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ABSTRACT: An enantioselective Michael addition of malonates
to α,β-unsaturated para-nitrophenyl esters was achieved using the
Lewis basic isothiourea HyperBTM, giving excellent levels of
product enantioselectivity (up to >99:1 enantiomeric ratio) in
good yields and with complete regioselectivity (>20:1 regiose-
lectivity ratio) in the presence of alternative (phenyl ketone and
ethyl ester) Michael acceptors. Density functional theory
calculations indicate that N-acylation is rate-limiting. This constitutes a rare example of a highly enantioselective addition of
simple, readily available malonates to α,β-unsaturated esters.

The asymmetric Michael reaction is a powerful method for
stereoselective C−C bond formation. While enantiose-

lective catalytic Michael addition of carbon nucleophiles to
α,β-unsaturated aldehydes, ketones, and alkylidene malonates
are well-established,1 analogous enantioselective addition to
α,β-unsaturated esters are rare. This is likely due to the low
inherent electrophilicity of the carboxylic acid oxidation state
compared to alternative Michael acceptors2 combined with the
lack of enantiofacial discrimination. Despite these issues,
several useful catalytic enantioselective additions have been
achieved with highly reactive nucleophilic partners, including
silyl ketene acetals,3 dihydropyrazol-3-ones,4 aryl boronic
acids,5 thiols and amines,6 and Grignard reagents.7 However,
the addition of less reactive, stabilized carbon nucleophiles,
such as malonates, remains an unsolved challenge. The current
state of the art was demonstrated by Nakamura and co-workers
in 2016, who employed a chiral lithium binaphtholate complex
1 to promote the highly enantioselective addition of malonates
to symmetric maleic esters,8 but this was limited by the lack of
variability at the β position of the Michael acceptor (Scheme
1A). As a result of the importance of this bond disconnection,
alternative enantioselective methods with a broad scope would
be a welcome addition to the synthetic toolbox.
Chiral tertiary amines, such as chiral 4-dimethylaminopyr-

idine (DMAP) derivatives,9 cinchona alkaloids,10 and iso-
thioureas,11 are effective organocatalysts for inducing asym-
metry in a variety of transformations with α,β-unsaturated
carboxylic acid derivatives via chiral α,β-unsaturated N-
acylammonium intermediates.12 This technique is frequently
employed with bis-nucleophile coupling partners that rely
upon an initial stereoselective conjugate addition followed by a
second nucleophilic addition to achieve turnover of the chiral
tertiary amine catalyst. Using this strategy, several methods
have been developed employing an asymmetric Michael

reaction with malonate derivatives followed by cyclization to
release the organocatalysts, with instructive examples high-
lighted in Scheme 1B.
Romo and co-workers developed an elegant cinchona

alkaloid 2-catalyzed Michael reaction/proton transfer/lactam-
ization cascade to provide lactams from aminomalonates and
α,β-unsaturated acid chlorides (top left).10 The isothioureas,
HBTM 4 and HyperBTM 5, have been employed in cascade
reactions, where an initial Michael reaction with β-
ketoesters10a,13 (top right) and β-ketomalonates14 (bottom
left) was followed by a cyclization event to release the catalyst
and deliver δ- and β-lactones in high enantioselectivity,
respectively. Building on this precedent and previous work
that demonstrated the multifunctional nature of electron-
deficient phenoxides as a leaving group and as a secondary
nucleophile to achieve catalytic turnover in isothiourea
catalysis,15 we posited that α,β-unsaturated p-nitrophenyl
(PNP) esters would be able to perform the Michael addition
reaction without the need for a pendent secondary nucleophile
to achieve catalytic turnover. This PNP turnover strategy has
previously been employed to promote the enantioselective
nitronate addition to α,β-unsaturated PNP esters;15a however,
this process required nitroalkane to be used as a solvent or
highly reactive silyl nitronates to be used as stoichiometric
nucleophiles.15b,16 The use of dihydropyrazol-3-ones and 3-
substituted oxindoles as N-heterocyclic enolates was also
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achieved through the aryloxide catalytic turnover.4 Herein, we
report the HyperBTM-catalyzed addition of simple malonates
and related derivatives to α,β-unsaturated aryl esters possessing
a variety of electron-withdrawing β substituents under mild
reaction conditions.
An examination to determine the most suitable reaction

