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Multi-legged animals show several types of ipsilateral interlimb coordination. Millipedes

use a direct-wave gait, in which the swing leg movements propagate from posterior

to anterior. In contrast, centipedes use a retrograde-wave gait, in which the swing leg

movements propagate from anterior to posterior. Interestingly, when millipedes walk in a

specific way, both direct and retrograde waves of the swing leg movements appear with

the waves’ source, which we call the source-wave gait. However, the gait generation

mechanism is still unclear because of the complex nature of the interaction between

neural control and dynamic body systems. The present study used a simple model

to understand the mechanism better, primarily how local sensory feedback affects

multi-legged locomotion. The model comprises a multi-legged body and its locomotion

control system using biologically inspired oscillators with local sensory feedback, phase

resetting. Each oscillator controls each leg independently. Our simulation produced the

above three types of animal gaits. These gaits are not predesigned but emerge through

the interaction between the neural control and dynamic body systems through sensory

feedback (embodied sensorimotor interaction) in a decentralized manner. The analytical

description of these gaits’ solution and stability clarifies the embodied sensorimotor

interaction’s functional roles in the interlimb coordination.

Keywords: interlimb coordination, multi-legged locomotion, millipede, metachronal waves, local sensory

feedback, embodied sensorimotor interaction

1. INTRODUCTION

Multi-legged animals, even those with a large number of legs, use several types of ipsilateral
interlimb coordination according to the species and situations. Centipedes use a retrograde-wave
gait in which the swing leg movements propagate from the anterior to posterior (Full, 1997;
Kuroda et al., 2014). In contrast, millipedes generally use a direct-wave gait, in which the swing
leg movements propagate from the posterior to anterior (Full, 1997; Kuroda et al., 2014). More
interestingly, it is reported that when millipedes walk with the body axis bent like a U shape, both
direct and retrograde waves of the swing leg movements appear at the source of the waves (Tamura
et al., 2016), which we call the source-wave gait. However, it remains unclear what mechanisms
generate these different types of interlimb coordination in multi-legged locomotion.
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Regarding the locomotion of insects and mammals that use a
direct-wave gait, where the swing leg movements propagate from
the posterior to anterior, physiological studies have suggested
that central pattern generators (CPGs) and sensory feedback
play important roles in the interlimb coordination (Delcomyn,
2004; Büschges et al., 2008; Ijspeert, 2008). The CPGs generate
rhythmic outputs, which are modulated by sensory feedback. The
sensory feedback is critical especially during slowwalking, as seen
in stick insects (Delcomyn, 2004; Büschges et al., 2008).

However, the mechanism of the interlimb coordination
has not been fully understood only from physiological
studies because the locomotion is generated through complex
interactions between motor control and body dynamics through
sensory feedback (embodied sensorimotor interaction). Thus,
many mathematical models and robots have been developed to
clarify the functional roles of these interactions in the interlimb
coordination (Steingrube et al., 2010; Owaki et al., 2012; Aoi
et al., 2013; Schilling et al., 2013; Ambe et al., 2015).

Recently, mathematical models and robots for multi-legged
locomotion have reproduced many aspects of the gaits of multi-
legged animals by focusing on the embodied sensorimotor
interaction. Tamura et al. (2016) showed that sensory feedback
of load information generates a millipede-like gait. Yasui et al.
(2017) and Kano et al. (2017) proposed distributed control
schemes with sensory feedback of load information to reproduce
the multi-legged locomotion observed when a part of the
terrain is removed. They also investigated the transition between
swimming and walking of centipedes based on the interplay of
brain, CPG, and sensory feedback (Yasui et al., 2019). However,
the mechanism for generating various interlimb coordination in
multi-legged locomotion is still not fully understood.

The purpose of this study was to use a simple model to
demonstrate that local sensory feedback generates the various
interlimb coordination observed in multi-legged animals via
embodied sensory-motor interactions. For that purpose, we
constructed a mechanical model that imitates the flexible body
of multi-legged animals and a control model that uses phase
oscillators inspired by CPGs and phase resetting as local
sensory feedback. The simulation results show that although
the oscillators do not interact directly, three types of gaits
(direct-, retrograde-, and source-wave gaits) emerge through
the embodied sensorimotor interaction. Furthermore, we derive
these analytical solutions and stabilities under some assumptions,
which produce the three types of gaits regardless of the number
of legs and clarify how the local sensory feedback generates these
gaits through the embodied sensorimotor interaction.

2. SIMULATION

2.1. Mechanical Model
Skeletal structure and muscle arrangement have large effects
on animal locomotion (Ting and Chiel, 2017), and appropriate
models need to be created depending on the motion of interest.
In particular, in fast locomotion where inertial effects are
larger than viscous ones, body elasticity mainly determines the
motion. For example, a spring-loaded inverted pendulum (SLIP)
model has been widely used to investigate the characteristics
of running in mammals (Full and Koditschek, 1999; Tanase

et al., 2015; Adachi et al., 2020; Kamimura et al., 2021)
and in cockroaches (Seipel et al., 2004; Spence et al., 2010).
Detailed musculoskeletal models have been also used (Proctor
and Holmes, 2018). Conversely, in slow locomotion, viscosity
plays a dominant role. In stick insects, soon after swing muscle
activity stops, swing leg movement ceases (Hooper et al., 2009).
The effects of sensory feedback are dominant for slow-walking
insects (Daun-Gruhn and Büschges, 2011).

In this study, we focus on relatively slow locomotion to
investigate the functional roles of sensory feedback in multi-
legged locomotion. We construct a simple mechanical model
with flexible body and legs. Specifically, the mechanical model is
composed of (N+1) mass points, whose mass is mi and whose
height is xi (i = 1, . . . ,N+1), as shown in Figure 1. The mass
points move only vertically and are connected by springs and
dampers (all the spring constants are κ and the damper constants
are σ ). The neutral length of the spring is 0. Eachmass point has a
massless leg (Leg i), which also moves vertically and whose length
is li. The ground is modeled as a spring and damper (with spring
constant K and damper constant D). The ground is much stiffer
than the body spring (K ≫ κ) and the damper coefficient is set
to provide overdamping. We used mi = m for i = 2, . . . ,N and
m1 = mN+1 = mB for the edges, where m/2 < mB < m. The
gravitational acceleration is g.

