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INTRODUCTION

Pediatric head trauma is a significant cause of morbidity 
and mortality worldwide. The increasing number of 
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Objective: To develop and evaluate a deep learning-based artificial intelligence (AI) model for detecting skull fractures on 
plain radiographs in children.
Materials and Methods: This retrospective multi-center study consisted of a development dataset acquired from two 
hospitals (n = 149 and 264) and an external test set (n = 95) from a third hospital. Datasets included children with head 
trauma who underwent both skull radiography and cranial computed tomography (CT). The development dataset was split 
into training, tuning, and internal test sets in a ratio of 7:1:2. The reference standard for skull fracture was cranial CT. Two 
radiology residents, a pediatric radiologist, and two emergency physicians participated in a two-session observer study on 
an external test set with and without AI assistance. We obtained the area under the receiver operating characteristic curve 
(AUROC), sensitivity, and specificity along with their 95% confidence intervals (CIs).
Results: The AI model showed an AUROC of 0.922 (95% CI, 0.842–0.969) in the internal test set and 0.870 (95% CI, 
0.785–0.930) in the external test set. The model had a sensitivity of 81.1% (95% CI, 64.8%–92.0%) and specificity of 
91.3% (95% CI, 79.2%–97.6%) for the internal test set and 78.9% (95% CI, 54.4%–93.9%) and 88.2% (95% CI, 78.7%–
94.4%), respectively, for the external test set. With the model’s assistance, significant AUROC improvement was observed in 
radiology residents (pooled results) and emergency physicians (pooled results) with the difference from reading without AI 
assistance of 0.094 (95% CI, 0.020–0.168; p = 0.012) and 0.069 (95% CI, 0.002–0.136; p = 0.043), respectively, but not in 
the pediatric radiologist with the difference of 0.008 (95% CI, -0.074–0.090; p = 0.850).
Conclusion: A deep learning-based AI model improved the performance of inexperienced radiologists and emergency 
physicians in diagnosing pediatric skull fractures on plain radiographs.
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emergency department visits for head trauma is a public 
health concern [1]. Compared with adults, pediatric clinical 
assessment is often more problematic, and asymptomatic 
intracranial injury is more common in pediatric head trauma 
patients [2,3]. As most patients have minor head trauma, 
it is important to identify the exact patients at risk of 
long-term neurological devastation or requiring immediate 
intervention [4,5].

In diagnosing traumatic head injuries in children, 
computed tomography (CT) is considered the most accurate, 
and evidence-based guidelines, such as the American 
College of Radiology Appropriateness Criteria, consider 
that skull radiography is inadequate [4]. However, many 

Korean J Radiol 2022;23(3):343-354

eISSN 2005-8330
https://doi.org/10.3348/kjr.2021.0449

Original Article | Pediatric Imaging

http://crossmark.crossref.org/dialog/?doi=10.3348/kjr.2021.0449&domain=pdf&date_stamp=2022-02-17


344

Choi et al.

https://doi.org/10.3348/kjr.2021.0449 kjronline.org

pediatric head trauma patients undergo skull radiography 
[6], and its use varies among healthcare providers, 
institutions, and nations [6-8]. Skull radiography may be 
used as a screening tool in cases where CT is not clinically 
indicated, and in children with skull fractures scheduled to 
undergo CT examination. It also plays a crucial role as part 
of a skeletal survey for suspected physical abuse [9,10]. 
Non-accidental head injuries are the most common cause of 
death due to child abuse. Although it is relatively common, 
it is a serious cause of morbidity and mortality in children 
[11,12]. Furthermore, the interpretation of pediatric 
skull radiographs is challenging. Variable appearances 
of primary and accessory sutures may complicate the 
detection of skull fractures [13]. Vascular channels may 
also mimic skull fracture [14]. Skull radiography can be 
more challenging if a radiologist with pediatric expertise 
is unavailable because physicians may have limited ability 
in identifying skull fractures [15]. Recently, deep learning 
using convolutional neural networks, a rapidly advancing 
subfield of artificial intelligence (AI), has shown promising 
performance in medical image analysis [16]. Many studies 
have demonstrated the application of deep learning in 
musculoskeletal radiology [17]. Here, we aimed to develop 
and evaluate a deep learning model that detects pediatric 
skull fractures on plain radiographs.