parameters began with an analysis of solvents and bases (Table
1). β-Trifluoromethyl α,β-unsaturated PNP ester 6 was reacted
with dimethyl malonate 7 in the presence of 20 mol %
HyperBTM 5 and 1 equiv of diisopropylethylamine in CH2Cl2
to provide the desired product with promising 62:38
enantiomeric ratio (er) (entry 1). Moving to more polar
solvents, acetonitrile (MeCN) and N,N-dimethylformamide
(DMF), provided higher yields (58 and 65%) and
enantioselectivity (70:30 and 89:11) (entries 2 and 3).
Gratifyingly, cooling the reaction in DMF to 0 °C increased
the er to 90:10 (entry 4). Performing the reaction in the
absence of external base at 0 °C (entry 5) provided high levels
of enantioinduction (>99:1 er). Lowering the catalyst loading
of compound 5 to 10 mol % (entry 6) resulted in similar
enantioselectivity but a decreased yield. Attempting the
reaction with (R)-BTM 9 furnished the desired Michael
adduct in only 8% yield but with high 95:5 er (entry 7), while
(S)-tetramisole 10 provided no desired product under the
optimized reaction conditions (entry 8).
With the optimized conditions in hand, the steric and

electronic parameters of the process were investigated. A
variety of α,β-unsaturated aryl esters with electron-withdrawing
β substituents were subjected to the optimized reaction
conditions, with the results presented in Scheme 2.
Model β-trifluoromethyl α,β-unsaturated p-nitrophenyl ester

6 and β-trifluoromethyl α,β-unsaturated 2,4,6-trichlorophenyl
(TCP) ester 11 performed similarly in the reaction conditions,

providing 66 and 63% yields, respectively, with complete
enantioselectivity (>99:1 er) in both cases. This suggests that
p-nitrophenoxide and 2,4,6-trichlorophenoxide are both
capable of facilitating catalyst turnover to propagate the
reaction. The reaction can be performed on a gram scale (3.8
mmol) to provide compound 8a in a 60% yield and 99:1 er. To
demonstrate the utility of p-nitrophenyl esters,15c compound
8a was derivatized in situ via the addition of benzylamine to
produce the amide 8b. The absolute configuration within

Scheme 1. Selected Examples of Chiral Amine-Catalyzed
Michael Reaction/Cyclization Cascades with Malonate
Derivatives and Comparison to This Work

Table 1. Reaction Optimizationa

entry solvent
catalyst
(mol %) base T (°C)

yield
(%) er

1 CH2Cl2 5 (20) iPr2NEt rt 30 62:38
2 MeCN 5 (20) iPr2NEt rt 58 70:30
3 DMF 5 (20) iPr2NEt rt 65 89:11
4 DMF 5 (20) iPr2NEt 0 73 90:10
5 DMF 5 (20) 0 66 >99:1
6 DMF 5 (10) 0 47 >99:1
7 DMF 9 (20) 0 8 96:4
8 DMF 10 (20) 0 0

aAll yields are isolated yields after purification by column
chromatography. Enantiomeric ratios are determined by high-
performance liquid chromatography (HPLC) analysis on a chiral
stationary phase. PNP = p-nitrophenyl.

