbrain,
resulting in loss of dopamine in the striatum. In patients
with PD, there are four primary motor symptoms which
include tremor at rest, postural instability, rigidity, and
bradykinesia [1]. PD was previously considered to be a
condition that affects only the motor system, but with more
research, it is now known to be a multifaceted disorder with
diverse clinical features that include sleep, cognitive, and
neuropsychiatric disorders [2, 3].

Although the etiology of the disease is not entirely
understood, reports indicate that several factors such as
oxidative and endoplasmic reticulum (ER) stress promote
neuronal degeneration. *e ER is regarded as the largest

organelle in the cell with multiple functions such as protein,
steroid, and phospholipid synthesis, storage of calcium,
and metabolism of carbohydrates [4–8]. In the ER, chap-
erones such as 78 kDa glucose-regulated protein (GRP78),
also known as binding immunoglobulin protein (BiP) or
heat shock 70 kDa protein 5 (HSPA5) and other stress
sensor proteins, are needed to maintain quality control of
proteins. *ese proteins are activated to ensure proper
handling and to prevent aggregation of misfolded/unfolded
proteins [9]. *us, when there is a disturbance in function,
oxidative damage, or disruption of glucose or calcium
homeostasis, the unfolded/misfolded proteins exceeds the
folding capacity of the ER resulting to a condition com-
monly known as ER stress [10, 11]. *e induction of ER
stress and the consequent aggregation of misfolded or
unfolded proteins have been implicated in PD pathogenesis
[12, 13].
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Existing treatment options for PD are inadequate as
drugs are focused mainly on relieving symptoms. For ex-
ample, levodopa is exceptionally effective for regulating PD
symptoms, especially those linked to bradykinesia [14], and
its combination with carbidopa improves the beneficial
effects of levodopa. In cases where PD patients are sensitive
to minor side effects such as nausea and vomiting, lodosyn
may be taken with the routine carbidopa/levodopa therapy
[15]. Other treatment options include dopamine agonists
such as pramipexole [16], ropinirole [17, 18], and apo-
morphine [19, 20] while nondopaminergic drugs treatments
include anticholinergics and amantadine [15] as well as
entacapone [21] and tolcapone [22] catechol-o-methyl-
transferase inhibitors.

Since there is no treatment for PD, there is an ever-
increasing need to identify neuroprotective strategies with
the ability to slow down or halt the advancement of PD.*is
search for new drug treatment options has paved the way for
the discovery of such natural products as medicinal herbs,
plant extracts, and their bioactive compounds. Some of
these compounds are under clinical investigations owing to
their remarkable potential as neuroprotective treatment
options in PD [23, 24]. In this regard, while drug researchers
are currently focused on discovering new remedies, plant-
derived bioactive compounds targeting ER stress and its
pathways could help in the identification and validation
of novel treatment options in PD. Hence, this review
presents an outline of the scientific literature on the research
of plant-derived bioactive compounds and other neuro-
protective agents targeting GRP78/BiP in experimental
models of PD.

2. Endoplasmic Reticulum Stress Pathway
and Disease

*e ER stress pathway or unfolded protein response (UPR)
is known to handle growing quantities of aberrant proteins
in the ER [25]. *is response program is tasked with the
reduction of misfolded/abnormal proteins through various
mechanisms (Figure 1). Firstly, GRP78/BiP disassociates
from the ER stress sensors, namely, protein kinase RNA-
like endoplasmic reticulum kinase (PERK), activating
transcription factor 6 (ATF6), and inositol-requiring en-
zyme 1 (IRE1) to initiate the ER stress response. Following
dissociation of GRP78/BiP, autophosphorylation and ac-
tivation of PERK facilitate the phosphorylation of
eukaryotic translation initiation factor 2a (eIF2a) to inhibit
further protein synthesis and translation [26–28]. ATF6 is
cleaved in the Golgi after translocation from the ER and
then migrates into the nucleus to upregulate ER chaperones
such as GRP78/BiP and 94 kDa glucose-regulated protein
(GRP94) which enhances the folding capacity of the ER
[29]. Also, IRE1 is involved in endoribonuclease activity
and activates X-box binding protein 1 (XBP-1) to promote
ER-associated degradation [30–32].

