
molecules

Article

iT4SE-EP: Accurate Identification of Bacterial Type IV Secreted
Effectors by Exploring Evolutionary Features from Two
PSI-BLAST Profiles

Haitao Han , Chenchen Ding , Xin Cheng , Xiuzhi Sang and Taigang Liu *

����������
�������

Citation: Han, H.; Ding, C.;

Cheng, X.; Sang, X.; Liu, T. iT4SE-EP:

Accurate Identification of Bacterial

Type IV Secreted Effectors by

Exploring Evolutionary Features

from Two PSI-BLAST Profiles.

Molecules 2021, 26, 2487.

https://doi.org/10.3390/

molecules26092487

Academic Editors: Sabina Podlewska

and Giosuè Costa

Received: 17 March 2021

Accepted: 20 April 2021

Published: 24 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Information Technology, Shanghai Ocean University, Shanghai 201306, China;
m190711268@st.shou.edu.cn (H.H.); m190711300@st.shou.edu.cn (C.D.); m200701415@st.shou.edu.cn (X.C.);
m180711086@st.shou.edu.cn (X.S.)
* Correspondence: tgliu@shou.edu.cn; Tel.: +86-21-61900624

Abstract: Many gram-negative bacteria use type IV secretion systems to deliver effector molecules
to a wide range of target cells. These substrate proteins, which are called type IV secreted effectors
(T4SE), manipulate host cell processes during infection, often resulting in severe diseases or even
death of the host. Therefore, identification of putative T4SEs has become a very active research
topic in bioinformatics due to its vital roles in understanding host-pathogen interactions. PSI-BLAST
profiles have been experimentally validated to provide important and discriminatory evolutionary
information for various protein classification tasks. In the present study, an accurate computational
predictor termed iT4SE-EP was developed for identifying T4SEs by extracting evolutionary features
from the position-specific scoring matrix and the position-specific frequency matrix profiles. First,
four types of encoding strategies were designed to transform protein sequences into fixed-length
feature vectors based on the two profiles. Then, the feature selection technique based on the random
forest algorithm was utilized to reduce redundant or irrelevant features without much loss of
information. Finally, the optimal features were input into a support vector machine classifier to carry
out the prediction of T4SEs. Our experimental results demonstrated that iT4SE-EP outperformed
most of existing methods based on the independent dataset test.

Keywords: type IV secreted effectors; support vector machine; random forest; position-specific
scoring matrix; position-specific frequency matrix