MATERIALS AND METHODS

This retrospective study was approved by the Institutional 
Review Boards of three participating hospitals: Hospital 
#1 (Seoul National University Hospital, IRB No. 1910-144-
1072), Hospital #2 (Chonnam National University Hospital, 
IRB No. 2021-069), and Hospital #3 (Gyeongsang National 
University Changwon Hospital, IRB No. 2021-05-025), with 
a waiver for informed consent.

Data Curation
An overview of the datasets is shown in Figure 1. The 

development dataset comprised 413 consecutive patients 
from Hospitals #1 and #2. The inclusion criteria were 1) 
patients with head trauma who presented to the pediatric 
emergency department (age < 20 years), 2) underwent 
both anteroposterior (AP) and lateral skull radiography, 
and 3) concurrent cranial CT. Patients with previous head 
surgeries were excluded from the study. We included 87 
fracture-positive and 62 fracture-negative patients from 
eligible patients who visited Hospital #1 between January 
2013 and December 2019. Similarly, in Hospital #2, we 
included 99 fracture-positive and 165 fracture-negative 
patients who presented between January 2016 and August 
2019. The development dataset was randomly split into 
training, tuning, and internal test sets in an approximate 
ratio of 7:1:2 at the patient level in a stratified manner 

Inclusion
  1) Patients with head trauma who presented to the pediatric emergency department (ages < 20 years)
  2) Underwent both anteroposterior and lateral skull radiography
  3) Concurrent cranial CT
Exclusion
  1) Previous head operations

Hospital #1 (January 2013–December 2019)
  - Fracture (+): n = 87
  - Fracture (-): n = 62

Training set (n = 288)
  - Fracture (+): n = 130
  - Fracture (-): n = 158

Tuning set (n = 42)
  - Fracture (+): n = 19
  - Fracture (-): n = 23

Internal test set (n = 83)
  - Fracture (+): n = 37
  - Fracture (-): n = 46

External test set (n = 95)
  - Fracture (+): n = 19
  - Fracture (-): n = 76

Hospital #2 (January 2016–August 2019)
  - Fracture (+): n = 99
  - Fracture (-): n = 165

Hospital #3 
(July 2016–July 2019)

Development data set (n = 413)

Stratified random split (7:12)

Fig. 1. Overview of datasets.
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based on the labels. For the external test set, we collected 
consecutive patients using the following criteria: 1) 
patients who met the same inclusion and exclusion criteria 
as the development dataset, and 2) visited Hospital #3 
between July 2016 and July 2019. As a result, the external 
test set consisted of 19 fracture-positive and 76 fracture-
negative patients.

For both the development and external test set patients, 
we acquired all available skull radiographs, including AP 
and lateral views, as well as the Towne view. There were 
413, 558, and 18 images of AP, lateral, and Towne view 
radiographs, respectively, in the development set. In the 
external test set, the numbers were 95, 178, and 95, 
respectively.

Reference Standard and Annotation
The reference standard for skull fracture diagnosis was 

cranial CT. In the development dataset, two pediatric 
radiologists (16 and 8 years of experience, respectively) 
retrospectively reviewed radiographs along with cranial CT 
and annotated fractures on the radiographs in consensus 
using the polyline tool of an image annotation freeware (VGG 
Image Annotator [18]). However, in the external test set, 
we performed only per-patient labeling based on cranial CT.

Deep Learning Model Development
We used the YOLOv3 architecture [19], which is one of the 

best-known object detection deep learning frameworks, to 
perform a per-image detection of skull fractures. The outputs 
of the model were the coordinates of the predicted bounding 
boxes and scores in the range of 0 to 1. Technical details 
regarding data preprocessing and model development are 
provided in Supplementary Material. After training the model 
for interpretation as per patient, we defined the prediction 

score of a patient as the maximum score of all candidate 
bounding boxes predicted from the patient’s images.

Observer Study
An observer study was conducted using an external test 

set. Two radiology residents (with 2 years of experience), a 
pediatric radiologist (with 8 years of experience), and two 
emergency physicians (both with 5 years of experience) 
participated in a two-session review of the skull radiographs 
in the external test set. We provided them anonymized 
original Digital Imaging and Communications in Medicine 
files, except for age and sex, and the readers were 
aware that the study consisted of pediatric head trauma 
patients. Only radiographs were obtained during the first 
session. The second session, which was held two weeks 
after the first session and altered the review order of the 
patients, included model assistance. Plain radiographs were 
presented along with images annotated with bounding 
boxes and scores predicted using the deep learning model 
(Supplementary Fig. 1). In both sessions, the readers 
recorded the final likelihood of skull fracture that they 
decided (either with or without AI results) in each patient 
on a 5-point scale (1, definitely normal; 2, probably normal; 
3, indeterminate; 4, probable fracture; 5, definite fracture).