For N≥3, the equations of motion are given by

miẍi =














































−κ (x1−x2)−σ (ẋ1−ẋ2)−m1g

−p1
{

K
(

x1−l1
)

+D(ẋ1− l̇1)
} i=1

−κ(2xi−xi+1−xi−1)−σ (2ẋi−ẋi+1−ẋi−1)−mig

−pi
{

K
(

xi−li
)

+D(ẋi− l̇i)
} i=2, . . . ,N

−κ (xN+1−xN)−σ (ẋN+1−ẋN)−mN+1g

−pN+1
{

K
(

xN+1−lN+1
)

+D(ẋN+1− l̇N+1)
} i=N+1

(1)

where pi (i = 1, . . . ,N+1) represents whether Leg i is in contact
with the ground and is defined by,

pi =
{

0 li < xi

1 otherwise.
(2)

2.2. Control Model
To understand the mechanism that generates rhythmic leg
movement, central pattern generators (CPGs) have been well
studied (Ijspeert, 2008; Daun-Gruhn and Büschges, 2011) and
many modeling approaches are available for CPGs, such as
relatively detailed biophysical models based onHodgkin-Huxley-
type neuron models (Rybak et al., 2006; Daun et al., 2009),
connectionist models composed of simplified neuron models
(e.g., leaky-integrator neurons) (Ijspeert, 2001; Pasemann et al.,
2003) and abstract models using van der Pol and Matsuoka
oscillators (van der Pol, 1926; Matsuoka, 1987). In contrast,
some studies proposed reflex chains in place of CPGs to
generate rhythmic leg movement, such as Walknet (Cruse et al.,
1998), and others proposed heteroclinic oscillator models to
represent intermediate behavior between the CPGs and reflex
chains (Shaw et al., 2015).
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FIGURE 1 | Mechanical model composed of (N+1) mass points. The mass points move only vertically and are connected via springs and dampers. Dotted lines

represent the vertical positions of the mass points.

FIGURE 2 | (A) Phase oscillator model. (B) Leg length li depending on

phase φi .

These models are nonlinear, interact with sensory feedback,
and show remarkable adaptation to the environment and
prominent replication of animal movement, such as entrainment
to limit cycle and extending the timing of the state transition.
However, these models are complicated to understand the
functional role of embodied sensorimotor interaction for
interlimb coordination. We use a simple phase oscillator model
developed in our previous studies (Aoi et al., 2017; Ambe et al.,
2018) for better understanding of the functional role through the
analytical description. Specifically, each leg has a phase oscillator
whose phase is φi ∈ [0, 2π) (mod 2π) (i = 1, . . . ,N+1). The leg
length li is determined by φi as follows (Figure 2):

li = l(φi) =























L 0≤φi≤2βπ

L− a
φi−2βπ

(1−β)π 2βπ <φi< (1+β)π

L− a
2π−φi
(1−β)π (1+β)π≤φi<2π

(3)

where L, a (< L), and β ∈ (0.5, 1) are the maximum length, the
amplitude of the swing leg movement, and the duty factor (ratio
between the stance phase and step cycle durations), respectively.
We defined the leg length by a piecewise-linear function and
used mg/κ < a so that the leg is in the air in the swing phase
(φi ∈ (2βπ , 2π)). While the length is L in the stance phase
(φi ∈ [0, 2βπ]), it shortens in the takeoff phase (first half of the
swing phase, φi ∈ (2βπ , (1+β)π)) and lengthens in the landing
phase (second half of the swing phase, φi ∈ [(1+β)π , 2π)). The
oscillator phase follows the following dynamics:

dφi

dt
= ω + yi, (4)

where ω is the basic frequency of locomotion and yi represents
a sensory feedback. We used ω ≪ √

κ/mi to make the model
walk slowly.

Sensory feedback has been physiologically well studied in
insects (Delcomyn, 2004; Büschges et al., 2008). Insects have
mechanoreceptors that can sense various information, such as
contact with the ground, joint angles, and mechanical load at the
nearby leg joint (Tuthill and Wilson, 2016). Especially in stick
insects, sensory feedback plays an important role for inter-joint
coordination. Strain signals from the trochanter play a major role
in shaping thorax-coxa (TC)-joint motoneuronal activity during
walking and contribute to the coordination of the TC-joint
movement with the stepping pattern of the distal leg joints (Akay
et al., 2004). Centipedes also sense load information and stop
their periodic leg movements when the terrain is removed (Yasui
et al., 2017). Locomotion rhythm resetting and phase shifting
in motorneuron activities by sensory feedback and perturbation
(phase resetting) has been observed in insects (Büschges, 1995),
as well as in mammals (Schomburg et al., 1998; Rybak et al.,
2006). Because phase resetting is amenable to mathematical
analysis to determine the essential functional role of sensory
feedback, this study focuses on phase resetting based on load
information. Based on our previous studies (Aoi et al., 2013;
Ambe et al., 2015, 2018), we incorporated the phase resetting
mechanism as

τ
dyi

dt
= −yi + ui (5)
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TABLE 1 | Parameters for simulation.

Parameter Value Parameter Value Parameter Value

mB [kg] 0.90 κ [N/m] 100 ω [rad/s] 0.4 ≪√
κ/m

m [kg] 1.0 σ [Ns/m] 2
√
κ g [m/s2 ] 9.8

L [m] 1.0 K [N/m] 105 τ 0.5

a [m] 0.4 D [Ns/m] 2
√
K β 0.8

ui =
{

0 0≤φi< (1+β)π
(2π−φi) δ(t−tii) (1+β)π≤φi<2π

(6)

where tii is the time when Leg i touches the ground and δ() is
Dirac’s delta function. When Leg i touches the ground in the
landing phase ((1+ β)π ≤ φi < 2π), the phase φi is reset to
zero as shown in Figure 2A. In the present study, we used a first-
order lag system with time constant τ to change the phase value
continuously after the phase resetting for the simulation.

Because the leg movements of our model are determined by
the oscillation phases, the relative phases between the oscillators
ψi ∈ [0, 2π) (mod 2π) (i = 1, . . . ,N) explain the gait, which is
given by

ψi = φi+1 − φi. (7)

We investigated where the relative phases converged through the
mechanical dynamics (1) and phase dynamics (4).

2.3. Results
We conducted forward dynamic simulations of our model in case
of N = 3 to find stable gaits. All simulations used the parameters
in Table 1. To investigate the characteristics of the gaits, we
defined a Poincaré section 61 for the relative phases just before
Leg 1 touches the ground, where we used9

1 ≡ [ψ1
1 ψ

1
2 ψ

1
3 ]

T and
()i represents the value just before Leg i touches the ground.

2.3.1. Periodic Solutions
First, we used six sets of the initial relative phases for 9

1 to
investigate if and how they converged. Figure 3 shows the time
profile of the relative phases on 61 for the six sets of the initial
relative phases. Some of the relative phases converged to identical
values, but others converged to different values. These converged
relative phases correspond to periodic solutions. These results
suggest that there are many periodic solutions.

To illustrate details of the periodic solutions, Figure 4A uses
thick colored lines (red, blue, and green) to show the relative
phases converged frommany initial values (25× 25× 25) for 9

1.
The solutions generally consist of three connected orthogonal
line segments and lay close to two planes parallel to the ψ1

1–ψ
1
2

and ψ1
2–ψ

1
3 planes. Figures 4B,C show the solutions projected

onto each plane. Near the connections between line segments, the
segments are slightly bent. The three line segments correspond
to the source-wave, retrograde-wave, and direct-wave gaits, as
investigated below. The thin black line segments represent the
analytical approximate solutions obtained in section 3.

