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Abstract
For decades, effective cancer gene therapy has been a tantalising prospect; for
a therapeutic modality potentially able to elicit highly effective and selective
responses, definitive efficacy outcomes have often seemed out of reach.
However, steady progress in vector development and accumulated experience
from previous clinical studies has finally led the field to its first licensed therapy.
Following a pivotal phase III trial, Imlygic (talimogene laherparepvec/T-Vec)
received US approval as a treatment for cutaneous and subcutaneous
melanoma in October 2015, followed several weeks later by its European
authorisation. These represent the first approvals for an oncolytic virotherapy.
Imlygic is an advanced-generation herpesvirus-based vector optimised for
oncolytic and immunomodulatory activities. Many other oncolytic agents
currently remain in development, providing hope that current success will be
followed by other diverse vectors that may ultimately come to constitute a new
class of clinical anti-cancer agents. In this review, we discuss some of the key
oncolytic viral agents developed in the adenovirus and herpesvirus classes,
and the prospects for further enhancing their efficacy by combining them with
novel immunotherapeutic approaches.
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Introduction
In its broadest sense, the fundamental objective of cancer gene 
therapy is to transfer therapeutic transgenes specifically to cancer 
cells while leaving normal cells unharmed. In this paradigm, selec-
tivity can be achieved at any or all of the levels of uptake, transgene 
expression, or intrinsic tumour sensitivities, and an enormous 
variety of constructs—coupled with diverse delivery approaches, 
including viral, bacterial, and chemical vectors—have now been 
investigated1. The earliest approaches include gene replacement 
strategies involving the delivery of a wild-type tumour suppres-
sor gene, which is either lost or deregulated in the target cell. An 
exemplar of this strategy is restoration of the p53 tumour sup-
pressor that has been widely examined in a variety of preclinical 
models and clinical studies2–6.

Blocking the expression of activated oncogenes via antisense 
approaches has also been seen as attractive7. However, the absence 
of positive results in early phase clinical trials has hindered further 
development of antisense nucleotides, and considerable interest is 
now focused on optimising oligonucleotide carrier formulations 
before embarking on further clinical studies8. Other strategies for 
“suicide” or cytotoxic gene therapy include cell lysis to enhance 
tumour immunogenicity or the introduction of genes that amplify 
tumour sensitivity to drug or radiation therapies9. These areas of 
gene therapy have been extensively discussed10. Although meas-
urable clinical activity has been found in a few “first-generation” 
approaches, such as adenoviral p53 replacement11, highly promis-
ing results have recently been obtained utilising replicating viral 
vectors (oncolytic virotherapy) that help maximise gene transduc-
tion in tumour cells. In view of recent progress, we focus on this 
particular field of gene therapy.

The door for gene therapy in medicine was perhaps opened in 
November 2012, when the first human gene treatment, alipo-
gene tiparvovec, was granted approval for patients suffering from 
familial lipoprotein lipase deficiency, a rare autosomal recessive 
disorder that leads to recurrent pancreatitis12. Three years later, the 
approval of a virotherapy for cancer treatment marked a historic 
moment for cancer gene therapy in the Western world. The prec-
edent has potentially profound importance for cancer therapeutics, 
since this approval is likely to represent only the first of a new 
and diverse class of agents. The concept of treating cancer with 
pathogenic organisms is now over a century old13. However, the 
history of cancer virotherapy has followed cycles of interest and 
disappointment14. In the years after the dawn of chemotherapy, as 
the first anti-cancer agents became available, numerous “oncolytic” 
viruses were tested for activity15. Although interest waned after 
limited clinical successes were achieved, then-recent elucidation of 
the structure of DNA led even these early investigators to propose 
modifying viral genomes to rebalance oncolytic versus pathogenic 
properties15.

Yet, since the first trial of viral-mediated gene transfer into patient 
tumours16, realising the promise of gene therapy to provide an 
arsenal of exquisitely selective and potent anti-cancer agents has 
remained elusive until now. On 27 October 2015, Imlygic (tali-
mogene laherparepvec/T-Vec) received full US Food and Drug 
Administration (FDA) approval for the treatment of melanoma, 
closely followed by European authorisation on 17 December. These 

approvals were a landmark moment, as the first anti-cancer gene 
therapy agent approved in the West entered into clinical practice.