*e extent and degree of ER stress and UPR activation
may determine if the ER stress response is either anti- or
prosurvival (Figure 2). Certain aspects of the ER stress

response such as increased expression of chaperones would
appear to be advantageous by lessening the burden of
misfolded proteins [33, 34], while other ER stress responses
may be advantageous for a limited amount of time, thus
leading to degeneration if sustained. Sustained activation of
the UPR under stress would lead to apoptosis via the ac-
tivation of ER-specific caspases, c-Jun amino-terminal ki-
nase (JNK) and apoptosis signal-regulating kinase 1 (ASK1),
induction of CCAAT-enhancer-binding protein homolo-
gous protein (CHOP), and the activation of p53 upregulated
modulator of apoptosis (PUMA), BAX, and NOXA [35].

3. ER Stress Response in Parkinson’s Disease

GRP78/BiP is a key chaperone essential for proper functioning
of the ER and in various cellular processes [36–38]. Most
notable is its dual role of regulating protein folding and the
initiation of UPR signaling in the ER [39]. In PD, there are
inconsistent reports on the expression of GRP78/BiP in various
experimental models. For instance, treatment of MN9D
cells with a neurotoxin 1-methyl-4-phenylpyridinium (MPP+;
Figure 3) resulted in a reduction of GRP78/BiP expression,
while treatment of SH-SY5Y cells with a different neurotoxin
6-hydroxydopamine (6-OHDA; Figure 3) increased its ex-
pression [40, 41]. In a PD model using MPP+-treated rabbits,
Ghribi and colleagues revealed the translocation of GRP78/
BiP to the nucleus and cytosol from the ER as well as a sig-
nificant decrease in TH-positive cells in the SNpc [42]. In a
different study, Shimoke and coworkers demonstrated an
increase in the expression of GRP78/BiP after exposure to
tunicamycin; however, they observed no increase in the ex-
pression of GRP78/BiP in PC12 cells after treatment with
a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP; Figure 3), for 24 hours [43]. Duan and Mattson
utilized the MPTP-treated mouse model of PD to demonstrate
that the upregulation of GRP78/BiP by 2-deoxy-D-glucose
significantly prevented loss of dopamine neurons [44].

In PD patients, GRP78/BiP was reported to be more
expressed in the cingulate gyrus and parietal cortex when
compared to healthy controls [45]. *e upregulation of
GRP78/BiP in the cingulate gyrus was linked to an increase
in α-synuclein expression, thus providing an association
between GRP78/BiP and α-synuclein toxicity. *is obser-
vation is confirmed by a report demonstrating that the
knockdown of GRP78/BiP aggravates the toxicity of
α-synuclein in rats [46] and in another study showing that
miRNA-induced reduction of GRP78/BiP enhanced cell
death induced by a neurotoxin-rotenone [47]. In contrast to
studies mentioned above, reports demonstrate that the
upregulation of GRP78/BiP suppresses α-synuclein aggre-
gation and toxicity in PD models [48, 49]. For example,
Gorbatyuk and colleagues in a rat model of PD induced by
an elevated level of human α-synuclein demonstrated that
although the accumulation of α-synuclein induced the ex-
pression of apoptosis-regulating ATF4, the upregulation of
GRP78/BiP inhibited α-synuclein toxicity by regulating ER
stress signaling pathways [49].