Scheme 2. Scope and Limitations of Dimethyl Malonate
Addition to α,β-Unsaturated Estersb

a(2R,3S)-HyperBTM was used, and the product has the opposite
absolute configuration to that shown. bAll yields are isolated yields
after purification by column chromatography. Enantiomeric ratios are
determined by HPLC analysis on a chiral stationary phase. PNP, p-
nitrophenyl; TCP, 2,4,6-trichlorophenyl.
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compound 22 was unambiguously determined by single-crystal
X-ray analysis to be the S enantiomer, with the configuration of
all other examples assigned by analogy. Extension of this
protocol to the use of alternative β-substituted a,β-unsaturated
PNP esters gave product yields ranging from 37 to 67% with
high levels of enantioselectivity (from 85:15 to >99:1 er). The
enantioselectivity was complete for all β-perhalogenated
examples 20−22 (β-C2F5, β-CF2Cl, and β-CF2Br), with
lower enantioselectivity observed for β-ester 23 (98:2 er), β-
ketone 24 (97:3 er), and β-CHF2 19 (85:15 er). Because
CHF2 functions as a bioisostere for an alcohol,

17 the hydrogen-
bonding abilities of these three substrates may contribute to
the slightly diminished enantiomeric ratios. The ethyl ester 23
constitutes the first highly enantioselective addition of
malonate to unsymmetric fumaric ester and proceeds with
complete regioselectivity [20:1 regioselectivity ratio (rr)].
Additionally, the labile PNP ester offers the opportunity for
facile differentiation between the two ester moieties of fumaric
ester. Interestingly, full regioselectivity is also observed for the
aryl ketone substrate 24. This highlights that the activated
electrophilic α,β-unsaturated acyl isothiouronium intermediate
can override the inherent selectivity of the parent molecule to
provide exclusive Michael addition to the α,β-unsaturated PNP
ester. Although promising, limitations of the methodology
include the requirement of an activating β-electron-with-
drawing substituent. Alternative substrates, such as β-methyl
and β-phenyl α,β-unsaturated PNP esters 25 and 26 did not
provide the desired Michael addition product, returning only
starting material. The β,β-disubstituted fumaric ester 27 also
provided no desired product, and the incorporation of a
strongly withdrawing trifluoromethyl substituent in the α
position for compound 28 instead of the β position was not
supported.
The variability of the nucleophilic partner was then explored,

commencing with the alkyl malonate series (Scheme 3).
Gratifyingly, in addition to dimethyl malonate, dimethyl
fluoromalonate provided the desired fluorinated tetrasubsti-
tuted carbon-containing product 37 in 82% yield and 98:2 er;
however, dimethyl methylmalonate provided no desired
product likely as a result of steric hindrance at the nucleophilic
site. Ethyl, isopropyl, benzyl, and tert-butyl malonates were
then examined and showed a decrease in yield correlating with
increasing steric bulk within the nucleophile: ethyl (43%) 38,
isopropyl (32%) 39, and tert-butyl (0%) malonates, while the
2-fluorobenzyl malonate and benzyl malonate gave the desired
products 40 and 41 in 81 and 72% yields, respectively. The
relatively high yields obtained when using benzyl malonates
may result from π-stacking interactions with the α,β-
unsaturated acyl ammonium complex. All examples 37−44
provided complete enantioselectivity of >99:1 er. With the
performance of the reaction in MeCN and addition of catalytic
diisopropylethylamine, malononitrile could be used, giving
compound 42 in 48% yield with >99:1 er. Dithiomalonates are
valuable substrates as a result of their ability to be converted
into aldehydes and ketones more easily than their ester
counterparts.18 Odorless S,S-bis(4-tert-butyl)benzyl)-
propanebis(thiolate) in MeCN with catalytic diisopropylethyl-
amine gave the desired product 43 as a precipitate after 3 h in
58% yield and >99:1 er. To the best of our knowledge, these
represent the first example of malononitrile or dithiomalonate
addition in an enantioselective fashion to an α,β-unsaturated
ester. Finally, β-ketoesters have been previously demonstrated
to provide access to dihydropyrans in HyperBTM-catalyzed

reactions of homoanhydrides. This reaction also proceeded
smoothly with α,β-unsaturated PNP ester to provide
compound 44 in 66% yield and 99:1 er. This example does
not use the ability of p-nitrophenoxide to reform the ester, with
turnover instead facilitated by the nascent enolate. In
comparison to the use of a homoanhydride substrate, use of
the ester starting material represents better atom economy
with p-nitrophenol as the only byproduct and does not require
an excess of the isothiouronium precursor.
On the basis of prior investigations15b and in combination