1. Introduction

Gram-negative bacteria use various secretion systems to secrete their virulence fac-
tors (mainly of proteins) to invade the host cells. Until now, the secretion systems of
gram-negative bacteria are divided into eight categories (I–VIII) according to their outer
membrane secretion mechanisms [1]. Among them, the type IV secretion systems (T4SS)
are specialized ATP-dependent protein complexes which are used by a variety of bacterial
pathogens to deliver effector molecules into the cytosol of eukaryotic host cells [2]. These
transported proteins, called type IV secreted effectors (T4SE), can manipulate host cell
gene expression and processes, exploit the host cell machinery for their own profit, and
escape the immune responses during infection, often resulting in severe diseases or even
death of the host [3]. Therefore, identification of putative T4SEs is the first important step
towards understanding host-pathogen interactions and bacterial pathogenesis. However,
it is often quite time-consuming and laborious to identify new T4SEs based on wet-lab
experimental approaches, such as fusion protein report assays and secretion apparatus [4].
In many cases T4SEs contain a wide range of signal characteristics including eukaryotic-like
domains, localization signals, and C-terminal translocation features [5], which enables
bioinformatics-based methods to predict T4SEs more efficiently through extracting features
as inputs of machine learning models.
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In recent years, various computational tools based on machine learning and deep
learning have been developed to identify T4SEs using protein sequences information, in-
cluding T4EffPred [6], T4SEpre [4], PredT4SE-Stack [7], DeepT4 [8], Bastion4 [9], OPT4e [10],
CNN-T4SE [11], T4SE-XGB [12], and so on [13–15]. For instance, Wang et al. [4] developed
an effective inter-species T4SEs prediction software package, termed T4SEpre, which first
carefully compared C-terminal sequential and position-specific amino acid composition
(AAC), possible motifs and structural features and then fused these features to train a
support vector machine (SVM) model. Based on the 5-fold cross validation (CV), T4SEpre
could distinguish the T4SEs from the non-T4SEs with the sensitivity of 89% and the speci-
ficity of 97% [4]. In order to verify the contribution of the N-terminal sequence features to
the identification of T4SEs, Wang et al. [15] first established a benchmark dataset which
consists of 380 T4SEs and 1,385 non-T4SEs, and then made systematical comparisons of
the N-terminal and C-terminal regions. Finally, they proposed an accurate SVM-based
model for the annotation of T4SEs by utilizing three different types of sequence informa-
tion, namely AAC, composition, transition, and distribution (CTD), and position-specific
scoring matrix (PSSM). Based on the same datasets, Xiong et al. [7] explored a stacked
ensemble model, namely PredT4SE-Stack, to predict whether a query protein is a T4SE or
not based on its PSSM-composition features, which employs an ensemble of base-learners,
such as SVM, gradient boosting machine (GBM), and extremely randomized trees (ERT),
to generate outputs of the meta-classifier. The experimental results on the CV and the
independent tests indicated that PredT4SE-Stack model further improved the prediction
performance of T4SEs with the help of two stages of learning [7]. Recently, Wang et al. [9]
comprehensively assessed the performance of different protein encoding schemes and
their combinations along with several machine learning algorithms for T4SEs identification
based on their self-constructed working datasets. Their study showed that PSSM-based
model achieved the best prediction performance for all classifiers and ensemble model
performed better than these individual single-feature models [9]. In addition, they de-
veloped an online web server, called Bastion4, to facilitate the prediction of T4SEs [9].
Over the past decade, deep learning approaches have been widely used in bioinformatics
and other related fields [16,17]. Hong et al. [11] applied a convolution neural network
(CNN) technique to annotate T4SEs by integrating three protein encoding strategies, i.e.,
PSSM, protein secondary structure and solvent accessibility (PSSSA), and one-hot encoding
scheme (Onehot). They also constructed a novel annotation tool CNN-T4SE to provide the
online prediction of T4SEs with improved accuracy and reduced false positive rate [11].
Although deep learning has achieved remarkable success in various fields, it needs a large
amount of data as input to help train a better model. However, due to a limited number of
known T4SEs, the generalization and prediction ability of deep learning models need to
be enhanced.

For these traditional machine learning models, the design of a high-quality protein en-
coding strategy is a crucial step towards improving the recognition ability of T4SEs based
on sequence data. Previous studies have demonstrated that evolutionary information
encoded in the PSSM is more informative than sequence itself and various PSSM-based fea-
ture descriptors have been successfully applied to enhance the identification performance
of T4SEs and other protein attributes [7,9,18]. In general, the PSSM of a query protein is an
L× 20 matrix calculated by using the PSI-BLAST software package [19] to iteratively search
a given protein against a specified database to detect its distantly related homologous
proteins above a specified e-value score, where L is the length of the query sequence and
the columns of the matrix represent 20 natural amino acids. Actually, the return profiles
of the PSI-BLAST program consist of two L × 20 matrices. The first one is called PSSM
and gives the log odds of the substitution score for each amino acid. The second one is
called position-specific frequency matrix (PSFM) which displays the weighted observed
percentages of amino acid substitutions. To our knowledge, PSFM is rarely used to generate
sequence descriptors for the classification of proteins. Hence, the evolutionary information
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in the form of PSI-BLAST profiles has not been adequately explored for the annotation of
T4SEs in earlier studies.

In this work, we proposed a novel machine learning model named iT4SE-EP to further
improve the accuracy of the T4SEs prediction by extracting more informative features from
two PSI-BLAST profiles. The workflow diagram of the iT4SE-EP method is illustrated
in Figure 1. First, the PSSM and PSFM profiles of query proteins were transformed into
fixed-length feature vectors by using four types of encoding techniques, i.e., AAC, auto-
covariance and cross-covariance (ACC), evolutionary difference transformation (EDT), and
discrete wavelet transform (DWT). Then, the random forest (RF) algorithm was applied
to rank these hybrid features according to their classification ability. Finally, the optimal
feature subsets were selected as the input of an SVM classifier for the computational
identification of T4SEs. To comprehensively evaluate the performance of the proposed
iT4SE-EP model, the jackknife CV and the independent test were performed on two widely
used benchmark datasets. The experimental results demonstrated that iT4SE-EP is very
promising and could be used to help increase annotation levels of T4SEs.
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2. Results and Discussions
2.1. The Effect of Parameter D on the Prediction Performance