Leucine-rich repeat kinase 2 (LRRK2) is the most sig-
nificant gene mutated in PD [50]. LRRK2 pathogenesis has
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been associated with ER stress as it partly localizes in the ER
in dopaminergic neurons of individuals with PD [51]. Re-
ports show that the neuroprotective activity of LRRK2
against 6-OHDA or α-synuclein induced neurodegeneration
in the nematode; C. elegans is attributed to the activity of

GRP78/BiP via signaling through the p38 mitogen-activated
protein kinase (MAPK) pathway [26, 52]. In confirmation
of these reports, Samann and colleagues reported that
LRRK2mutant C. eleganswere highly vulnerable to ER stress
and developed spontaneous neurodegeneration [53, 54].
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Figure 1: Simplified diagram highlighting the regulation of ER stress signaling pathways.
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Figure 2: Important events during cellular response to ER stress.
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Figure 3: Diagram showing the chemical structure of PD toxins: (a) MPTP; (b) MPP+; (c) 6-OHDA.
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Furthermore, ageing is the greatest risk factor for PD
[55, 56], and various age-related changes in cellular structure
and function are observed in PD patients. To corroborate
these observations, studies reveal that ageing results in a
significant reduction in the activity and expression of
GRP78/BiP in the brain of old versus young rodents [57–59].
From the aforementioned, GRP78/BiP is undoubtedly an
essential component of the UPR, and proper regulation of
GRP78/BiP could prove valuable in identifying new treat-
ment options in PD.

4. Regulation of GRP78/BiP by Therapeutic
Agents in PD Models

Over the years, the use of neurotoxin-based experimental
models of PD has contributed extensively to the under-
standing of PD and human health. For instance, such neu-
rotoxins as MPTP, MPP+, 6-OHDA, paraquat, and rotenone
have been utilized in the search, identification, and devel-
opment of novel therapeutic agents in PD [60]. Also, the
MPTP mouse and 6-OHDA rat models of PD have con-
tributed immensely to the translation of animal experimen-
tation into clinical practice and are still very much important
for investigating different mechanisms of neuronal de-
generation in PD. Considerable evidence shows that some
experimental therapeutic agents have substantial antioxidant
and anti-inflammatory activities, thus demonstrating an in-
hibitory effect in the oxidative and inflammatory mechanisms
linked to neuronal loss in PD [61, 62].

*e plant-derived bioactive compounds and other
therapeutic agents highlighted in this review demonstrate
significant neuroprotective effects and also regulate the
activity of GRP78/BiP in experimental models of PD. One
such compound is luteolin (3′, 4′, 5′, 7′-tetrahydroxy-
flavone), a naturally occurring flavonoid present in several
herbs, fruits, and vegetables [63, 64]. It is a very potent
antioxidant and is usually the most effective when compared
to other flavonoids [65]. Plants containing luteolin have
been utilized for the inhibition and treatment of such dis-
eases as cancer and hypertension [66, 67]. Also, reports show
that luteolin crosses the blood-brain barrier and has multiple
biological, pharmacological, anticancer, anti-inflammatory,
antibacterial, antiamnesic, and neuroprotective activities
[68–71].

While luteolin is structurally composed of hydroxyl
groups at carbons 5, 7, 3′, and 4′ positions (Figure 4), the
presence of 2-3 double bonds are linked to its multiple
biological activities [72]. In a study, Hu and colleagues
investigated the neuroprotective activity of luteolin in
PC12 cells treated with 6-OHDA using RT-Q-PCR and
western blot techniques [73]. *ey reported that luteolin
attenuated the 6-OHDA-induced upregulation of GRP78/
BiP and downregulated UPR, leading to the reduction of
phospho-eIF2a, ATF4, and CHOP [73]. Based on these
findings, the authors attributed the neuroprotective activity
of luteolin to the regulation of GRP78/BiP and other UPR
related proteins.

Salidroside (p-hydroxyphenethyl-β-D-glucoside; C14H20O7;
Figure 5), a phenol glycoside extracted as an active constituent

from Rhodiola rosea L., is widely used in traditional folk
medicine in Asia and Europe [74, 75]. In China, it is commonly
used as an antifungal herb and as a supplement to improve
kidney function, stimulate blood circulation, and clear chest
congestion [76].