Figures 5A–C show the slices of basin of attraction under
the conditions ψ1

3 = 2(1 − β)π , π , and 2βπ , respectively. All

FIGURE 3 | Time profile of relative phases for 9
1 simulated from six sets of

initial values: (A) ψ1
1 , (B) ψ

1
2 , and (C) ψ1

3 .

the initial values (99 × 99) converged to one of the three gaits,
and the basin of attraction was separated into three parts, each
corresponding to one gait type.

2.3.2. Characteristics of Three Types of Gaits
The obtained periodic solutions were categorized by three gaits:
direct-, retrograde-, and source-wave gaits. The direct-wave gait
has the following relative phases:

ψ̂1
1 ≈ 2(1−β)π , ψ̂1

2 ≈ 2(1−β)π , 2(1−β)π / ψ̂1
3 / 2βπ

where (̂) indicates the periodic solution. This gait appears as
one line segment, as shown in Figure 4. Figure 6A shows the

footprint diagram for 9̂
1 = [1.13 0.98 1.50]T (point a in

Figure 4). In this gait, the swing leg movement of Legs 1, 2, and
3 propagates from posterior to anterior with the same interval,
as shown by red arrows. However, the relative phase of the swing
leg movement between Legs 3 and 4 can vary within the range
indicated by the violet arrow.

The retrograde-wave gait has the following relative phases:

2(1−β)π / ψ̂1
1 / 2βπ , ψ̂1

2 ≈ 2βπ , ψ̂1
3 ≈ 2βπ .

This also appears as one line segment (to be precise, it is slightly
curved) in Figure 4. Figure 6B shows the footprint diagram for

9̂
1 = [3.97 5.29 5.29]T (point b in Figure 4). In this gait, the

swing leg movement of Legs 2, 3, and 4 propagates from anterior
to posterior with the same interval, as shown by green arrows.
However, the relative phase of the swing leg movement between
Legs 1 and 2 can vary in the range indicated by the violet arrow.

The source-wave gait has the following relative phases:

ψ̂1
1 ≈ 2(1−β)π , 2(1−β)π / ψ̂1

2 / 2βπ , ψ̂1
3 ≈ 2βπ .
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FIGURE 4 | Relative phases for 9
1 of periodic solutions: (A) shown in ψ1

1 -ψ
1
2 -ψ

1
3 space, (B) projected to a plane parallel to the ψ1

1 -ψ
1
2 plane, and (C) projected to a

plane parallel to the ψ1
2 -ψ

1
3 plane. Thick colored lines and thin black lines represent simulated and analytic solutions, respectively. Points a, b, and c are used to show

footprint diagrams in Figure 6.

FIGURE 5 | Slices of basin of attraction for three gaits in simulation under three conditions: (A) ψ1
3 = 2(1−β)π , (B) ψ1

3 = π , and (C) ψ1
3 = 2βπ .

This also appears as one line segment (to be precise, it
comprises two line segments) in Figure 4. Figure 6C shows
the footprint diagram for 9

1 = [1.13 1.10 5.28]T (point
c in Figure 4). In this gait, the swing leg movement of Legs
1 and 2 propagates from posterior to anterior, as shown
by red arrows, while that of Legs 3 and 4 propagates from
anterior to posterior as shown by green arrows. However,

the relative phase of the swing leg movement between
Legs 2 and 3 can vary in the range indicated by the
violet arrow.

These three types of gaits were not predetermined, but
emerged through the mechanical and sensory interaction. These
gaits are represented by line segments for 9

1, which are serially
connected as shown in Figure 4.
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FIGURE 6 | Footprint diagrams of periodic solutions: (A) Direct-wave gait

(point a in Figure 4), (B) retrograde-wave gait (point b in Figure 4), and (C)

source-wave gait (point c in Figure 4). Black bars can change to gray bars as

long as the violet box is in the range indicated by the violet arrow.

3. ANALYSIS

Three types of gaits were obtained via themechanical and sensory
interaction in simulations with a multi-mass spring model.
Although the models described in section 2 used four mass
points, these gaits are expected to appear in models with more
mass points (attached Supplementary Video 1). Figure 7 shows
the three types of gaits for N+1 mass points. For the direct-wave
gait (Figure 7A), the swing leg movements propagate anteriorly,
where there is only one swing leg within one wavelength. While
the phase difference between the neighboring legs for Legs 1 to N
is around 2(1−β)π , that between Legs N and N+1 is not unique
and is variable from 2(1−β)π to 2βπ . For the retrograde-wave
gait (Figure 7B), the swing leg movements propagate posteriorly,
where there is only one swing leg within one wavelength. While
the phase difference between the neighboring legs for Legs 2 to
N + 1 is around 2βπ , that between Legs 1 and 2 is not unique
and is variable from 2(1−β)π to 2βπ . For the source-wave gait
(Figure 7C), while the anterior swing leg movements (Legs 1 to
k− 1, k ∈ [2,N]) propagate anteriorly, those of the posterior
part (Legs k to N + 1) propagate posteriorly. Although the phase
differences of the neighboring legs for the anterior and posterior
parts are around 2(1−β)π and 2βπ , respectively, that between
Legs k−1 and k is not unique and is variable from 2(1−β)π to
2βπ . To clarify the mechanism for generating these three gaits,
we simplified our model by some physical assumptions to derive
analytical solutions.

A concrete way to derive the analytical solutions is as follows.
First, we simplify our mechanical and controller models. In
particular, we assume that the natural frequencies of the mass
points are larger than the gait frequency so that the vertical

position of the mass points xi (i = 1, . . . ,N+ 1) is determined
uniquely by the oscillator phase φi in section 3.1. We also assume
that the time constant of our control model is smaller than
the gait cycle duration found in section 3.2, which allows the
Poincaré map to be obtained by determining the phase resetting
value φii . These assumptions give a touchdown relation between
φii ,φ

i
i−1, and φ

i
i+1. In section 3.3, we determine the order of the

touchdown events in the case of the source-wave gait based
on the simulation results and rewrite the touchdown relation
by φi−1i−1 ,φ

i
i ,φ

i+1
i+1 , and the relative phases between the oscillators,

which gives periodic solutions of the source-wave gait. In section
3.4, we investigate the stability of the periodic solutions. In
section 3.5, we derive the periodic solutions and stability of the
direct-wave gait from the front–rear symmetry. In section 3.6,
we compare the analytical results with the simulation results.
In section 3.7, we describe the geometrical meaning of the
obtained solutions.

3.1. Simplification of Mechanical Model
We used ω ≪ √

κ/mi in (4) to make the model walk slowly
in the simulation. Thus, we ignored the dynamics of the
mass points and focused only on the equilibrium of forces by
replacing the ground reaction forces with unknown variables.
Then, (1) becomes











κ(x2−x1)+R1 = m1g i = 1

κ(xi−1−xi)+κ(xi+1−xi)+Ri = mig i∈ [2,N]

κ(xN−xN+1)+RN+1 = mN+1g i = N+1

, (8)

where Ri is the ground reaction force. The number of unknown
variables is 2(N + 1); x1, . . . , xN+1 and R1, . . . ,RN+1. These
variables depend on the foot contact conditions. In particular,
when Leg i is in the air, xi ≥ l(φi) and Ri = 0. In
contrast, when Leg i is in contact with the ground, xi =
l(φi) and Ri > 0. Therefore, when φi and foot contact
conditions for all legs are given, the number of the unknown
variables is reduced to N + 1 and the unknown variables are
solved by (8).

