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1. Introduction
The outbreak of coronavirus disease 2019 (COVID-19) infectious disease that started in

the Hebei capital city, Wuhan, China, in November 2019 and spread like a wildfire to

every continent in the world is unfolding from a global health crisis to an economic

emergency posing a major threat to sustaining the world economy. According to the May

18, 2020, report from Worldometers, there are 4,819,102 confirmed cases of infected

people and 316,959 deaths worldwide. On March 11, 2020, COVID-19 was declared as a

pandemic by the WHO owing to its global spread, that is, approximately 4 months after

the first case on November 17, 2019.

COVID-19 belongs to the family of coronavirus that can cause severe illness to

humans and eventually lead to the death of the infected person. The first known case of

viral attack from the family of coronavirus is the severe acute respiratory syndrome

(SARS) that occurred in 2003 [1e3]. The second case is the 2012 Middle East respiratory

syndrome (MERS) outbreak in Saudi Arabia [4,5]. COVID-19 is the third viral attack from

the family of coronavirus that is currently ravaging the lives of many globally. The rapid

spread and growth pattern of COVID-19 is very alarming, spreading across the world

within 3 months. The entire world is shaking and trying to catch its breath owing to the

shocking impact of the new and rising COVID-19 pandemic. After the reported first set of

cases, human-to-human transmission has been singled out as the most significant

reason responsible for the explosive rapid spread of the virus throughout the world. The

situation is similar in this vein all over the world where both incidence and prevalence
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rates are simultaneously on the rise in the past 6 months. The government of different

continents have implemented containment strategies, which include nationwide lock-

downs, screening at key places, and quarantine of suspected people in specified isolation

centers, among others, to limit the spread of this disease. Nevertheless, the cumulative

incidence of COVID-19 keeps growing every day in most countries while the discharge

rate is comparatively insignificant. The world wonders what the exact spread pattern of

the epidemic is, how long it takes for a carrier of the virus to be able to infect others with

it, and when it will begin to subside. Recently, many research and developmental studies

have been put in place toward drug development for the treatment of COVID-19 patients

as well as vaccine formulation for prevention of the spread. Contrarily, modeling the

available epidemiologic data about COVID-19 cases has remained a unique research

focus in different parts of the world. While dynamics of human mobility and interactions

have limited the outcome, output documented from recent studies show that effective

data logging and predictive modeling could enhance public health planning and assist

policymakers to make better differentiated decisions that could be useful in different

parts of the world [88].

Epidemiologic data collection, modeling, and predicting trends are important for

providing effective public intervention strategies [60,61,82]. Currently, researchers are

making concerted efforts to understand the spread pattern and predict the growth rate in

different communities and countries. Among these efforts, the ones in Asia appear more

prominent; the reason is not far-fetched as the outbreak of the disease emanated from

there. Many of the other studies outside Asia also rely on the Asian data of the epidemic

for modeling and predicting their own spread of cases and future outbreak projection [78].

Different models ranging from statistical modeling techniques [6e10] like susceptible-

exposed-infectious-removed (SEIR) model, susceptible-infectious-removed (SIR) model,

susceptible-infectious-quarantine-recovered (SIQR) model, logistic growth model (LGM),

susceptible-infectious-recovered/death (SIRD), GIS-based spatial model (SLM), spatial

error model (SEM), multiscale geographically weighted regression (MGWR) [51], simpli-

fied model [55], and Bayesian LGM [56] have been applied with success. Others include

sentiment analysis [42], deep learning [46], and machine learning methods [49] that have

proved very useful in epidemiologic and clinical research for data analysis, forecasting,

and decision-making on COVID-19 and have been adopted across different continents of

the world. The most prominent of these models for infectious disease forecasting are the

compartmental epidemic models, such as SEIR [11], SIR [12], SIQR [13], LGM [14], and

SIRD [15], which were used to simulate the COVID-19 epidemic situation in Asian studies

[28,33,35,40,44,47,51,57], Africa [66], South America [62], Europe [72,77,82], and Australia

[84,85,86,87], respectively. Also, another widely used model is the Cox regression models,

which were used for modeling COVID-19 epidemic situations in Rwanda [20] and China

[21]. Variants of SIR have been used across all the continental studies. They, however,

found predominant use in Asia and North America. Logistic models have also found wide

use in North America [56,58,59] and Europe [72,82].