Salidroside exhibits a wide range of pharmacological
activities including antioxidative, antiageing, anticancer,
anti-inflammatory antitumour, antidepressive, antifatigue,
adaptogenic, cardioprotective, and hepatoprotective effects
[77–80]. In addition, reports show that salidroside is ef-
fective against cognitive decline during ageing and can
protect neurons from apoptosis as well as mitochondrial
dysfunction in experimental models of neurodegeneration
[81–83]. To investigate salidroside’s ability to regulate
GRP78/BiP in an experimental model of PD, Tao and co-
workers treated SN4741 cells with 6-OHDA after pre-
treatment with salidroside. Findings revealed that
salidroside reduced the expression levels of GRP78/BiP and
other ER stress markers (p-PERK and p-IRE1) when
compared with cells treated with 6-OHDA only [84]. From
the study, they demonstrated that the protective effect of
salidroside against the toxicity of 6-OHDA was partly due to
the regulation of GRP78/BiP and other ER stress markers.

Lithospermic acid (C27H22O12) is a key component of
Salvia miltiorrhiza, a Chinese medicinal herb widely used to
increase blood flow and treat diabetic as well as cardio-
vascular problems in humans [85]. Lithospermic acid shares
a similar structure with salvianolic acid B (Figure 6) and is
reported to have multiple pharmacological activities which
include antihypertensive, antidiabetic, antiapoptotic, and
antioxidant effects [86–88].
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Figure 4: Diagram showing the chemical structure of luteolin.
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Figure 5: Diagram showing the chemical structure of salidroside.
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In a study by Lin and colleagues, MPP+-treated
CATH.a cells were utilized as a model of PD to investigate
the role of lithospermic acid on ER stress [89]. Findings
from western blots revealed that MPP+ triggered ER stress
in CATH.a cells by increasing the expression of GRP78/
BiP, while lithospermic acid treatment inhibited the
upregulation of GRP78/BiP, thus acting as a neuro-
protective agent [89].

Basic fibroblast growth factor (bFGF), a member of the
FGF family, is an essential protein with multiple physio-
logical roles in the peripheral and central nervous system
(CNS) [90, 91]. It is involved in a series of neurotrophic
activities contributing to CNS repair and cell survival [92].
Reports indicate that bFGF shares receptors and influences a
range of biological activities such as inhibition of apoptosis,
cellular proliferation, and morphogenesis [93–95]. Previous
studies show that bFGF exhibits neuroprotective activities in
PD models; for instance, bFGF protected against rotenone-
triggered dopaminergic cell loss in SH-SY5Y cells and en-
hanced survival of dopaminergic cells in human fetal tissue
strands transplanted into immunosuppressed rats injected
with 6-OHDA [96, 97]. In a study by Cai and coworkers,
bFGF was found to suppress 6-OHDA-triggered upregulation
of ER stress response proteins in Sprague–Dawley rats.
Immunohistochemical and western blot findings revealed
that bFGF treatment significantly inhibited 6-OHDA-
induced increase in the expression of GRP78/BiP and
CHOP, thus providing evidence on the regulation of GRP78/
BiP as a neuroprotective mechanism in PD [98].

Ulinastatin (C13H16O3) is a glycoprotein and Kunitz-
type serine protease inhibitor obtained by separation and
purification from the urine of healthy men [99, 100]. Reports
indicate that ulinastatin plays an important anti-
inflammatory role through the inhibition of inflammatory
cytokines and proteases [101]. For this reason, it is com-
monly used in Japan, Korea, and China for the management
and treatment of severe pancreatitis, rheumatoid arthritis,
and other inflammatory disorders [102–104]. Other phar-
macological evidence reveals that ulinastatin has a protective
role in multiple organ dysfunction syndrome, acute re-
spiratory distress syndrome, and acute lung injury
[105, 106]. To investigate the role of ulinastatin on ER stress
in an in vivo model of PD, Li and colleagues observed that
paraquat triggered a higher expression of GRP78/BiP and
apoptosis in treated rats when compared to rats in the
control group. However, they observed that ulinastatin-
treated rats showed lower expression of GRP78/BiP when

compared to rats treated with paraquat only. *ese findings
demonstrated that the regulation of GRP78/BiP by ulinas-
tatin was partly responsible for its overall protective effect
observed in the PD model [107].