The remarkable momentum of gene therapy in recent years has 
been extensively reviewed17–20. However, the most significant 
clinical success stories until now have remained in fields other 
than cancer. Many approaches suffer from limited vector penetra-
tion in tumours, which is often insufficient to produce substantial 
efficacy21. Thus, conditionally replicating (oncolytic) vectors have 
been considered by many to be the best candidates for clinical 
success. Imlygic is an advanced-generation herpes simplex virus 
type 1 (HSV1) vector optimised for oncolytic activity and armed 
with the immunostimulatory granulocyte-macrophage colony- 
stimulating factor (GM-CSF) gene22.

The immunomodulatory aspect of Imlygic activity may point the 
way to future successes; recently, growing awareness that anti-
tumour immune responses mediate the efficacy of oncolytic agents 
has drawn cancer gene therapies and immunotherapies closer23–26. 
Indeed, several other oncolytic vectors armed with transgenes to 
stimulate anti-tumour T-cell responses are currently in develop-
ment. In this context, another promising approach that has recently 
demonstrated remarkable clinical activity uses T-lymphocytes 
engineered with artificial chimeric antigen receptors (T-CARs). 
These may ultimately prove highly complementary to oncolytic 
agents.

Oncolytic virotherapy and immunomodulation
Oncolytic virotherapy relies on selective replication of a virus 
specifically within cancer cells, triggering tumour cell death and 
vector spread into new cells. A wide range of vector backbones 
have been investigated, including “naturally oncolytic” organisms 
such as reovirus27–29. However, most agents comprise attenuated 
variants of well-characterised viruses. Here we focus on adenovi-
rus and herpesvirus, since these backgrounds have undergone the  
most extensive vector engineering.

In these, selective replication is commonly achieved by the deletion 
of viral genes whose products ordinarily suppress cellular sentinels 
of the cell cycle, or of anti-viral responses. Replication is then facil-
itated in tumour cells with inactivation of these pathways; if such 
checkpoints are inactive, the requirement for a viral suppressor is 
removed. Alternatively, directing tumour-specific expression of the 
same viral genes using cancer-specific gene promoter elements 
achieves similarly restricted replication profiles via silencing viral 
protein expression in normal cells9,30.

Adenovirus replication depends initially on the expression of differ-
entially spliced products of the early phase genes adenovirus early 
region 1A (E1A) and E1B, which together promote S-phase entry, 
setting the stage for the viral gene expression programme through 
multiple interactions with cellular transcription machinery. These 
include induction of transcription factor E2F by negative regula-
tion of the retinoblastoma protein pRb by E1A and inhibition of 
checkpoint and apoptosis pathways by E1B31,32.

The earliest notable oncolytic adenovirus is dl1520/Onyx-01533. 
An Ad2/Ad5-hybrid lacking the E1B-55K gene, which acts in 
part through binding and inactivating p53, dl1520 was originally  
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proposed to replicate selectively in tumour cells lacking p53 
function and was originally developed by Onyx Pharmaceuticals 
(USA)34. However, this mechanism was widely questioned, and 
subsequent investigations indicated that late functions of E1B-55K, 
involving the regulation of translation, are rate limiting for dl1520 
replication35.

The agent was safely delivered via both intratumoural36–40 and intra-
vascular (mainly hepatic arterial) or intraperitoneal routes38,41,42, 
targeting either primary or secondary malignant hepatic disease. 
As monotherapy, dl1520 showed modest clinical outcomes, mainly 
in the form of disease stabilisation; however, when combined 
with cytotoxics in head and neck tumours and colorectal liver 
metastases, it conferred re-sensitisation to chemotherapy against 
which these tumours had previously shown resistance39,41,42. 
Correlation between p53 mutation status and response to treat-
ment was not shown, however, amplifying uncertainties regard-
ing the virus’ mechanism of action. The company halted clinical 
development in 2003; however, the highly related vector H101 
was licensed to Sunway Biotech (China) and was approved for use 
there in 2005.