In the PSSM_EDT model, the value of parameter D would affect the dimension of the
feature vector and the performance of the predictor (see Materials and Methods section).
D can be any integer between 1 and L− 1, where L is the shortest length of sequences
in the training dataset. Since too large D could cause the curse of dimensionality, we set
the maximum value of D to 10. The value of D was optimized on the Train-915 dataset
by using the SVM classifier and the jackknife test. The accuracy (Acc) and Matthew’s
correlation coefficient (MCC) were selected as the evaluation measures. The performance
of the PSSM_EDT model with different values of D was shown in Figure 2, from which
we can see that the best Acc and MCC metrics were achieved when D = 4. Therefore, the
optimal size of the PSSM_EDT descriptor was 400 × D = 1600 for the further study.
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2.2. Comparative Analysis of Different Classifiers with Different Feature Encoding Schemes

In this section, we compared the performance between the SVM and RF classifiers
combined with each of the five different feature encoding schemes. Results on the Train-915
dataset by using the jackknife CV were shown in Table 1 and Figure 3.

Table 1. Prediction results of the SVM and RF classifiers with different features.

Method Feature Acc Sen Spe Pre F-Score MCC AUC

SVM

PSSM_AAC (20D) 0.908 0.836 0.944 0.882 0.858 0.791 0.928
PSPCP_ACC (1000D) 0.834 0.645 0.929 0.820 0.722 0.616 0.868
PSFM_DWT (1040D) 0.902 0.793 0.957 0.902 0.844 0.777 0.927
PSSM_EDT (1600D) 0.920 0.845 0.957 0.908 0.876 0.818 0.943
All features (3660D) 0.919 0.845 0.955 0.905 0.874 0.816 0.935

RF

PSSM_AAC (20D) 0.904 0.809 0.952 0.894 0.850 0.782 0.933
PSPCP_ACC (1000D) 0.803 0.563 0.922 0.785 0.656 0.537 0.834
PSFM_DWT (1040D) 0.893 0.777 0.952 0.890 0.830 0.757 0.924
PSSM_EDT (1600D) 0.900 0.806 0.947 0.884 0.843 0.772 0.940
All features (3660D) 0.907 0.816 0.952 0.895 0.854 0.788 0.937

Note: The values in parentheses represent the dimension of the feature vector.

As can be seen from Table 1, the SVM models based on PSSM_AAC, PSFM_DWT,
PSSM_EDT, and all the fused features exhibited satisfying performance with the Acc and
the AUC higher than 0.9, while the SVM model with PSPCP_ACC obtained the acceptable
Acc value (0.834) and AUC value (0.868). This indicated that the proposed four types
of feature encoding methods could provide some valuable clues for the identification of
T4SEs. In addition, the combination of SVM and PSSM_EDT was superior to other models
in terms of Acc (0.920), MCC (0.818), F-score (0.876), and Pre (0.908). Meanwhile, the SVM
models based on PSSM_EDT and all features achieved the highest Sen, while the ones based
on PSSM_EDT and PSSM_DWT obtained the best Spe, indicating that PSSM_EDT and
PSSM_DWT features may be crucial to the prediction of T4SEs. However, the performance
of the SVM model with all features was slightly poorer than that of the SVM model with
only PSSM_EDT features, which suggests that irrelevant and redundant features existed in
the four types of features have an unfavorable impact on the performance of the model.
For the RF classifier, the model based on all features outperformed other models with the
single-view feature in terms of Acc (0.907), MCC (0.788), Sen (0.816), F-score (0.854), and
Pre (0.895). Obviously, the SVM-based models showed the better performance than the
RF-based models in this study. Similar conclusions were illustrated in Figure 3. Moreover,
the Sen values obtained by these models were significantly lower than the Spe values.
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This may be caused by the unbalanced sample sizes between T4SEs and non-T4SEs in the
datasets. To balance the Sen and the Spe, we performed the models again by adjusting
the default probability cut-off from 0.5 to 0.4. The corresponding results were seen in
Supplementary Table S1.
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2.3. Performance Analysis of Feature Selection