Salubrinal (C21H17Cl3N4OS; Figure 7) is a synthetic
compound that was discovered in a screening of compounds
with protective activity on ER stress-mediated cell death
[108]. It is used experimentally to investigate stress response
studies linked to eIF2α [109], and as a mechanism of action
in ER stress, it inhibits the dephosphorylation of eIF2α,
leading to a reduction in protein synthesis and inhibition of
protein translation [110, 111]. Reports indicate that salu-
brinal is protective against cell death induced by tunica-
mycin, arsenic, cyclosporine, cadmium, hypoxia, and
paraquat [112–115].

As a neuroprotective agent in PD, salubrinal prevented
MN9D cells from MPP+ and 6-OHDA-induced toxicity
[116]. It is believed that the protective activity of salubrinal
can be attributed to the functional groups in its molecular
structure except for the quinolone moiety [117]. To dem-
onstrate the neuroprotective mechanism of salubrinal on
paraquat-induced ER stress in SH-SY5Y cells, Yang and
colleagues showed that salubrinal inhibited the activation of
GRP78/BiP and other ER stress sensors IRE1, ASK1, JNK,
and CHOP [118]. In a different study by Goswami and
colleagues, treatment of neuro-2A cells with rotenone in-
creased the expression of GRP78/BiP and CHOP [119];
however, pretreatment of the cells with salubrinal reduced
the expression of GRP78/BiP and CHOP. *e authors
highlighted the inhibition of eIF2α dephosphorylation and
the regulation of GRP78/BiP as a neuroprotective mecha-
nism of salubrinal in rotenone-induced toxicity in PD [119].

Echinacoside (C35H46O20; Figure 8) is a primary com-
ponent of phenylethanoid glycoside isolated from Cistanche
salsa, a Chinese herbal medicine known for its antifatigue
and antisenile properties [120, 121]. Reports show that
echinacoside has potent antioxidant effects, scavenges for
free radicals, and inhibits macrophage-induced generation
of nitric oxide [122–124]. Other biological effects include
anti-inflammatory, antiageing, antitumour, and hep-
atoprotective activities [125, 126].

*e role of echinacoside in neurodegenerative disorders
has also been reported; for instance, studies show that
echinacoside treatment significantly protected PC12 and
SH-SY5Y cells against H2O2 and TNF-α triggered cell death,
respectively [127, 128]. In another study, echinacoside
prevented dopaminergic neuronal loss in rats injected with
6-OHDA and mitigated the reduction of dopamine and its
intermediates [129, 130]. Geng and colleagues demonstrated
that echinacoside improved behavioural deficits, prevented
loss of dopamine neurons, and reduced the activation of
caspase 3/8 in in vivo and in vitro models of PD [131]. Also,
Wang and coworkers reported that echinacoside prevented
6-OHDA-triggered loss of dopamine neurons via the at-
tenuation of ROS generation andmitochondrial dysfunction
[121]. To elucidate the role of echinacoside in the regulation
of GRP78/BiP in an experimental model of PD, Zhang and
colleagues revealed that echinacoside attenuated the upre-
gulation of GRP78/BiP in 6-OHDA-treated PC12 cells and
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Figure 6: Diagram showing the chemical structure of salvianolic
acid B.
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Sprague–Dawley rats injected with 6-OHDA, thus high-
lighting the neurotherapeutic potential of echinacoside in
experimental models of PD [132].