Statistical Analysis
The area under the receiver operating characteristic curve 

(AUROC) was calculated. For binary classification with the 
model, we chose three cutoff points according to the results 
from the internal test set: an optimal cutoff point yielding 
the maximum value of the Youden index [20], a high-
sensitivity cutoff point yielding 90% sensitivity, and a high-
specificity cutoff point yielding 95% specificity. For human 
readers, AUROC was obtained using 5-point diagnostic 

Table 1. Summary of Patient Characteristics

Parameter
Training Set
(n = 288)

Tuning Set
(n = 42)

Internal Test Set
(n = 83)

External Test Set
(n = 95)

Age, years
< 2 119 (90, 29) 21 (15, 6) 38 (26, 12) 25 (12, 13)
≥ 2 169 (40, 129) 21 (4, 17) 45 (11, 34) 70 (7, 63)

Sex
Male 173 (82, 91) 25 (13, 12) 49 (24, 25) 69 (8, 61)
Female 115 (48, 67) 17 (6, 11) 34 (13, 21) 26 (11, 15)

Label
Fracture-positive 130 19 37 19
Fracture-negative 158 23 46 76

Data represent the total number of patients. The data within parentheses represent patients with and without fractures.
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confidence levels, and they were dichotomized into normal 
(score 1 to 3) and fracture (scores 4 and 5) for binary 
diagnosis. We obtained sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) 
from the confusion matrices. We used the DeLong et al. 
[21] method to compare individual AUROC values and the 
McNemar test to compare the sensitivity and specificity 
values. For the comparison of AUROC values pooled across 
readers, we performed a multi-reader multi-case (MRMC) 

ROC analysis using the Obuchowski-Rockette method for 
fixed-reader random case [22,23]. Preverbal (< 2 years of 
age) children are considered separate from older children 
in clinical decision rules for pediatric head trauma due to 
their higher risk of injuries [24]. Therefore, we performed 
subgroup analyses based on patient age (< 2 years vs. ≥ 2 
years). For subgroup analyses and comparisons with human 
readers, the model’s performance at the optimal cutoff was 
used. Statistical significance was set at p < 0.05. We used 

Fig. 2. AUROC curves of the model for per-patient diagnosis of skull fracture in the internal test set (A) and external test set (B) 
for all patients (•: optimal cutoff [0.43], ◊: high-sensitivity cutoff [0.05], △: high-specificity cutoff [0.63]). AUROC = area under 
the receiver operating characteristic curve
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Table 2. Standalone Performance of Deep Learning Model

AUROC
Binary Classification

Cutoff* Sensitivity (%) Specificity (%) PPV (%) NPV (%)
Internal test set

All patients (n = 83) 0.922 (0.842–0.969) Not applicable
All patients (n = 83) Optimal: 0.43 81.1 (64.8–92.0) 91.3 (79.2–97.6) 88.2 85.7 
All patients (n = 83) High sensitivity: 0.05 91.9 (78.1–98.3) 78.3 (63.6–89.1) 77.3 92.3 
All patients (n = 83) High specificity: 0.63 73.0 (55.9–86.2) 97.8 (88.5–99.9) 96.4 81.8 

External test set
All patients (n = 95) 0.870 (0.785–0.930) Not applicable
Ages < 2 years (n = 25) 0.885 (0.694–0.977) Not applicable
Ages ≥ 2 years (n = 70) 0.778 (0.663–0.868) Not applicable
All patients (n = 95) Optimal: 0.43 78.9 (54.4–93.9) 88.2 (78.7–94.4) 62.5 94.4 
Ages < 2 years (n = 25) Optimal: 0.43 91.7 (61.5–99.8) 84.6 (54.6–98.1) 84.6 91.7
Ages ≥ 2 years (n = 70) Optimal: 0.43 57.1 (18.4–90.1) 88.9 (78.4–95.4) 36.7 94.9
All patients (n = 95) High sensitivity: 0.05 84.2 (60.4–96.6) 53.9 (42.1–65.5) 31.4 93.2 
All patients (n = 95) High specificity: 0.63 63.2 (38.4–83.7) 89.5 (80.3–95.3) 60.0 90.7 