The two major benefits of feature selection are that it can enhance the generalization of
a classifier by reducing overfitting and shorten the training time by avoiding the redundant
and noisy features. In this section, we showed the effect of the feature selection algorithm
on the performance of T4SEs identification. For this experiment, we performed the jackknife
CV test on the two datasets to find the optimal sets of features by using the two-step feature
selection method based on the RF algorithm. First, each protein sequence was encoded as a
3660-dimensional (3660D) feature vector and these features were ranked according to their
Gini importance scores. Then, the top K features were input into the SVM classifier to select
the most informative feature subset, where K = 10, 20, 30, . . . , 600. Figure 4 illustrated
the results on the Train-915 and Train-1502 datasets. As can be seen from Figure 4, for the
Train-915 dataset, the highest Acc of 0.924 was obtained when K increased to 320. For the
Train-1502 dataset, the Acc reached a maximum value of 0.950 when K was equal to 180.
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Additionally, we compared the performance of the two models with and without
feature selection on the two datasets, as shown in Table 2. For the Train-915 dataset, the
model with feature selection outperformed the one based on the all features in terms of
Acc (0.924), MCC (0.828), Spe (0.963), Pre (0.921), and F-score (0.882), which suggested
that the performance of our predictor could be improved by eliminating the redundant
features. For the Train-1502 dataset, the performance of the 180D-based model was slightly
inferior to that of the model with all features. This demonstrated that the feature selection
technique may reduce the computation time without incurring much loss of information.
Therefore, two optimal models iT4SE-EP (320D) and iT4SE-EP (180D) were constructed on
the Train-915 and Train-1502 datasets, respectively. Clearly, there remained the imbalance
between the Sen and the Spe due to the uneven dataset. The Sen values could be increased
appropriately by reducing the probability cut-off to 0.4 without much loss of the Spe. The
detailed results were listed in Supplementary Table S2.

Table 2. Performance comparison before and after feature selection on the two datasets.

Dataset Feature Acc Sen Spe Pre F-Score MCC

Train-915 All features (3660D) 0.919 0.845 0.955 0.905 0.874 0.816
Optimal subset (320D) 0.924 0.845 0.963 0.921 0.882 0.828

Train-1502 All features (3660D) 0.954 0.879 0.981 0.942 0.909 0.880
Optimal subset (180D) 0.950 0.861 0.981 0.941 0.899 0.867

2.4. Peformance Comparision with Existing Methods

In this section, we further verified the robustness of the proposed model by performing
two independent dataset tests. For a fair comparison with the state-of-the-art methods,
the same training datasets and testing datasets were adopted. Accordingly, the iT4SE-EP
(320D) model trained with the Train-915 dataset was examined on the Test-850 dataset,
and the iT4SE-EP (180D) model trained with the Train-1502 dataset was evaluated on the
Test-180 dataset, respectively. The prediction results of our method and several existing
models were reported in Tables 3 and 4.

As illustrated in Table 3, compared with Wang et al.’s method [15] and PredT4SE-
Stack [7], iT4SE-EP (320D) obtained the best Acc, MCC, Spe, Pre, and F-score (0.956, 0.766,
0.962, 0.697, and 0.783, respectively) on the Test-850 dataset. In addition, the Sen of our
predictor is 0.893, slightly lower than the highest value 0.907 of Wang et al.’s method [15].
It is worth mentioning that PredT4SE-Stack utilized the 400 PSSM-composition features to
represent protein sequence samples and achieved the comparable performance with the
help of a stacked ensemble classifier. This indicated that ensemble classifiers tended to
yield better predictive results by aggregating multiple learning algorithms.
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Table 3. Performance comparison on the Test-850 dataset.

Method Acc Sen Spe Pre F-Score MCC

Wang et al.’s method [15] 0.853 0.907 0.848 0.366 0.521 0.518
PredT4SE-Stack (SVM) 0.945 0.867 0.952 0.637 0.734 0.715
PredT4SE-Stack (LR) 0.944 0.880 0.950 0.629 0.733 0.715

iT4SE-EP (320D) 0.956 0.893 0.962 0.697 0.783 0.766

Table 4. Performance comparison on the Test-180 dataset.