Despite the potentials of statistical models for epidemiologic research, especially in

forecasting the spread patterns of infectious diseases like COVID-19, the accuracy of

such predictions have raised several concerns among many researchers [22e24], and
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machine learning algorithms have been suggested as a better alternative to statistical

models for a more accurate prediction of spread patterns of infectious diseases [25e27].

In addition to the predicting power of the model adopted, the availability of sufficient

and reliable data has been found to be paramount to accurate modeling and prediction.

Understanding the spread pattern of COVID-19 that has shown to exhibit some dif-

ferences compared to other recent outbreaks would be of great assistance to epidemi-

ologists and other personnel in the public health sector in providing an efficient way of

alleviating the effects of the pandemic. This information will be useful for the govern-

ments and other relevant agencies to carry out essential activities and effective policy-

making that could help in the situation of future occurrence of related situations [28].

The pattern and projection of the spread across different countries of the world have

varied as can be seen from different studies. In particular, the pandemic has exhibited a

nonlinear and complex nature [29]. In addition, different methods have been adopted by

the existing studies for modeling and prediction. Furthermore, COVID-19 cases are still

emerging and reemerging across countries and continents. Hence this chapter is aimed

at presenting a review of the various studies geared toward modeling and predicting

COVID-19 spread patterns in a continent by continent form. It also presents a current

situation report based on the general outcome of this analysis.

2. A continental review of modeling and prediction studies
This section presents an analysis of the current confirmed and death cases in the world,

as depicted in Fig. 16.1. Also, it shows the analyses of the studies that have been carried

out on the spread of COVID-19 from different continents, with nations represented as

bubbles, sized relative to the number of cases in the respective continents and colored

according to the continents. As shown in Fig. 16.1, Europe has more countries with high

COVID-19 case numbers and deaths compared with other continents.

Tables 16.1e16.6 present an analysis of the model types considered in this study per

country along with the deduction inferred from the aggregation of studies in Asia, North

America, South America, Africa, Europe, and Australia, respectively.

FIGURE 16.1 Bubble chart of confirmed cases and deaths of coronavirus disease 2019 (COVID-19).

Chapter 16 � Modeling and predicting the spread of COVID-19 301



Table 16.1 Asian studies.

Country/models Publication inference

China
SEIR, LSTM-RNN [16,28], modified
stacked auto encoder [29], Spatial Moran
index, space-time Cube (STC) [30], Moran
index [31], sentiment analysis [42], 3D
deep learning [46], machine learning
methods [49]

Artificial intelligence approach predicts better than statistical measures
and aids in public health planning and policy-making. Machine
learning is a veritable tool for studying genomics in COVID-19.
Implementing control measures on stipulated date reduced eventual
COVID-19 epidemic size. Prediction shows that the epidemics will end
in the middle of April. Forecasting improves when the data are
reliable and the training time is long. There is a positive correlation of
the confirmed cases in the regions under study via the spatial
distribution. The spatiotemporal distribution of cases is uneven.
Population-based neighborhood formation showed a strong spatial
association. Infected person numbers in densely populated regions
may likely increase. Results provided some consistency with the actual
situation. Deep learning distinguished COVID-19 from community-
acquired pneumonia and other nonpneumonic lung diseases by using
chest CT The number of confirmed cases is expected to exceed
76,000. COVID-19 is still an unclear infectious disease.