3.2. Simplification of Control Model
Although we used a first-order lag system in (9) for the
simulation, the time constant τ is small compared with the gait
period. Therefore, we set τ = 0, which reduces (4) to

dφi

dt
= ω + ui. (9)

This gives

dψi

dt
= ui+1 − ui i = 1, . . . ,N. (10)

A Poincaré section 6j (j = 1, . . . ,N+1) was defined for the
relative phases just before the touchdown of Leg j and we used

9
j ≡ [ψ

j
1 ψ

j
2 . . . ψ

j
N]

T. The Poincaré map for 6j was given
by integrating (10) for one period. Under the assumption that
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FIGURE 7 | Three types of gaits for N+1 mass points: (A) Direct-wave, (B) retrograde-wave, and (C) source-wave gaits. In the direct-wave (retrograde-wave) gait,

while the swing leg movements of Legs 1 to N (Legs 2 to N+1) propagate anteriorly (posteriorly) with a constant relative phase, the relative phase between Legs N

and N+1 (Legs 1 and 2) is not unique. In the source-wave gait, while the swing leg movements of the anterior part (Legs 1 to k−1, k ∈ [2,N]) propagate anteriorly,

those of the posterior part (Legs k to N + 1) propagate posteriorly. The relative phase between Legs k−1 and k is not unique. In these three gaits, there is only one

swing leg within one wavelength.

FIGURE 8 | Assumptions for the phases of the neighboring legs at each touchdown event for the source-wave gait.

each leg experiences phase resetting once each period, the map is
given by

ψ
j
i 7→ ψ

j
i + φii − φ

i+1
i+1 i = 1, . . . ,N. (11)

To obtain the Poincaré map, φii (i = 1, . . . ,N + 1) needs
to be determined.

Based on the periodic solutions, we assume that there is only
one swing leg within one wavelength, just before Leg i touches
the ground (i = 1, . . . ,N+1), the neighboring legs (Legs i−1 and
i+1) are in contact with the ground. Therefore, xi−1 = l(φii−1),

xi = l(φii), xi+1 = l(φii+1), Ri−1 > 0, Ri = 0, and Ri+1 > 0 are
satisfied just before the touchdown of Leg i. By substituting these
variables into (8), we obtain

l(φii) =











fB(φi2) i = 1

f (φii−1, φ
i
i+1) i ∈ [2, N]

fB(φiN) i = N + 1

, (12)

where

f (φh, φf) = 1

2

{

l(φh)+ l(φf)
}

− mg

2κ
(13)
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fB(φ) = l(φ)− mBg

κ
.

The substitution of (12) into (3) gives one relation between
φii−1,φ

i
i , and φ

i
i+1 for each i (i = 1, . . . ,N+1). Because we can

write φii−1 and φii+1 as φi−1i−1 ,φ
i
i ,φ

i+1
i+1 , and 9

j, as discussed in the

following section, φii is obtained by 9
j. As a result, we obtain the

Poincaré map from (11).

3.3. Analytical Solution of Source-Wave
Gait
Here, we derive the periodic solution of the source-wave gait
characterized by Leg k ∈ [2, N] that determines the boundary
between the direct- and retrograde-wave regions (Figure 7C).
The solution of the source-wave gait is useful for deriving those of
the direct- and retrograde-wave gaits. In particular, the solution
of the retrograde-wave gait is obtained by k= 2 for the solution
of the source-wave gait (Figure 7B). However, note that k=N+1
does not fully explain the solution of the direct-wave gait, which
is instead derived by the front–rear symmetry and the solution of
the retrograde-wave gait, as explained in section 3.5.

To derive the periodic solution of the source-wave gait, we first
define the Poincaré section as 6k and transform the right-hand
side of (12) to be represented by the relative phases 9

k and the
touchdown phase φii (i = 1, . . . ,N+ 1). For that purpose, we
assume some conditions for the phases of the neighboring legs
at each touchdown event, determine the order of the touchdown
events, and represent the relative phases of the neighboring legs
of the touchdown leg using 9

k and φii by accounting for the
effects of phase resetting. Second, we derive the conditions of
φii for the periodicity. The reduced equation of (12) and the
periodicity conditions yield the periodic solution.

Based on the simulation results obtained in section 2, we
assume the following conditions for the phases of the neighboring
legs at each touchdown event (Figure 8). For the touchdown of
Leg k (boundary between direct- and retrograde-wave regions),
φk
k−1 is in the stance or takeoff phase (0 ≤ φk

k−1 < (1 + β)π),

and φk
k+1 is in the takeoff phase (2βπ ≤ φk

k+1 < (1 + β)π).
For the touchdown of Leg j ∈ [2, k− 1] (direct-wave region),

φ
j
j−1 is in the takeoff phase (2βπ ≤ φ

j
j−1 < (1 + β)π) and

φ
j
j+1 is in the stance phase (0 ≤ φ

j
j+1 < 2βπ) because the

swing movements of Legs 1 to k−1 propagate anteriorly. For the
touchdown of Leg i ∈ [k+1, N] (retrograde-wave region), φii−1 is
in the stance phase (0 ≤ φii−1 < 2βπ) and φii+1 is in the takeoff

phase (2βπ ≤ φii+1 < (1 + β)π) because the swing movements
of Legs k to N+1 propagate posteriorly. For the touchdown of
Legs 1 and N+1 (edges of direct- and retrograde-wave regions),
φ12 and φ

N+1
N are in the stance phases (0 ≤ φ12 , φ

N+1
N < 2βπ).

These assumptions determine the order of touchdown events.
In the retrograde-wave region, suppose that n(> k) is the
minimum value that satisfies φkn ∈ (φn−1n ,φnn], which means that
Legs (n−1), k, and n touch the ground sequentially (Figure 9A).
Legs k to n correspond to almost one wavelength of the gait.
Because the swing movement propagates posteriorly from Legs
k to N+1, Leg n is in the swing phase when Leg k touches down.
Thus, the order of touchdown events for Legs k to n is determined

as being in the order k, n, k+1, k+2, k+3, . . . , n−1, as shown
in Figure 9A. The order of touchdown events in the direct-wave
region is determined similarly.