Method Acc Sen Spe Pre F-Score MCC

T4SEpre_psAac 0.889 0.367 0.993 0.917 0.523 0.537
T4SEpre_Joint 0.906 0.500 0.987 0.882 0.638 0.620

T4SEpre_bpbAac 0.889 0.433 0.980 0.813 0.565 0.541
Bastion4 0.950 0.967 0.947 0.784 0.865 0.842

CNN-PSSSA 0.956 0.767 0.993 0.958 0.851 0.833
CNN-Onehot 0.967 0.800 1.000 1.000 0.888 0.877
CNN-PSSM 0.989 0.967 0.993 0.967 0.966 0.960

iT4SE-EP (180D) 0.966 1.000 0.96 0.833 0.909 0.894

Table 4 listed the comparison results of iT4SE-EP (180D) and three annotation tools
on the Test-180 dataset, including T4SEpre [4], Bastion4 [9], and CNN-T4SE [11] (the
data were collected from the previous study [11]). In total, three T4SEpre classifiers (i.e.,
T4SEpre_psAac, T4SEpre_Joint, and T4SEpre_bpbAac), which only took account of C-
terminal sequential and structural features, obtained relatively low MCC (from 0.537 to
0.620), Sen (from 0.367 to 0.500), and F-score (from 0.523 to 0.638). This may be due to
the lack of the whole-length sequence information. To address this problem, Bastion4
improved the performance of T4SEs prediction with the Acc of 0.95 by extracting three
main types of features such as local sequence encoding, global sequence encoding, and
structural descriptor encoding. Besides, the CNN-PSSM, CNN-Onehot, and CNN-PSSSA
models showed the powerful recognition capability of the deep learning algorithm for
the annotation of T4SEs, with the Acc higher than 0.95, the F-score better than 0.85 and
the MCC more than 0.8. In particular, CNN-PSSM obtained the overall best performance
in terms of Acc, F-score, and MCC. It is also remarkable that our method gave the best
Sen and the comparable Acc (0.966 vs. 0.989) and Spe (0.96 vs. 0.993) compared with
CNN-PSSM when only 180D feature vectors were used.

In summary, the proposed iT4SE-EP model achieved the impressive performance and
outperformed most of the existing tools for the prediction of T4SEs. We hope that our
method could be effectively used for the large-scale annotation of T4SEs and at least play
an important complementary role for the experimental validation of T4SEs.

3. Materials and Methods
3.1. Datasets

From the perspective of machine learning, the prerequisite step in developing an
annotation tool of T4SEs is to establish a high-quality benchmark dataset for training and
verifying the prediction model. In this study, 380 T4SEs and 1385 non-T4SEs were directly
collected from a previous study to examine the performance of our proposed method [15].
These proteins in this dataset have mutual sequence similarity no more than 30%. Using
the same strategy in that work [15], the total 1765 protein samples were divided into the
training dataset (termed Train-915) and the independent test dataset (termed Test-850).
Specifically, the training dataset consists of 305 T4SEs and 610 non-T4SEs, which were
randomly selected from the positive and negative classes at a ratio of 1:2. Meanwhile, the
remaining 75 T4SEs and 775 non-T4SEs were adopted as the independent test dataset.

To objectively evaluate the robustness of our predictor, another dataset constructed
by Wang et al. [9] was further studied. This dataset also consists of two parts: the first
one contains 390 T4SEs and 1112 non-T4SEs (termed Train-1502), which was used to train
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the model and perform the CV; and the other one includes 30 T4SEs and 150 non-T4SEs
(termed Test-180), which was applied for the independent test.

3.2. Feature Extraction
3.2.1. PSI-BLAST Profiles

A growing number of studies have found that evolution information encoded in the
PSI-BLAST profiles could provide important clues for a wide variety of protein function
classification tasks [18]. In this study, the PSSM and PSFM profiles of a query protein
with the length of L are two L × 20 matrices, which were generated by performing the
PSI-BLAST search against the UniRef50 [20] database with a threshold value of 0.001 and
three iterations [19]. The (i, j)-th elements of two resulting profiles represent the log odds
and weighted observed percentages of the j-th amino acid occurring at the i-th position of
the query sequence during evolution, respectively. To facilitate the subsequent analysis,
the elements of two matrices were normalized to reduce the noise and bias using the
following formulas:

f(x) =
1

1 + e−x (1)

g(x)= x/100 (2)

The standardized PSSM and PSFM profiles are accordingly denoted as follows:

P = [p i,j] (1 ≤ i ≤ L, 1 ≤ j ≤ 20) (3)

M = [m i,j] (1 ≤ i ≤ L, 1 ≤ j ≤ 20) (4)

3.2.2. Amino Acid Composition

AAC is represented as a 20-dimensional feature vector that calculates the frequencies
of 20 standard amino acids in a protein sequence [21]. Given a PSSM, the corresponding
AAC descriptor is defined as:

PSSM_AAC =
[
P1, P2, . . . ,P20

]
(5)

where Pj =
1
L ∑L

i=1 pi,j(1 ≤ j ≤ 20).