Data are presented in percentage with 95% confidence intervals in parentheses, if available. *Operating points were derived from the 
internal test set. Optimal indicates the cutoff value yielding the maximum value of the Youden index. AUROC = area under the receiver 
operating characteristic curve, NPV = negative predictive value, PPV = positive predictive value
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the RJafroc package [25] in R version 4.1.1 (R Project for 
Statistical Computing, https://www.r-project.org) for the 
MRMC ROC analysis. All other data were analyzed using 
MedCalc version 12.7 (MedCalc Software).

RESULTS

Patient Characteristics
The development dataset included a total of 413 patients 

(median age and interquartile range, 3 years, 0–7 years; 
247 male, 166 female; 186 with fracture, 227 without 
fracture) and the external test set included a total of 95 

patients (median age and interquartile range, 7.5 years, 
3–13 years; 69 males, 26 females; 19 with fracture, 76 
without fracture). Patient characteristics of the datasets are 
summarized in Table 1.

Standalone Performance of Deep Learning Model
The developed deep learning model showed an AUROC 

of 0.922 (95% confidence interval [CI], 0.842–0.969) in 
the internal test set and 0.870 (95% CI, 0.785–0.930) in 
the external test set (Fig. 2). Table 2 shows the sensitivity, 
specificity, PPV, and NPV of the proposed model. When the 
cutoff by the maximum Youden index value was applied, the 

Fig. 3. Representative true-positive case: a 1-year-old boy with a left parietal bone fracture. 
A-D. Skull left lateral (A), anteroposterior (B), right lateral (C), and Town view (D) radiographs show a left parietal bone fracture. The model 
correctly detected the fracture on the skull left (A) and right lateral radiograph (C) with a prediction score of 0.98 and 1.00, respectively. All 
radiology residents and emergency physicians rated this case as from “probably normal” to “probable fracture” in the first session. However, all 
changed to “definite fracture” in the second session with the model’s assistance.

A
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B
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model had a sensitivity of 81.1% (95% CI, 64.8%–92.0%) 
and a specificity of 91.3% (95% CI, 79.2%–97.6%) in 
the internal test set and a sensitivity of 78.9% (95% CI, 
54.4%–93.9%) and specificity of 88.2% (95% CI, 78.7%–
94.4%) in the external test set. The results for subgroups of 
age < 2 years and ≥ 2 years are provided in Table 2. 

The median (range) number of positive and false-
positive calls by the model (score above the optimal cutoff 
[0.43]) per patient in the external test set was 0 (0–6) 
and 0 (0–4), respectively. The number of total and false-
positive bounding boxes (score above 0.001) was 2 (0–6) 
and 1 (0–6), respectively, per patient. Figures 3-6 illustrate 
representative true-positive, false-positive, false-negative, 
and true-negative cases, respectively, from the external 
test set.

Observer Performance with and without Deep Learning 
Model Assistance

Table 3 and Figure 7 show the diagnostic performance of 
human readers in the external test set with and without 
the model’s assistance. In the first session, the AUROCs 
of the observers ranged from 0.684 to 0.949 and showed 
no significant differences compared with the model 
in all patients and the age subgroups (p > 0.05; see 
Supplementary Table 1 for details). The sensitivity and 
specificity of the observers ranged from 0.0% to 91.7% and 
from 46.2% to 96.8%, respectively.