Improvements to replicating adenovirus design have since accumu-
lated, including enhanced strategies for restricting replication and 
modifications to vector tropism. DNX-2401 (DNAtrix Therapeutics 
[USA]), formerly known as Ad∆24-RGD, is a second-generation 
Ad5 vector based on an alternative replication-targeting approach. 
In the original vector, Ad∆24, the viral E1A gene, reintroduced 
into a first-generation (E1/E3 deleted) backbone, harbours a 24 bp 
deletion in the pRb binding site in order to restrict efficient rep-
lication to cells with a defective pRb\p16\E2F pathway43. Subse-
quently, tropism of the vector was expanded in Ad∆24-RGD, which 
contains a short peptide harbouring an integrin-binding RGD 
motif in the viral receptor-binding protein, known as fibre44.

Ad5/Ad2 internalisation involves high-affinity interaction between 
the terminal “knob” domain of the trimeric fibre and the primary  
cellular receptor, human coxsackie and adenovirus recep-
tor (hCAR)45–47. Subsequently, interactions between cellular  
αvβ3/αvβ5 integrins and RGD sequence motifs in the capsid pro-
tein penton mediate endocytosis48,49. Hence, modifications to fibre  
can target Ad2/Ad5 to alternative receptors. hCAR expression is 
low in some cancer cells and it can also be sequestered in tight junc-
tions between epithelial cells50–52. RGD modification provides a tro-
pism extension by re-directing high-affinity binding to integrins.

An alternative approach to tropism modification is “pseudotyping”; 
here, the vector knob domain is wholly replaced by that from a 
different adenovirus serotype, exhibiting different tropism. For 
example, Ad3 utilises an alternative receptor to Ad2/Ad553. Ad5∆24 
vectors expressing the Ad3 knob efficiently infected and replicated 
in ovarian cancer cells that were resistant to vectors expressing 
wild-type Ad5 knob54. Oncos-102/CGTG-102 (Oncos Therapeutics 
[Finland]) contains the E1A-∆24 mutation, is pseudotyped with 
Ad3 knob, and is also armed by the addition of the GM-CSF gene 
in the deleted E3 region in order to promote CD8+ T-cell responses 
against infected cells.

An early trial of CGTG-102 showed that intratumoural or intrac-
avitary delivery in heavily pre-treated patients induced disease 
responses even when given as a single dose. Furthermore, the vec-
tor induced distant anti-tumour immunity55. After demonstrating 
63% disease stabilization in 16 patients, treatment was expanded 
to 115 trial patients. Serial treatment with CGTG-102 resulted in 
significantly improved survival (p<0.0001) when compared to 
single dosing and confirmed the safety of repeat dosing24. Effi-
cacy results were assessed radiologically, and the patients deriving 
most benefit were those with soft tissue sarcoma, ovarian cancer, 
melanoma, mesothelioma, and breast cancer56. Further improve-
ments to the replication targeting of Ad5∆24 vectors have been 
made via the third-generation ICOVIR vectors, which combine 
E1A mutation with tight transcriptional control and translational 
optimisation57.

Most adenoviral vectors are based on well-characterised labora-
tory strains representing a restricted range of serotypes. ColoAd1 
is a chimeric virus, generated through selection by “directed 
evolution”, whereby a pool of Ad serotypes from groups B-F are 
passaged through cell lines of breast, colon, prostate, and pancreatic 
cancer to allow recombination of potent viral serotypes. ColoAd1 
“emerged” through a colon cell line (HT-29)-passaging pool, and 
is a chimera of Ad11 and Ad3 serotypes belonging to adenovirus 
Group B58. When tested on a colon cancer liver-seeding model, it 
demonstrated increased anti-tumour potency in vivo compared to 
both Ad5 and dl1520.