When the order of touchdown events is determined, the
relative phases ψ i

i−1 and ψ i
i just before touchdown of Leg i can

be represented using 9
k and φi−1i−1 , and φ

i+1
i+1 by accounting for

the effects of phase resetting. Specifically, because phase resetting
at each touchdown changes only the oscillator phase of the
touchdown leg and the relative phases of the neighboring legs,
ψ i
i−1 and ψ i

i just before touchdown of Leg i can be represented

using 9
k, φi−1i−1 , and φ

i+1
i+1 , depending on the experiences of the

leg touchdowns. In the case of the retrograde-wave region, the
evolution of the relative phases for Legs k to n at each touchdown
event can be written as Figure 9B. For i = k and n, ψ i

i−1 and ψ
i
i

are given by ψ i
i−1 = ψk

i−1 and ψ
i
i = ψk

i , respectively (highlighted
in orange at the touchdowns of Legs k and n in Figure 9B),
because both neighboring legs do not experience phase resetting
in the period between the touchdown events of Legs k and n.
As a result, φii−1 = φii − ψk

i−1 and φii+1 = φii +ψk
i − 2π (φii+1 is

subtracted by 2π to satisfy 0 ≤ φii+1 < 2π) are satisfied because

ψ i
i−1 = φii − φii−1 and ψ i

i = φii+1 − φii . For i ∈ [k+ 1, n− 2],

ψ i
i−1 and ψ

i
i are given by ψ i

i−1 = ψk
i−1−(2π−φi−1i−1) and ψ

i
i = ψk

i ,
respectively (highlighted in orange at the touchdown of Leg k+1
for i = k+1 in Figure 9B), because only the posterior Leg i−1
experiences phase resetting in the period between the touchdown
events of Legs k and i. As a result, φii−1=φii−ψk

i−1+2π−φi−1i−1 and

φii+1 = φii+ψk
i −2π are satisfied. For i = n−1, ψ i

i−1 and ψ
i
i are

given by ψ i
i−1 = ψk

i−1− (2π−φi−1i−1) and ψ
i
i = ψk

i + (2π−φi+1i+1),
respectively (highlighted in orange at the touchdown of Leg n−1
in Figure 9B), because both neighboring legs experience phase
resetting in the interval between the touchdown events of Legs
k and n−1. As a result, φii−1 = φii−ψk

i−1+2π−φi−1i−1 and φii+1 =
φii +ψk

i −φ
i+1
i+1 are satisfied. This means that φii−1 and φii+1 can

be represented by 9
k, φi−1i−1 , φ

i
i , and φ

i+1
i+1 . These analyses are also

applicable to the direct-wave region.
By using these results, the right-hand side of (12) can be

rewritten using ψk
i (i=1, . . . ,N) and φii (i=1, . . . ,N+1) as

l(φii) =



























































fB(φ11+ψk
1−2π) i ∈ Sk1

fB(φ11+ψk
1−φ22) i ∈ Sk2

f (φii−ψk
i−1, φ

i
i+ψk

i −2π) i ∈ Sk3
f (φii−ψk

i−1+2π−φi−1
i−1 , φ

i
i+ψk

i −φ
i+1
i+1) i ∈ Sk4

f (φii−ψk
i−1, φ

i
i+ψk

i −φ
i+1
i+1) i ∈ Sk5

f (φii−ψk
i−1+2π−φi−1

i−1 , φ
i
i+ψk

i −2π) i ∈ Sk6
fB(φ

N+1
N+1−ψk

N) i ∈ Sk7
fB(φ

N+1
N+1−ψk

N+2π−φNN ) i ∈ Sk8
(14)

where Sk1−8 are classified based on whether the neighboring legs
(Legs i−1 and i+1) of Leg i experience phase resetting in the
interval between the touchdown events of Legs k and i, as shown
in Table 2. Specifically, Sk1,2,7,8 are for i = 1 and N+1, which are
given by

Sk1 = {i | i = 1} ∩ {i | φki ∈ (φi+1i ,φii]}
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FIGURE 9 | Evolution of oscillator phases within one wavelength: (A) Order of touchdown events of Legs k to n in the retrograde-wave region. Legs k, n, k+1, k+2,

k+3, . . . , n−1 touch down sequentially. (B) Evolution of oscillator phases and relative phases at touchdown events of Legs k to n. Phase resetting at each touchdown

changes only the oscillator phase of the touchdown leg and the relative phases of the neighboring legs. ψ i
i−1 and ψ i

i just before the touchdown of Leg i

(i = k, n, k+1, k+2, . . . , n−2, n−1) are represented by 9
k , φ i−1i−1 , and φ

i+1
i+1 , as highlighted in orange.
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TABLE 2 | Classification of sets Sk1−8.

Experience of phase resetting

Set Leg i−1 (fore side) Leg i+1 (hind side)

Sk1 – No

Sk2 – Yes

Sk3 No No

Sk4 Yes Yes

Sk5 No Yes

Sk6 Yes No

Sk7 No –

Sk8 Yes –

Sk2 = {i | i = 1} ∩ {i | i /∈ Sk1}
Sk7 = {i | i = N+1} ∩ {i | φki ∈ (φi−1i ,φii]}
Sk8 = {i | i = N+1} ∩ {i | i /∈ Sk7},

Sk3,4,5,6 are for i = 2 to N, which are given by

Sk3 = {i | i = k} ∪ {i ∈ [2, k−1] | φki ∈ (φi+1i ,φii]}
∪{i ∈ [k+1,N] | φki ∈ (φi−1i ,φii]}

Sk4 = {i ∈ [2, k−1] | φki−1 ∈ (φii−1,φ
i−1
i−1]}

∪{i ∈ [k+1,N] | φki+1 ∈ (φii+1,φ
i+1
i+1]}

Sk5 = {i ∈ [2, k− 1] | i /∈ Sk3 and i /∈ Sk4}
Sk6 = {i ∈ [k+ 1,N] | i /∈ Sk3 and i /∈ Sk4}.

From (11), periodic solutions must satisfy

φ̂11 = φ̂22 = · · · = φ̂N+1
N+1 ≡ φ̂td. (15)

This means that the touchdown phase of all oscillators equals φ̂td.
From (14) and (15), we obtain the periodic solution by φ̂td and
ψ̂k
i (i = 1, . . . ,N) as follows:

φ̂td = 2π −mBb (16)

ψ̂k
i =



































ψ̂k
k−1 i = k− 1

2(1−β)π−(2mB−m)b
2(1−β)π−(3mB−m)b

i ∈ Tk
1

i∈ [1, k−2] and i /∈Tk
1

ψ̂k
k

2βπ + (2mB −m)b
2βπ + (3mB −m)b

i = k

i+ 1 ∈ Tk
2

otherwise,

(17)

where b = ((1− β)gπ)/(κa). The first row, the following two
rows, and the remaining rows of the right-hand side of (17)
represent the relative phases on the boundary, in the direct-wave
region, and in the retrograde-wave region, respectively. The sets
Tk
1,2 are given by

Tk
1 = {i ∈ [1, k−2]|2βπ + (2mB −m)b < φ̂ki ≤ φ̂td}

Tk
2 = {i ∈ [k+2,N+1]|2βπ+(2mB−m)b<φ̂ki ≤ φ̂td}. (18)

FIGURE 10 | Relation between ψ̂k
k−1 and ψ̂k

k .