In the second session with the model’s assistance, 

improvement was noted for some of the performance 
parameters in some of the readers (Table 3). Significant 
AUROC improvements were observed by pooling the results 
of radiology residents (0.094 [95% CI, 0.020–0.168],  
p = 0.012) or the results of emergency physicians (0.069 
[95% CI, 0.002–0.136], p = 0.043), but not in the pediatric 
radiologist (0.008 [95% CI, -0.074–0.090], p = 0.850). 
Compared with the first session, all readers showed 
comparable or higher sensitivities (improvements of 
0.0%–10.5%) and higher specificities (improvements of 
2.6%–17.1%), but statistical significance was achieved 
only in the specificity of one radiology resident (p = 
0.002). For patients younger than 2 years, the pooled 
AUROC improvements with the model’s assistance were not 
significant in radiology residents (0.146 [95% CI, -0.027–
0.318], p = 0.097), pediatric radiologist (-0.067 [95% CI, 
-0.153–0.018], p = 0.124), or emergency physicians (0.032 
[95% CI, -0.108–0.172], p = 0.654). A significant AUROC 
improvement was observed in one radiology resident (0.231 
[95% CI, 0.027–0.434], p = 0.026), while other individual 
readers showed no significant differences in AUROC, 
sensitivity, and specificity (p > 0.05). For patients aged 2 
years and older, no significant pooled AUROC improvements 
with the model’s assistance were demonstrated in radiology 
residents (0.093 [95% CI, -0.074–0.260], p = 0.276), 
pediatric radiologists (0.108 [95% CI, -0.072–0.287], 
p = 0.240), or emergency physicians (0.117 [95% CI, 
-0.021–0.256], p = 0.097). An emergency physician 

Fig. 4. Representative false-positive case: a 9-month-old girl with no skull fracture. 
A, B. The model marked bounding boxes with prediction scores of 1.00 on the skull right lateral radiograph (A) and 0.74 on the skull 
anteroposterior radiograph (B). Additionally, the pediatric radiologist and one radiology resident rated this case as “probable fracture.” However, 
the concurrent cranial CT confirmed that there was no skull fracture.

A B
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showed a significant AUROC improvement (0.173 [95% CI, 
0.015–0.332], p = 0.032) and a radiology resident showed 
a significant improvement in specificity (76.2% to 88.9%, 
p = 0.039), while other readers showed no significant 
differences in diagnostic performance (p > 0.05).

DISCUSSION

We implemented and validated a deep learning model for 
the automated detection of pediatric skull fractures on plain 

radiographs. To the best of our knowledge, this is the first 
study to demonstrate the feasibility and clinical validity of a 
deep learning algorithm for the diagnosis of skull fractures 
on plain radiography. Although many recent studies have 
utilized deep learning to detect fractures on radiographs 
[26], few have involved the pediatric population [27]. 
Furthermore, we not only compared the stand-alone 
performance of our developed model with radiologists and 
emergency physicians, but also demonstrated the effect of 
the assistance of the model on the readers’ performance.

Fig. 5. Representative false-negative case: a 3-year-old boy with a right occipital bone fracture. 
A-D. The model showed the highest prediction score of 0.11 on the skull anteroposterior radiograph (C). However, the Towne view (D) showed 
a radiolucent line (arrowheads) in the right occipital bone, which was not evident in the right lateral (A), left lateral (B), and anteroposterior 
(C) views. The concurrent cranial CT confirmed the right occipital bone fracture. All radiologists and one emergency physician correctly rated this 
case as “definite fracture” or “probable fracture.”
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Many patients undergo skull radiography, even though CT 
is the modality of choice for pediatric head trauma [6,7]. 
A significant drawback of CT is radiation exposure [28], 
which is resource-intensive and poses additional risks for 
patients who require sedation [29]. Thus, there exist several 
clinical decision rules, such as the Pediatric Emergency 
Care Applied Research Network (PECARN) [24] rules, that 
were developed to reduce unnecessary CT examinations. The 
PECARN rules demonstrate accurate recommendations for 
performing and avoiding CT in high-risk and low-risk head 
injuries, respectively [30,31]. However, the management 

of intermediate-risk injuries involves clinical settings with 
other factors, including physician experience and parental 
preference [24]. In such cases, for fractures screened on 
skull radiography, clinical signs of head injury may be 
decisive in determining further CT evaluation.

Despite the high number of skull radiographs performed 
in pediatric head trauma, interpreting them can be a 
diagnostic challenge [32,33]. The sensitivity of radiography 
for pediatric skull fractures is 74%–81% [32,34], which is 
similar to or slightly higher than our external test results 
from the radiologists without the model’s assistance 