Rifampicin is derived from rifamycins, a class of anti-
biotics obtained from Nocardia mediterranei through a
process of fermentation [133]. It is commonly used against
Mycobacterium tuberculosis and other mycobacterial in-
fections [133, 134]. Its hydroxyl radical scavenging prop-
erties are ascribed to the naphthohydroquinone ring in its
chemical structure (Figure 9), while its lipophilic ansa chain
is believed to help in its transport into the brain parenchyma
across the blood-brain barrier [135, 136]. Pharmacological
reports show that rifampicin has immunosuppressive and
antioxidant properties [137–139] and inhibits β-amyloid
accumulation and neurotoxicity [140]. It also prevents
lipopolysaccharide-triggered upregulation of proin-
flammatory mediators, decreases NF-κB and MAPK sig-
naling [134, 141], attenuates apoptosis in focal ischemic
stroke, and inhibits loss of dopaminergic neurons in PD
models [133, 142, 143].

To investigate the primary mechanism by which ri-
fampicin promotes neuronal survival, Jing and colleagues
revealed a dose-dependent activation of GRP78/BiP in
rifampicin-treated PC12 cells [144]. Upon silencing of the
GRP78/BiP gene, they investigated if rifampicin-induced
GRP78/BiP activation protected against toxicity in
rotenone-treated PC12 cells. Western blots and mor-
phological evaluation revealed that cells without the
GRP78/BiP gene were more prone to rotenone-triggered
damage when compared to cells with the GRP78/BiP gene
irrespective of rifampicin treatment [144]. *ese findings
show that silencing of the GRP78/BiP gene mitigated
rifampicin-induced protection and thus confirmed that

the regulation and activation of GRP78/BiP was re-
sponsible for the neuroprotective activity of rifampicin in
the PD model.

5. Conclusion

Protein misfolding and aggregation is implicated in the
pathogenesis of PD, and the regulation of GRP78/BiP is
critical for proper functioning of the UPR. As highlighted
in this review, several studies have attempted to unravel
the mechanism behind ER stress by targeting GRP78/BiP
and the UPR as a way of halting dopaminergic neuronal
loss in PD. Although it is established that GRP78/BiP is an
essential chaperone in the UPR, studies discussed in this
review indicate that the expression of GRP78/BiP is al-
tered in various models of PD depending on the cell type
and toxin used in inducing neuronal damage. Conse-
quently, various neuroprotective agents induce the
upregulation or downregulation of GRP78/BiP in re-
sponse to the ER stress-inducing agent in these PD models
to promote the survival of dopaminergic neurons. Also,
evidence from this review indicate that a translational
potential exists for the regulation of GRP78/BiP activity;
however, further investigations are needed to properly
understand the involvement of GRP78/BiP in the pro-
tection of neurons against degeneration in PD. *is
knowledge would be valuable in designing novel remedies
targeted at combating PD and other neurodegenerative
disorders linked to the aggregation of misfolded proteins.
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gene transfer by adeno-associated virus inhibits MPTP-
induced nigrostriatal degeneration in the mouse model of
Parkinson disease,” Molecular 8erapy, vol. 11, no. 1,
pp. 80–88, 2005.

[35] J. Li, B. Lee, and A. S. Lee, “Endoplasmic reticulum stress-
induced apoptosis,” Journal of Biological Chemistry, vol. 281,
no. 11, pp. 7260–7270, 2006.

[36] M. Ni and A. S. Lee, “ER chaperones in mammalian de-
velopment and human diseases,” FEBS Letters, vol. 581,
no. 19, pp. 3641–3651, 2007.

[37] L. M. Hendershot, “*e ER function BiP is a master regulator
of ER function,”8eMount Sinai Journal ofMedicine, vol. 71,
no. 5, pp. 289–297, 2004.

[38] A. S. Lee, “*e ER chaperone and signaling regulator GRP78/
BiP as a monitor of endoplasmic reticulum stress,”Methods,
vol. 35, no. 4, pp. 373–381, 2005.

Advances in Pharmacological Sciences 7



[39] M. S. Gorbatyuk and O. S. Gorbatyuk, “*e molecular
chaperone GRP78/BiP as a therapeutic target for neurode-
generative disorders: a mini review,” Journal of Genetic
Syndrome & Gene 8erapy, vol. 4, no. 2, 2013.