Tk
1 is the set of legs (Leg i) in the direct-wave region whose

neighboring legs (Legs i−1 and i+1) do not experience phase
resetting between the touchdowns of Legs k and i (i.e., Sk3 in the

direct-wave region). Tk
2 is the set of legs (Leg i) in the retrograde-

wave region whose neighboring legs (Legs i−1 and i+1) do not
experience phase resetting between the touchdowns of Legs k and
i (i.e., Sk3 in the retrograde-wave region). ψ̂k

k−1 is not determined
uniquely but satisfies

2(1− β)π − (3mB −m)b < ψ̂k
k−1 ≤ 2βπ . (19)

This non-uniqueness is because the length of Leg i is constant
in the stance phase (i.e., l(φi) = L, which does not determine φi
uniquely). ψ̂k

k
is represented using ψ̂k

k−1 as

ψ̂k
k =

{

ψ̂k
k−1+(4β−2)π+(4mB−m)b ψA < ψ̂k

k−1<ψB

2βπ+(3mB−m)b ψB≤ ψ̂k
k−1≤2βπ

(20)

where ψA = 2(1 − β)π − (3mB − m)b and ψB = 2(1 − β)π −
mBb. Therefore, the relationship of ψ̂k

k−1 and ψ̂
k
k
is explained by

two connected segments, as shown in Figure 10. We call these
segments solution sets A and B. Note that solution set A is smaller
than solution set B, as shown in Figure 4, because κ ≫ 1.

3.4. Stability of Source-Wave Gait
To discuss stability, we added perturbation 1ψk

i (i = 1, . . . ,N)

to the obtained periodic solutions on6k and evaluated the linear
stability by analytically calculating the linearmap of perturbation:

19
k 7→ Pk19

k, (21)

where 19
k = [1ψk

1 1ψ
k
2 . . . 1ψ

k
N]

T , and Pk ∈ R
N×N is

the Jacobian matrix of the Poincaré map. We assumed that the
perturbation is too small to change the order of touchdown
events and the sets Si.

When we write the perturbed touchdown phase of Leg i as
φ̂td +1φii and substitute ψk

i = ψ̂k
i +1ψk

i and φii = φ̂td +1φii
into (14), 1φii (i= 1, . . . , N+1) can be represented with 1ψk

i .

Thematrix Pk is derived by substituting φ
i
i = φ̂td+1φii into (11).

The eigenvalues λSk of Pk for the source-wave gait are derived
depending on solution sets A and B by

λSk =
{

{1, 1/2, 2/3, . . . , 2/3} ψA < ψ̂k
k−1 < ψB

{1, 2/3, 2/3, . . . , 2/3} ψB ≤ ψ̂k
k−1 ≤ 2βπ

(22)
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There is only one eigenvalue of 1 for both solution sets due to the
non-uniqueness. However, the other eigenvalues are <1, which
means that any initial points near the solution set will converge
to the solution set.

3.5. Analytical Solution and Stability of
Direct-Wave Gait
The solution of the direct-wave gait cannot be derived by
substituting k = N + 1 for those of the source-wave gaits.
This is because part of the assumption regarding the phases of
neighboring legs (specifically, that φk

k−1 is in the takeoff phase, as
in the middle figure of Figure 8) is not correct when k=N+1 for
the direct-wave gait. Thus, we derive the solution of the direct-
wave gait from the front–rear symmetry and the solution of the
retrograde-wave gait.

We denote the flow of the oscillator phase i (i = 1, . . . ,N+
1) with the initial value (φ̃k1 , φ̃

k
2 , . . . , φ̃

k
N+1) just before the

touchdown of Leg k by8i(t; φ̃k1 , φ̃k2 , . . . , φ̃kN+1). From the front–
rear symmetry of our model, the following equation is satisfied

for the initial phases such that φ̃ki = φ̃N+2−ki for i = 1, . . . ,N+1:

8i(t; φ̃k1 , φ̃k2 , . . . , φ̃kN+1)
= 8N+2−i(t; φ̃N+2−kN+1 , φ̃N+2−kN , . . . , φ̃N+2−k1 ) (23)

The periodic solution of the direct-wave gait ψ̂N
i (i =

1, . . . , N) on 6N , where φ̂td is the same as (16), is derived from
solution set B of the retrograde-wave gait (k = 2 for the source-
wave gait) using the symmetry condition (symmetrical solution
for solution set A of the retrograde-wave gait equals solution
set A of the source-wave gait with k = N). Specifically, the
substitution of k = N into (23) yields 8i(t; φ̃NN+1, . . . , φ̃N1 ) =
8N+2−i(t; φ̃21 , . . . , φ̃2N+1). When the periodic solution φ̂Nj (j =
1, . . . , N+ 1) is used for the initial value φ̃Nj , we obtain φ̂Ni =
φ̂2N+2−i (i = 1, . . . , N). This yields ψ̂N

i = 2π − ψ̂2
N+1−i because

ψ̂N
i = φ̂Ni+1− φ̂Ni . By substituting solution set B of the retrograde-

wave gait ψ̂2
N+1−i (k = 2 in (17)), we obtain the solution of the

direct-wave gait as

ψ̂N
i =











ψ̂N
N i = N

2(1−β)π−(2mB−m)b i ∈ TN
1

2(1−β)π−(3mB−m)b otherwise.

(24)

where ψ̂N
N is an arbitrary constant fulfilling

2(1− β)π ≤ ψ̂N
N ≤ 2βπ +mBb. (25)

The linear stability of the solution can also be calculated using
the symmetry condition (23). The symmetry condition gives the
relation 1ψN

i = −1ψ2
N+1−i, which is represented as 19

N =
−Q19

2, where the matrix Q is an anti-diagonal matrix with all
the anti-diagonal elements of 1. By using Q, the Jacobian matrix
of the Poincaré map of the direct-wave gait PD is calculated as
PD = QP2Q

−1. Thus, the eigenvalues λD of PD are obtained by
those of P2 as

λD = {1, 2/3, 2/3, . . . , 2/3}. (26)

There is only one eigenvalue of 1 due to the non-uniqueness.
However, the other eigenvalues are <1, which means that
any initial points near the solution set will converge to the
solution set.

All the solution sets we derived were connected serially as a
chain. Specifically, the boundary on solution set A of the source-
wave gait with k = i (left side of Figure 10) and the boundary
on solution set B of the source-wave gait with k = i+ 1 (right
side of Figure 10) are connected, as shown in Figure 11A. In
addition, the boundary on solution set A of the source-wave gait
with k= i+1 and the boundary on solution set B of the source-
wave gait with k= i+2 are connected, as shown in Figure 11A.
Furthermore, the boundary on solution set A of the source-wave
gait with k = N and the boundary of the direct-wave gait are
connected, as shown in Figure 11B. The boundary on solution set
B of the source-wave gait with k=3 and the boundary on solution
set A of the source-wave gait with k=2 (retrograde-wave gait) are
connected, as shown in Figure 11C. Thus, the obtained solution
sets consist of many connected segments constrained in different
planes, and the boundaries of the whole solution set correspond
to the direct- and retrograde-wave gaits. Note that discontinuous
jumps may exist on the analytical solution sets, as highlighted in
Figure 11A. The jumps occur when the elements of the sets T1

and T2 change, that is, when the order of touchdown events of the
neighboring legs changes. For example, when Leg s becomes an
element of Tk

1 , that is, when the order of touchdown events of the
neighboring legs changes from Legs s+1, s, and s−1 to Legs s, s−1,
and s+1, the relative phase ψ̂k

s jumps from 2(1−β)π−(3mB−m)b
to 2(1−β)π−(2mB−m)b, as shown in (17).