3.2.3. Evolutionary Difference Transformation

The EDT was often used to measure the non-co-occurrence probability of two amino
acids with a position interval of d in a protein during evolution [22]. The resulting feature
vector computed from the PSSM profile can be denoted as:

PSSM_EDT =
[
fx,y,d

]
(6)

where

fx,y,d =
1

L− d

L−d

∑
i=1

(
pi,x − pi+d,y

)2
(1 ≤ x, y ≤ 20, 1 ≤ d ≤ D) (7)

and D represents the maximum value of d. Hence, the size of the PSSM_EDT descriptor is
400 × D.

3.2.4. Auto-Covariance and Cross-Covariance

The physicochemical properties of amino acids written into a protein sequence
are commonly believed to be key determinants of the protein structure and function.
Kidera et al. demonstrated that the 20 natural amino acids can be well represented by
the 10 linearly independent property factors, which account for an 86% variance of the
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188 selected properties [23]. Thus, a property factor matrix (PFM) can be applied to encode
20 amino acids, denoted by

H = [h i,j] (1 ≤ i ≤ 20, 1 ≤ j ≤ 10) (8)

where hi,j is the j-th property factor of the i-th amino acid.
Here we first employed PSFM and PFM to generate the position-specific physicochem-

ical properties (PSPCP) using the similar strategy designed by Du and Yu [24]. The PSPCP
is defined as a matrix of L × 10, which is derived from the product of two matrices M and
H. Each element in the PSPCP is given by the following formula:

si,j =
20

∑
k=1

mi,khk,j (1 ≤ i ≤ L, 1 ≤ j ≤ 10) (9)

Then, we computed the ACC features from the PSPCP as described previously [25]:

PSPCP_ACC =
[
tx,y,g

]
(10)

where

tx,y,g =
1

L− g

L−g

∑
i=1

(
si,x − Sx

)(
si+g,y− Sy

)
(1 ≤ x, y ≤ 10, 1 ≤ g ≤ G) (11)

Sj =
1
L

L

∑
i=1

si,j (1 ≤ j ≤ 10) (12)

and G is the maximum value of the lag g. By setting G = 10 based on the past experience,
we obtained a 1000-dimensional feature vector for the ACC descriptor.

3.2.5. Discrete Wavelet Transform

The DWT has recently become very popular when it comes to analysis, de-noising and
compression of signals. The outputs of a single-level 1-dimensional DWT are composed
of two parts: the approximation coefficients vector and the detail coefficients vector. The
former represents the high-scale and low-frequency components of input signals, while the
latter is opposite [26].

In this study, each column of a PSFM was first treated as a set of the discrete signal.
Next, inspired by Nanni’s work [27], the biorthogonal 3.3 wavelet type was chosen with a
decomposition level of 4 to perform the 1-dimensional DWT. Finally, we computed the first
five discrete cosine values from the approximation coefficients, and the mean, minimum,
maximum, and standard deviation values of both the approximation and detail coefficients.
As a result, the 1040 features were extracted as the PSFM_DWT descriptor.