The group B origin of Colo-Ad1 gives the distinct advantage of 
an hCAR-independent attachment to cells via principal binding to 
CD-46 receptor, which is expressed by a variety of tumours such as 
thyroid, breast, ovarian, endometrial, lung, colorectal, pancreatic, 
and gastric, and is amplified in higher grade tumours59,60. Proof-of-
concept studies are ongoing in bladder/colorectal (NCT02028442) 
and ovarian (NCT02028117) cancer patients via both systemic and 
intraperitoneal routes, whilst the combination of ColoAd1 with 
inhibition of the PD1/PDL1 axis is also planned (NCT02636036).

The herpesviruses present a second major vector background that 
has undergone significant development. HSV1716 (SEPREHVIR, 
Virttu Biologics [UK]) is an ICP34.5-deleted first-generation 
oncolytic HSV1 vector. A 759 bp deletion, which conferred avir-
ulence on intracerebral inoculation, was originally identified in 
a variant of the HSV1 17+ strain. HSV1716 was developed by 
re-introduction of this spontaneously arising deletion into the 
wild-type 17+ background61. The vector was found to replicate 
selectively in dividing cells, causing cytotoxicity to tumour cells 
and regression in xenograft models62,63. Safety was shown follow-
ing direct intratumoural injection in glioma patients64,65 and in the 
intraoperative setting of injection to tumour-adjacent brain tissue 
after debulking66.

G207 is a second-generation HSV1 vector based on strain F,  
containing deletions in both loci of ICP34.5 in addition to 
inactivation of ICP6, thereby disabling the viral ribonucleotide 
reductase67. The vector also showed safety in phase I trials in gliob-
lastoma: initially, a single inoculation dose escalation study was 
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performed68. Subsequently, the vector was tested in a intraop-
erative setting (pre- and post-resection) and in combination with 
radiotherapy69,70. A further trial (NCT02457845) is planned to 
assess the safety of G207 alone or with radiation in paediatric 
patients, but it is not yet recruiting. NV1020 (R7020), another 
multiply deleted vector based on strain F, contains a 15 kb dele-
tion of the “joint region”, which includes a single copy of ICP34.5, 
in addition to the UL56 gene. This vector is less attenuated than 
G207.

As noted above, Imlygic is the first oncolytic vector to receive 
approval in the US and Europe. It is an HSV1 vector optimised in 
several ways22. The parental strain JS1 was obtained from a new 
clinical isolate rather than the serially passaged laboratory strains 
previously utilised in HSV1716 and G207. Unattenuated JS1 
demonstrated significantly higher cytotoxic activity than the wild-
type 17+ strain in several tumour cell lines. The oncolytic vector 
was generated by deletion of the ICP34.5 gene in addition to ICP47, 
which is involved in suppressing antigen presentation71. Loss of 
ICP47 therefore promotes an immune response against infected 
tumour cells, and this aspect is further enhanced through arming 
with the GM-CSF gene.

The OPTiM trial was the first randomised controlled phase III study 
of an oncolytic agent to have met its efficacy end-point, and thus 
enough supporting evidence was provided for its recent approval72. 
Patients with unresected stage III or IV melanoma and with variable 
lines of previous treatments were randomised to either intralesional 
treatment of Imlygic, or systemic treatment with GM-CSF. Clini-
cal efficacy was confirmed with 26.4% of patients experiencing an 
overall response (complete response [CR] or partial response), and 
in 16.3% of patients this response lasted for more than 6 months.

With a much more favourable toxicity profile than that observed 
using current immune checkpoint inhibitors, Imlygic also achieved 
a higher rate of CRs (10% CR rate versus the historic 1–6% rate 
observed with ipilimumab and pembrolizumab)73,74. Both the 