3.6. Comparison With Simulation Results
To validate the analytical results, we compared the obtained
solutions for N = 3 with the simulation results on 61 in
Figure 4, where the analytical solutions were derived using the
same parameters of the simulation. In both the simulation and
analytical results, source- and retrograde-wave gaits show two
segments as solution sets A and B (although some discontinuous
jumps appear). The segments of three gaits are serially connected,
and their edges correspond to the direct- and retrograde-wave
gaits. These characteristics were identical between the analytical
and simulation results. Furthermore, the maximum distance
between the solution sets of the simulation and analytical results
was only 0.11 (1.8% of 2π). The errors mainly came from
discontinuous jumps in the analytical solution, which are not
shown in the simulation, because the first-order lag system in (5)
smoothed the jumps.

3.7. Geometrical Features of Solutions
From the analytical solution (17), we found that the swing
movements of the source-wave gait are isotropic waves and
propagate forward from Leg k − 1 (direct-wave region) and
backward from Leg k (retrograde-wave region) with constant
speeds. This gait is similar to that observed in millipedes (Tamura
et al., 2016). When the interval between the legs is η, the
wavelength ξ and velocity v of the swing movement are
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FIGURE 11 | Connection of the solution sets: (A) Source-wave gaits (k= i, i+1, i+2) projected onto the ψ̂ i
i−1-ψ̂

i
i -ψ̂

i
i+1 space; (B) direct- and source-wave gaits

(k=N−1,N) projected onto the ψ̂N−1
N−2 -ψ̂

N−1
N−1 -ψ̂

N−1
N space; and (C) retrograde- (k=2) and source-wave gaits (k=3, 4) projected onto the ψ̂2

1 -ψ̂
2
2 -ψ̂

2
3 space.

derived by

ξ =
1

1−β − mBg
2κa

1− (3mB−m)g
2κa

η, (27)

v = ξω

2π
. (28)

As the duty factor β increases, ξ and v increase.
When k = 2 and ψ̂1 ≈ 2βπ , the swing movements

of the solution propagate from anterior to posterior with the
wavelength from (27) and velocity from (28). This is similar to
the retrograde-wave gait of centipedes (Full, 1997; Kuroda et al.,
2014). In contrast, when ψ̂N ≈ 2(1−β)π in (24), the solution,
whose front and rear parts are reversed from the solution of
the retrograde-wave gait, is similar to the direct-wave gait of
millipedes (Full, 1997; Kuroda et al., 2014). Our model has
solutions corresponding to direct-, retrograde-, and source-wave
gaits for N ≥ 3.

4. DISCUSSION

4.1. Body Elasticity and Local Sensory
Feedback Generate Interlimb Coordination
We assume that animal gaits can be represented as attractors
of dynamic systems, as in Schöner et al. (1990), and that the
essential structure of the dynamic system can be extracted by
using a simple model (Full and Koditschek, 1999). Accumulating
an understanding of such simple models allows us to understand
actual complex phenomena. In the present study, we focused
on the embodied sensorimotor interaction to generate multi-
legged locomotion in a decentralized manner. We showed
that the local sensory feedback and phase resetting generates
the direct-, retrograde-, and source-wave gaits observed in
multi-legged animals using a simple model to extract the

essential features. We found that body elasticity is a key to
generating the interlimb coordination. Specifically, the body
natural frequency must be larger than the gait frequency
(
√
κ/mi≫ω). The analytical representation showed the existence

of these gaits for N ≥ 3, and revealed the parameter
domain as follows: the boundary condition of the mass,
m/2 < mB < m, and the amplitude of the swing leg
movement, mg/κ < a < L. These findings improve our
understanding of the mechanism of interlimb coordination in
multi-legged locomotion.

So far, many studies have investigated the effects of sensory
feedback on interlimb coordination. Owaki et al. (2012),
Fukuoka et al. (2015), and Owaki and Ishiguro (2017)
showed that quadruped robots, whose legs are controlled
by distributed oscillators with load sensory feedback,
generate walking, trotting, and galloping gaits depending
on the speed. Tamura et al. (2016), Kano et al. (2017), and
Yasui et al. (2017) also showed that load sensory feedback
generates a millipede-like direct-wave gait. Our previous
studies showed that phase resetting induces gait transitions in
quadruped locomotion (Aoi et al., 2011, 2013) and hexapod
locomotion (Fujiki et al., 2013; Ambe et al., 2015, 2018). In
the present study, we also demonstrated that phase resetting
generates retrograde-, source-, and direct-wave gaits in multi-
legged locomotion. These findings are due to the embodied
sensorimotor interaction, which is critical for the interlimb
coordination regardless of the number of legs. Our analytical
description using a simple model is helpful for clarifying the
functional roles of the embodied sensorimotor interaction in
interlimb coordination.

4.2. Relation With Intersegmental
Coordination in Other Organisms
Other organisms also show intersegmental coordination in their
locomotion, which appears as waves. For example, insect larvae
and worms exhibit direct waves while crawling (Trimmer and
Issberner, 2007; Paoletti and Mahadevan, 2014). Lampreys,
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leeches, and roundworms (C. Elegans) show body undulations
that propagate backward during swimming. Motile cilia show
metachronal waves. We discuss the relationship between our
results and such intersegmental coordination by focusing on local
sensory feedback.

Paoletti and Mahadevan (2014) developed an earthworm
crawling model using mass points connected by spring
dampers in an asymmetric friction environment. The model
is controlled by neuro-muscular dynamics with the local
sensory feedback, which contracts the segment muscles
based on a stretch threshold and generates metachronal
waves. Umedachi et al. (2016) proposed a similar model
to reproduce the direct wave crawling motion of larvae in
a decentralized manner. Each segment repeats stretching
and contraction with distributed CPGs with local sensory
feedback of the friction and velocity information for the
segment. These results are similar to ours in the sense
that metachronal waves are generated by local sensory
feedback. However, their coordination is generated by
asymmetric environmental friction, whereas ours is by different
foot-contact timings.

The undulation patterns of lampreys and leeches as
they swim are mainly generated by internal coupling of
CPGs (Cohen et al., 1992; Grillner et al., 1995; KristanJr.
et al., 2005). However, intersegmental coordination in
leeches is not disrupted much even if the ganglion is
cut (Yu et al., 1999), which suggests the importance of
sensory feedback for segmental coordination. In addition,
there is no clear evidence for the presence of CPGs in
C. Elegans, and it has been suggested that proprioceptive
receptors play a significant role in coordination (Wen
et al., 2012). Boyle et al. (2012) modeled C. Elegans as a
series of simple segments connected by elastic elements.
They reproduced body undulations by neuro-muscular
dynamics without CPGs. The dynamics of each segment is
affected by the sensory feedback, which integrates several
posterior segment stretches. When the feedback has only local
interaction, such as stretch of the segment, no coordinated
wave appears in a less viscous environment, such as water,
and it appears only in a highly viscous fluid environment.
That is, the fluid viscosity is responsible for generating the
coordinated wave.