3.3. Feature Normalization

In machine learning, the trained model will not work properly without the normal-
ization of features because the range of original features varies widely. Therefore, feature
scaling is generally considered to be an important preprocessing step towards improving
the performance of the predictive models. In this study, the min–max normalization was
adopted to rescale the raw features into the range of 0 to 1, given by

X′ =
X−min(X)

max(X)−min(X)
(13)

where X is the original value, and X′ is the normalized value.
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3.4. Model Construction
3.4.1. Support Vector Machine

As one of the most powerful supervised learning algorithms, SVM has been success-
fully applied to an increasingly wide variety of bioinformatics applications, especially
the protein classification tasks [28–30]. Theoretically, SVM maps the training examples to
points in a high-dimensional space so as to find the maximum-margin hyperplane which
might separate the two categories. New testing examples are then mapped into the same
space and predicted to belong to a category based on which side of the hyperplane they fall.
In addition to handling linearly separable datasets, SVM performs well on the non-linear
classification problems by using the kernel trick. The common kernels include linear,
polynomial, radial basis function (RBF), and sigmoid [31]. In this study, the RBF kernel was
adopted to carry out the prediction because it often gives better results in the previous stud-
ies. The two parameters C and γ were optimized in the ranges of

{
2−5, 2−3, . . . , 213, 215

}
and

{
23, 25, . . . , 2−13, 2−15

}
by running a grid search program.

3.4.2. Random Forest

As the name suggests, RF is a tree-based ensemble predictor that fits a number of
decision tree classifiers on various sub-samples of the given dataset and takes averaging
to improve the predictive accuracy. Actually, RF makes full use of two popular machine
learning techniques: bagging and random selection of features. In bagging, each tree is
trained on a random sample with replacement of the training set, and predictions are made
by taking the majority vote of trees. RF is similar to bagging except that a random subset
of the features is selected at each candidate split when growing a tree [32]. Since the RF
algorithm is simple in theory and easy to realize, it has a wide range of applications in
bioinformatics [33,34].

Unlike most other classifiers, RF can directly perform feature selection by calculating
the importance of each feature while classification rules are built. Feature importance score
is used to rank these features and then the optimal feature subset can be selected by means
of an incremental stepwise greedy method. Both Gini importance index and permutation
importance index are the two commonly used variable important measures based on
RF [35]. In this study, the former was adopted and the RF algorithm was implemented by
utilizing the scikit-learn library in Python [36].

3.5. Performance Evaluation

To impartially measure the performance of the proposed method, we carried out two
types of validation tests: the jackknife CV and the independent dataset test, accompanied
by the following six quantitative metrics. They include sensitivity (Sen), specificity (Spe),
accuracy (Acc), F-score, precision (Pre), and Matthew’s correlation coefficient (MCC),
defined as follows:

Sen =
TP

TP + FN
(14)

Spe =
TN

TN + FP
(15)

Acc =
TP + TN

TP + FP + TN + FN
(16)

F-score = 2 × TP
2TP + FP + FN

(17)

Pre =
TP

TP + FP
(18)

MCC =
(TP × TN) − (FN × FP)√

(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)
(19)
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where TP, FP, TN, and FN represent the numbers of the true positive, false positive, true
negative, and false negative, respectively. In addition, the receiver operating characteris-
tic (ROC) curve was created to visually illustrate the diagnostic ability of our predictor
by plotting the true positive rate (TPR) against the false positive rate (FPR) at different
thresholds. Note that TPR is equivalent to Sen, and FPR is equal to 1-Spe. The area under
the ROC curve (AUC) was also computed and provided in the ROC figure, as a reliable
performance measure.

4. Conclusions

The biological significance of effector proteins has motivated the development of
computational tools that facilitate accurate annotation of T4SEs based on their protein
sequences alone. In this study, we proposed a method iT4SE-EP to further improve
the predictive performance of T4SEs by exploring the evolutionary information encoded
in two PSI-BLAST profiles. Firstly, four types of feature descriptors were designed to
represent all the T4SEs and non-T4SEs from the working datasets, including PSSM_AAC,
PSPCP_ACC, PSFM_DWT, and PSSM_EDT. Secondly, the RF algorithm was implemented
to rank all features according to their Gini importance scores and then the optimal 320
and 180 features were selected to construct the final SVM-based predictors, respectively.
Thirdly, both the jackknife CV and the independent test were performed to verify the
performance of iT4SE-EP. Comparison with the state-of-the-art predictors demonstrated
that our method exhibited the impressive improvement and could serve as a useful tool for
identifying T4SEs. All the datasets and the source codes for this study are freely available
at https://github.com/taigangliu/iT4SE-EP. In the future, we will develop a user-friendly
web server for public use.

Supplementary Materials: The following are available online, Table S1: Prediction results of the
SVM and RF classifiers based on different features with the cut-off of 0.4, Table S2: Performance
comparison before and after feature selection with the cut-off of 0.4.
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