[40] W. A. Holtz and K. L. O’Malley, “Parkinsonian mimetics
induce aspects of unfolded protein response in death of
dopaminergic neurons,” Journal of Biological Chemistry,
vol. 278, no. 21, pp. 19367–19377, 2003.

[41] G. Chen, K. A. Bower, C. Ma, S. Fang, C. J. *iele, and J. Luo,
“Glycogen synthase kinase 3β (GSK3β) mediates 6-
hydroxydopamine-induced neuronal death,” 8e FASEB
Journal, vol. 18, no. 10, pp. 1162–1164, 2004.

[42] O. Ghribi, M. M. Herman, P. Pramoonjago, and J. Savory,
“MPP+ induces the endoplasmic reticulum stress response
in rabbit brain involving activation of the ATF-6 and
NF-κB signaling pathways,” Journal of Neuropathology &
Experimental Neurology, vol. 62, no. 11, pp. 1144–1153,
2003.

[43] K. Shimoke, M. Kudo, and T. Ikeuchi, “MPTP-induced
reactive oxygen species promote cell death through a
gradual activation of caspase-3 without expression of
GRP78/Bip as a preventive measure against ER stress in
PC12 cells,” Life Sciences, vol. 73, no. 5, pp. 581–593, 2003.

[44] W. Duan and M. P. Mattson, “Dietary restriction and 2-
deoxyglucose administration improve behavioral outcome
and reduce degeneration of dopaminergic neurons in models
of Parkinson’s disease,” Journal of Neuroscience Research,
vol. 57, no. 2, pp. 195–206, 1999.

[45] J.-H. Baek, D. Whitfield, D. Howlett et al., “Unfolded protein
response is activated in lewy body dementias,” Neuropa-
thology and Applied Neurobiology, vol. 42, no. 4, pp. 352–365,
2016.

[46] M. Salganik, V. G. Sergeyev, V. Shinde et al., “*e loss of
glucose-regulated protein 78 (GRP78) during normal aging
or from siRNA knockdown augments human alpha-
synuclein (α-syn) toxicity to rat nigral neurons,” Neurobi-
ology of Aging, vol. 36, no. 6, pp. 2213–2223, 2015.

[47] M. Jiang, Q. Yun, F. Shi et al., “Downregulation of miR-384-
5p attenuates rotenone-induced neurotoxicity in dopami-
nergic SH-SY5Y cells through inhibiting endoplasmic re-
ticulum stress,” American Journal of Physiology-Cell
Physiology, vol. 310, no. 9, pp. 755–763, 2016.

[48] P. Jiang, M. Gan, W.-L. Lin, and S.-H. C. Yen, “Nutrient
deprivation induces α-synuclein aggregation through en-
doplasmic reticulum stress response and SREBP2 pathway,”
Frontiers in Aging Neuroscience, vol. 6, p. 268, 2014.

[49] M. S. Gorbatyuk, A. Shabashvili, W. Chen et al., “Glucose
regulated protein 78 diminishes α-synuclein neurotoxicity in
a rat model of Parkinson disease,”Molecular8erapy, vol. 20,
no. 7, pp. 1327–1337, 2012.

[50] F. Cabral-Miranda and C. Hetz, “ER stress in neurodegen-
erative disease: from disease mechanisms to therapeutic
interventions,” Endoplasmic Reticulum Stress in Diseases,
vol. 4, no. 1, pp. 11–26, 2017.

[51] J. Vitte, S. Traver, A. Maués De Paula et al., “Leucine-rich
repeat kinase 2 is associated with the endoplasmic reticulum
in dopaminergic neurons and accumulates in the core of
Lewy bodies in Parkinson disease,” Journal of Neuropa-
thology & Experimental Neurology, vol. 69, no. 9, pp. 959–
972, 2010.

[52] Y. Yuan, P. Cao, M. A. Smith et al., “Dysregulated LRRK2
signaling in response to endoplasmic reticulum stress leads
to dopaminergic neuron degeneration in C. elegans,” PloS
One, vol. 6, no. 8, Article ID e22354, 2011.
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