Motile cilia of organisms generate metachronal waves in
a decentralized manner due to local interaction between
the environmental fluid and the cilia (Elgeti and Gompper,
2013). Each cilium is controlled by simple switching inputs
of power stroke and return stroke. These inputs switch when
the cilium achieves a certain curvature; that is, it receives
local sensory feedback about the curvature. Although each
cilium moves independently, the metachronal wave for cilia
motion appears through local interaction by the flow of the
neighboring fluid.

An analytical description would help to understand
these intersegmental coordination mechanisms. Thus, in
the future, we would like to develop simple physical models for
intersegmental coordination.

4.3. Physical Explanation of Countless
Solutions
Our model has countless solutions as obtained by the serially
connected set of the retrograde-, source-, and direct-wave gaits
(Figure 11). This non-uniqueness is because our model has a
conservative quantity as explained below.

We define Ej on the Poincaré section6j (j ∈ [1, N+1]) by

Ej =
N

∑

i=1

ψ
j
i . (29)

From (11), the Poincaré map of Ej is represented as

Ej 7→ Ej + φ11 − φN+1N+1 . (30)

The relation φ11 = φN+1N+1 = φ̂td holds if the neighboring legs
(Legs 2 and N) are in the stance phases (φ12 ∈ [0, 2βπ] and
φN+1N ∈ [0, 2βπ]) when each leg (Legs 1 and N+1) touches the
ground (this relation is also satisfied for the solution sets). In this
case, (30) becomes Ej 7→ Ej, where Ej is a conservative quantity,
which produces countless solutions.

To explain the physical meaning of this conservative quantity,
we represent φ11 and φ

N+1
N+1 using (3) and (12) when φ

1
2 ∈ [0, 2βπ]

and φN+1N ∈ [0, 2βπ].

φ11 = 2π − (1− β)m1gπ

κa
, (31)

φN+1N+1 = 2π − (1− β)mN+1gπ

κa
. (32)

These equations show that φ11 = φN+1N+1 is satisfied only when
m1 = mN+1. Thus, this conservative quantity is derived from the
symmetry between the front and tail masses (m1 = mN+1 = mB).
Strictly speaking, the symmetry of other parameters, such as κ
and a, is also required for the conservative quantity.

Although our model generates multiple gaits because of the
symmetry, animals prefer specific gaits. For example, centipedes
prefer the retrograde-wave gait (Full, 1997; Kuroda et al., 2014).
In contrast, millipedes prefer the direct-wave gait to move
forward (Full, 1997; Kuroda et al., 2014) and use the source-
wave gait when the body axis is bent like a U shape (Tamura
et al., 2016). Our model does not explain these preferences.
However, when the symmetry is broken, our model has no
conservative quantity and generates a specific gait depending
on the parameters. We would like to investigate the gait
preference by incorporating asymmetries into our model in
future studies.

4.4. Limitation of This Study
This study demonstrated that phase resetting generates direct-,
retrograde-, and source-wave gaits in an elastic body whose
natural frequency is larger than the gait frequency. However,
our model did not replicate the details of animal gaits. For
example, our model did not explain the gait preference of
animals, as described above. While centipedes and millipedes
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use different contralateral interlimb coordination (i.e., left–right
antiphase and in-phase movements, respectively), our model did
not consider this behavior. Furthermore, although the swinging
of multiple legs propagates simultaneously in millipedes and
centipedes (Kuroda et al., 2014), only one leg swing is propagated
in our model. These limitations and discrepancies come from
the simple way in which our model extracts the essence of
multi-leg motion, which was the focus in the present study.
However, our results give clues to overcome these limitations and
discrepancies. For example, the gait preference may be explained
by introducing an asymmetry into our model, such as different
masses between the head and tail, to eliminate the conservative
quantity in our model. Better understanding of a simple model
will provide insights for the design of a more complicated
model. The extension of our model is one of our essential
future tasks.

4.5. Application to Legged Robots
Multi-legged robots have been developed to extract the essence
of dexterous traveling ability. On one hand, the flexible body
axis contributes to rapid movement or ability to traverse rough
terrain. In previous work (Aoi et al., 2016), we showed that high
body-axis flexibility induces body undulations through Hopf
bifurcation, which contributes to rapid turning. Hoffman and
Wood (2011) showed that a passive undulatory gait increases the
locomotion speed. Koh et al. (2010) and Kinugasa et al. (2017)
demonstrated that multi-legged robots with a flexible body axis
show high mobility in uneven terrain.

On the other hand, contacting the ground with many legs is
useful for avoiding stumbling in various environments. Inagaki
et al. (2010) proposed a distributed control method in which
the legs follow the contact points of anterior legs, which allowed
a robot to walk in various environments as long as the front
legs choose solid footholds. Hayakawa et al. (2020) proposed a
gait generation strategy to ensure static stability for single-legged
modular robots to create a cluster with various leg configurations.
Kano et al. (2017) showed the adaptability when part of the
terrain is removed.

For static gaits, sensory feedback is useful for generating
interlimb coordination, as in the present study, and to gain
better adaptability to the environment (Kano et al., 2017; Yasui
et al., 2017). To design a method for controlling multi-legged
robots with sensory feedback, it is important to understand how
and when the sensory feedback affects walking motion. The
present study focused on phase resetting at foot contact as the
sensory feedback and clarified the effects by using the analytical
description of a simple model. We showed that phase resetting
contributes to generating the coordinated gaits in a decentralized
manner via embodied sensorimotor interaction when the model
has an elastic body axis whose natural frequency is larger than the
gait frequency. We also analytically derived the range of physical
parameters where our analysis is valid. This helps when designing
a controller to generate various gaits for multi-legged robots. In
particular, when we design the leg movement using oscillator
phases, as in Aoi et al. (2017) and Ambe et al. (2018), phase
resetting will generate coordinated gaits regardless of the number

of legs. We would like to investigate it through robot experiments
in future studies.

5. CONCLUSION

This study used a simple model to analytically reveal that local
sensory feedback, phase resetting, generates the direct-,
retrograde-, and source-wave gaits observed in multi-
legged animals in a decentralized manner via the embodied
sensorimotor interaction. The model comprises massless legs
andmass points connected by vertical springs to imitate a flexible
body. The phase oscillators control the vertical movements of
the legs independently, and the phases are only affected by phase
resetting upon foot contact. The dynamic simulations show that
countless periodic solutions of the three gaits emerge depending
on the initial phase. Furthermore, these analytical solutions were
derived under some assumptions deduced from the simulation
results. They showed that all three gaits exist regardless the
number of legs and revealed the parameter domain. The
reason for the coexistence of the three gaits is explained by a
conservative quantity due to the front–rear symmetry of our
model. Because our model is limited to specific situations, such
as the front–rear symmetry, permitting only vertical movements
while ignoring the contralateral interlimb coordination, and
propagation of only one swing leg within one wavelength, we
need to incorporate more realistic situations into our model in
the future.
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