Fig. 6. Representative true-negative case: an 8-year-old boy with no skull fracture. 
A-D. Skull anteroposterior (A), Town view (B), right lateral (C), and left lateral (D) radiographs show no definite skull fracture. The model 
showed the highest prediction score of 0.07 on the Towne view radiograph (B). All emergency physicians and one radiology resident rated this 
case as “probable fracture” or “definite fracture” in the first session. They all changed to “definitely normal” in the second session with the 
model’s assistance.
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(68.4%–73.7%). Our developed model showed high 
sensitivities of 78.9% (95% CI, 54.4%–93.9%) in the 
external test set and 81.1% (95% CI, 64.8%–92.0%) in 
the internal test set. The difference in the diagnostic 
performance of the model between the internal and external 
test sets may be attributed to several factors. The model 
underperformed in patients aged ≥ 2 years, particularly in 
terms of sensitivity, and the external test set had more 
patients aged ≥ 2 years with fractures (37%) than the 
internal test set (29.7%). Moreover, only a few Towne view 
studies were in the development dataset compared with 
the external test set. Thus, we expected the model to miss 
fractures identified only in the Towne view (Fig. 5). In 
addition, three of the four fractures missed by the model 
were occipital fractures, which are usually better depicted 
on the Towne view. Two of them were correctly diagnosed 
by all the radiologists. Nevertheless, the relatively low 
sensitivity in the external test set is reasonable, as 
overestimating the model’s performance during internal 
validation due to overfitting is a well-known problem in 
deep learning [35].

In the observer study, significant pooled AUROC 
improvements were observed in radiology residents 
(0.094 [95% CI, 0.020–0.168], p = 0.012) and emergency 
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physicians (0.069 [95% CI, 0.002–0.136], p = 0.043). 
The improvements in diagnostic performance tended to 
be higher in specificity than sensitivity, which can be 
attributed to the high stand-alone specificity of the model. 
A greater improvement in specificity may be important 
in certain clinical scenarios. Clinical decision rules for 
neuroimaging in pediatric head trauma are very sensitive 
[36,37], and skull radiography is not recommended if CT is 
indicated [4]. Thus, skull radiography is often performed 
in patients with a low risk of brain injury. False-positive 
detections of fractures on skull radiographs would lead to 
unnecessary CT examinations and prolonged hospital stays. 
Several previous studies have suggested the potential role of 
a deep learning model as a second reader for inexperienced 
radiologists or physicians [38,39]. We also believe that our 
developed model may be beneficial in reducing the number 
of false-positive interpretations of skull radiographs.

We performed subgroup analysis based on the age of 2 
years, as included in the PECARN rules [24]. Preverbal (< 2 
years of age) children have traditionally been considered 
separate from older children because they are more difficult 
to assess, have a higher risk of injuries, and have a higher 
incidence of asymptomatic intracranial injuries and skull 
fractures due to minor trauma [40]. Our model tended 
to perform better in patients younger than 2 years than 
in older children, particularly with a higher sensitivity 
(91.7% vs. 57.1%) but a comparable specificity (84.6% vs. 
88.9%). The human readers also showed such a tendency, 
as previous studies reported similar patterns of models and 
radiologists not only in diagnosis but also in misdiagnosis 
[38,41]. This tendency implies that it is more likely to be 
due to a demographic factor rather than being specific to 
the model. In older children, sutures and vascular grooves 
become more prominent on plain radiographs and thus 
may mimic fracture lines or be even more vivid than actual 
fracture lines.

Recent studies have used deep learning for fracture 
detection using classification models [26], but we 
implemented an object detection model because it has an 
advantage over a classification model in providing more 
explainable output. The transparency of a model can be 
crucial in computer-aided diagnosis, where experts must 
understand and validate the model’s prediction [42]. There 
are several methods, including class-activation maps, to 
visualize the localization information of a classification 
model [42]. However, they are unable to produce 
localization information at a high resolution or for multiple 

objects. Conversely, bounding boxes with probabilities from 
a detection model are direct indicators of how the model 
predicts and enables precise localization, even for multiple 
objects.

Our study has several limitations. First, because not 
all pediatric head trauma patients undergo both skull 
radiography and CT, our datasets may not represent the 
general pediatric head trauma population. Second, this 
was a retrospective study with a limited amount of data. A 
further prospective study with a larger cohort is warranted 
to improve the diagnostic performance and generalizability 
of the deep learning model. Lastly, the learning effect from 
the model-unassisted reading might have affected the 
results of the model-assisted session.

In conclusion, a deep learning model could improve the 
performance of inexperienced radiologists and emergency 
physicians in the diagnosis of pediatric skull fractures on 
plain radiographs.
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