with density functional theory (DFT) studies [M06-2X/6-
31G(d,p)/IEFPCM optimized, see Supporting Information for
details] based on methodology introduced by Wang et al.,19

the proposed catalytic cycle for the transformation is illustrated
in Scheme 4. Acylation of HyperBTM 5 by the α,β-unsaturated
PNP ester and displacement of p-nitrophenoxide were
calculated to be rate-limiting (ΔG⧧ = 52.8 kJ mol−1), forming
the corresponding α,β-unsaturated isothiouronium ion pair.
This electrophilic complex is then engaged by the malonate
anion in a stereoselective Michael addition through transition
state 49. Within this transition state, the isothiouronium
adopts a s-cis conformation, with an stabilizing syn-coplanar
1,5-S···O chalcogen bond (no to σ*S−C)

18−22 providing a
conformational lock. To minimize 1,2 strain, the aryl
stereodirecting unit adopts a pseudo-axial orientation,
promoting facial selectivity in the Michael addition. This
transition state is further stabilized by two weak CH···O
interactions between ortho-C−H of the stereodirecting phenyl
substituent and C−H α to positively charged nitrogen of
acylated HyperBTM with the anionic malonate. Malonate
addition to the electrophile is computed to be irreversible, and
anti addition to the stereodirecting phenyl group is favored

Scheme 3. Scope and Limitations of the Addition of
Nucleophiles to β-Trifluoromethyl α,β-Unsaturated PNP
Estere

a(2R,3S)-HyperBTM was used, and the product has the opposite
absolute configuration to that shown. bIn MeCN, and 10%
diisopropylethyl amine was added. cComplete in 5 h. dComplete in
3 h. eAll yields are isolated yields after purification by column
chromatography. Enantiomeric ratios are determined by HPLC
analysis on a chiral stationary phase.
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over the corresponding diastereomeric transition state by
ΔΔG⧧ = 17.5 kJ mol−1 (Table S1, Supporting Information).
This leads to preferential formation of the (S)-enantiomer of
the product and is consistent with the level of enantiose-
lectivity observed experimentally (>99:1 er). Resultant
isothiouronium enolate is protonated, presumably by p-
nitrophenol, providing p-nitrophenoxide necessary to complete
catalytic turnover15 and generate the Michael addition product.
To conclude, the isothiourea-catalyzed addition of malo-

nates and malonate derivatives to α,β-unsaturated p-nitro-
phenyl esters is disclosed. The reaction exploits the multi-
functional nature of p-nitrophenoxide as a (1) leaving group,
(2) proton shuttle, and (3) secondary nucleophile to provide
catalytic turnover without the need for a pendent nucleophile
within malonate. A variety of α,β-unsaturated aryl ester
electrophiles containing β-electron-withdrawing substituents
and malonate nucleophiles were tolerated in good yield and
excellent enantioselectivity (typically >99:1 er). Exquisite
regioselectivity was observed in examples with competing
Michael addition reaction sites. Finally, DFT studies identified
Michael addition of malonate to the chiral isothiouronium ion
intermediate to be stereodetermining, consistent with exper-
imental observations.

■ ASSOCIATED CONTENT
*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.orglett.2c01486.

Full experimental procedures, characterization data,
nuclear magnetic resonance (NMR) spectra, and
HPLC chromatograms (PDF)
xyz coordinates of all optimized DFT structures in the
manuscript (TXT)
The research data supporting this publication can be
accessed at https://doi.org/10.17630/807cc4de-3e6c-
43d6-a091-54f073849543.

Accession Codes

CCDC 2145495 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
via www.ccdc.cam.ac.uk/data_request/cif, or by emailing
data_request@ccdc.cam.ac.uk, or by contacting The Cam-
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION
Corresponding Authors

Gregory R. Boyce − Department of Chemistry and Physics,
Florida Gulf Coast University, Fort Myers, Florida 33965,
United States; orcid.org/0000-0002-5295-3378;
Email: gboyce@fgcu.edu
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