treatment responses and the survival advantage achieved with  
intralesional Imlygic were statistically significant in patients 
with earlier stage than M1b/M1c (without visceral metastases or 
raised lactate dehydrogenase) with a hazard ratio (HR) for overall  
survival of 0.57 (p<0.001) when compared to treatment with  
GM-CSF. This effect should not be attributed only to intralesional 
oncolysis, as 15% of uninjected visceral lesions reduced their size 
by ≥50%. Greater benefit, in terms of both response and survival, 
was also observed in treatment-naïve patients (HR 0.50, p<0.001). 
The study design minimised treatment discontinuations due to mis-
perceived “pseudo-progressions” allowing patients to be treated 
for a minimum of 24 weeks if clinically appropriate. Overall, the 
results confirm the activity of Imlygic in a subset of patients with 
low-volume injectable melanoma not subjected to multiple lines of 
treatment. However, it should be noted that systemic GM-CSF is 
a comparator that lacks a statistically confirmed impact on over-
all survival75. Therefore, further studies are needed to validate the  
role of Imlygic in the melanoma therapeutic algorithm.

How can the cancer gene therapy field now build on this success? 
The development of several agents has previously been incentiv-
ised via orphan drug designations (Table 1). Most have not yet 
progressed to pivotal phase III trials, although DNX-2401 may do 
so in 2016 (http://www.dnatrix.com/pipeline/). The approval of 
Imlygic increases confidence that more approvals could be achieved 
for vectors that “stay the course”. The wide variety of vector 
backgrounds being tested is also cause for optimism; this medley of 
tropisms, lytic cycles, and immunological effects ensures that the 
agent class is highly diverse.

Imlygic continues development in a number of early phase trials 
for other solid tumours including pancreatic adenocarcinoma, soft 
tissue sarcoma, and head and neck squamous cell carcinoma76. 
Furthermore, there may be considerable advantage in combin-
ing oncolytic agents with other immunomodulatory strategies. 
Combination approaches utilising immune checkpoint inhibi-
tors ipilimumab and pembrolizumab are currently being tested, 

Table 1. Oncolytic vectors granted US Food and Drug Administration (FDA) orphan 
drug designation.

Agent Vector Company Disease Designation 
year

G207 Herpes 
simplex virus

Aettis, Inc. Glioma 2002

NTX-010 Seneca Valley 
Virus

Neotropix Neuroendocrine 
tumours

2008

ONCOS-102 Adenovirus Oncos 
Therapeutics

Malignant 
mesothelioma, ovarian 
cancer, and glioma

2013–14

DNX-2401 Adenovirus DNAtrix Glioma 2014

Reolysin Reovirus Oncolytics 
Biotech Inc.

Glioma, gastric 
cancer, primary 
peritoneal cancer, 
fallopian tube cancer, 
ovarian cancer, and 
pancreatic cancer

2015
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reflecting a view that efficacy gains could be made through 
further stimulation of anti-tumour immunity beyond those mech-
anisms inbuilt in the vector. Preliminary results support a pos-
sible synergistic effect in treatment-naïve melanoma patients 
using Imlygic as a priming agent before immune-induction with 
ipilimumab77.

Many mechanisms allow tumours to evade natural immunity that 
would otherwise recognise and eliminate cancer cells78. Cancer 
immunotherapy uses various approaches to overcome immune 
tolerance. In particular, the use of T-cells specifically targeted 
to tumours has shown considerable clinical promise in recent 
years. Cytotoxic CD8+ T-cells isolated from cancer patients can 
recognise tumour-associated antigens via the major histocompat-
ibility complex class I antigen presentation pathway79. However, 
in vivo, their anti-tumour activities are blunted. Clinical approaches 
to enhance T-cell responses have included ex vivo stimulation of 
antigen-presenting cells with tumour-derived antigens or mRNA80, 
systemic administration of synthetic peptides capable of bind-
ing class I molecules81, and pharmacological immune-checkpoint 
inhibitors82.

An alternative approach circumventing the requirement for antigen 
processing and presentation involves T-cells transduced ex-vivo 
with chimeric antigen receptors (T-CARs). The synthetic recep-
tors commonly comprise single-chain antibody fragments serving 
as the extracellular antigen-recognition domain fused to the CD3ζ 
transmembrane adaptor signalling domain, with or without addi-
tional co-stimulatory domains83. Together, these serve to signal 
T-cell activation on binding to cell-surface antigens. T-CARs tar-
geted to CD19 have recently demonstrated significant clinical 
response rates in patients with haematological malignancies, par-
ticularly chronic lymphocytic leukaemia84–87. Indeed, sustained 
responses of several-year duration have been reported in some 
patients88. T-CARs are also being developed against a wide range 
of solid-tumour antigens89.

A particularly interesting avenue for future trials may therefore 
lie in combining armed immunomodulatory oncolytic agents with 
T-cell targeting, potentially also alongside immune-checkpoint 
inhibition. It was recently demonstrated that T-CARs targeted to 
human epidermal growth factor receptor 2 could act as effective 
carriers of oncolytic vaccinia or vesicular stomatitis viruses90. 
Neither the oncolytic passengers nor the T-cell vehicles appeared 
to significantly interfere with each other’s activities. However, 
T-cells are non-permissive for infection by certain vectors, includ-
ing commonly used adenovirus serotypes, because of low viral 
receptor expression91. Nevertheless, alternative approaches could 
still allow these modalities to be combined: in another study, 
local delivery to neuroblastoma xenografts of Ad5∆24 armed with 
cytokines RANTES and IL15 enhanced infiltration and persistence 
within the tumour of subsequently delivered T-CARs targeted to 
the GD2 antigen92.

Outlook
There is considerable scope for multi-modal immunogenetic 
therapies to improve further on emerging successes. However, 
the approval path for advanced biotherapies is not necessarily 
straightforward93–96. Various guidelines have been developed to 
clarify requirements for viral vector programmes97,98. However, to 
streamline the translation of potentially promising new agents, it is  
important that researchers adopt a future-focused approach. A 
recent manifesto calls for a range of practical measures to be embed-
ded in gene therapy programmes. These include using well-defined 
target-product profiles (as in Pharma), establishing ambitious pre-
clinical efficacy cut-offs, planning early for phase I-III clinical 
studies, and, critically, planning for manufacture and scale-up99.

These general principles should be embedded in programmes and 
may ease clinical development, but we believe that effective trial 
design is the core of the issue; fundamentally, late-phase trials must 
achieve their efficacy endpoints. It remains to be seen if oncolytic 
vectors can be developed that will be effective when administered 
systemically. Therefore, delivery routes may continue to dictate 
those tumours that are tractable. Imlygic is delivered by direct 
intratumoural injection to cutaneous lesions; intraperitoneal deliv-
ery is also an attractive localised route in the setting of ovarian 
cancer100.

Another key aspect of trial design for gene therapy relates to 
stratification and pharmacodynamic biomarkers, which will likely 
prove increasingly critical to the development of gene therapy 
agents, as for other cancer therapeutics. The absence of suitable 
stratification markers necessarily leads to a requirement for larger 
patient groups to identify robust responders. This is clearly undesir-
able, given that viral vector manufacture and scale-up involve so 
many variables101. Indeed, infectivity and growth characteristics of 
oncolytic agents are individually tailored such that process stand-
ardisation for any “vector class” is likely to be problematic. These 
aspects raise difficulties in predicting production requirements 
for viral gene therapy regimens, issues that will be compounded 
in moving to larger efficacy trials. For oncolytics, increasing evi-
dence for the role of anti-tumour immunity in mediating efficacy 
is leading to the investigation of a range of candidate predictive 
immunological markers23,24,26. On the other hand, given the still- 
partial mechanistic understanding of some agents, the optimal 
choice of biomarkers may emerge only during development.

Yet, though the hurdles may be higher, the road to effective 
gene therapies should be seen in the context of the success rate 
throughout cancer drug development, even for small molecules102. 
Taking an optimistic outlook, if the long process of vector develop-
ment that led us to this point is viewed analogously to lead optimi-
sation in traditional drug development, then gene therapists do not, 
at least, need to begin with a new scaffold for each target, unlike 
medicinal chemists. It is fair to suggest that the wilderness years 
of gene therapy are in the past and that once the optimal vector 
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configurations for cancer applications are understood they will be 
“selectively replicated”. By combining these with innovative new 
arming approaches and other modalities, the legacy of Dock1 and 
others may finally be realised.
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