India and multiple countries with
India
Tree-based models [32,34], SEIR and
regression model [35], fixed
compartmental SEIR, Stochastic model
[36]

A close match between analytical results and the available results
shows the actual trend of the derived model. Lockdown and social
distancing had been effective in preventing disease spread. An
approximate estimation of new cases can be performed easily.
Lockdown policies in India played an important role in eradicating the
COVID-19 spread. Likelihood of increase in the number of cases.
India’s healthcare resources may be overwhelmed by the end of May.

South Korea
Variants of SEIR model [33,51]

Aging, time delay for control action and susceptibility of the
recovered cases were considered in setting up the model due to early
growth rate among the elderly. Model was able to predict the
number of isolated patients over time identifying the exact number of
beds required in advance and establish a response strategy for a
pandemic characterized by large-scale cluster outbreaks.

Iran with Bahrain, Iraq, Kuwait,
Oman, Afghanistan, Pakistan
Gompertz, von Bertalanffy, LSE models
[37], linear regression, and LSTM model
[38], binomial-distribution likelihood
framework, chi-square [39]

The trend of COVID-19 that had been increasing was expected to
flatten from the end of April 2020 if appropriate public behavior and
government intervention are put in place. Predictions are helpful for a
base idea to build accurate models from more aggregation of data.
Underreporting occurred largely at an early stage of COVID-19
outbreak. Model estimates were consistent with previous research.
Continuous spread of epidemic from Iran to neighboring countries is
fragile to the public health systems of the Middle East.

Japan
Stochastic model extension to SEIR [40],
cumulative density function, likelihood
function, and Weibull distribution [41]

The number of infected and removed cases are expected to increase
rapidly with no reduction of the time spent in crowded zone. 4 h
spent showed stagnant growth of spread. Infection and spread are
meant to reduce if hours spent is cut to 2 h. Most infections occurred
before the quarantine commenced.

Malaysia
Curve fitting model, SIR, System dynamics
[43]

Forecasts from each of the models suggested the epidemic may peak
between the middle of April to the end of May 2020.
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The review includes 69 articles. Articles focused on Asia (34.8%) and Europe (23.2%)

were dominant. North America and South America contributed to 14.5% and 8.7% of the

articles, respectively. About 6.8% were each from Africa and Australia. An additional 7.2%

focused on multiple continents (Fig. 16.2).

Table 16.7 shows that the articles used diverse modeling techniques to explore the

current patterns of the pandemic, predict its dynamics, and assess how effective the

different public health policies were. Most of the articles (42.3%) used compartmental

epidemiologic models (SIR, SEIR, SIRD, SIQR, moving-in-move-out SEIR, SEIRS). LGMs

were also used in 8.5% of the articles. Advanced machine learning techniques such

artificial neural network (ANN), deep learning, and decision trees were used in 10.16% of

the articles. Time series-based models were also used in 5.08% of the articles. Other

models used include exponential growth model, graph-plot-based comparative analysis,

Gompertz model, Richards growth model, sentiment analysis, solvable delay model, and

Australian census-based epidemic model.

3. Discussion
A few studies have been carried out in Africa, of which four focused exclusively on

African countries and two considered Africa with other continents (namely, Asia and

Europe). Studies suggest the risk is still very high in less urbanized countries, and hence

the countries that are least connected to the world are more likely to record lower and

slower transmissions at the early stages of an epidemic [8]. However, it was predicted

that by June 30, 2020, around 16.3 million people in Africa would have contracted

Table 16.1 Asian studies.dcont’d

Country/models Publication inference

Philippines
SEI model [44]

Results from model estimation show that the exposure time is a
significant factor in spreading the disease. Attendees of social
gatherings should stay for less than 9 h.

Saudi Arabia
Naïve Bayes [45]

There is visible support and positive attitude toward the infection
control measures to combat COVID-19 from Saudi’s tweets using
sentiment analysis.

Armenia, Kazakhstan, Kyrgyzstan,
Moldova, Uzbekistan, Azerbaijan,
Georgia, Russia, Ukraine, and Belarus
SEIR model [47]

Model complies with strict preventive measures to substantially
reduce the spread of COVID-19. The untimely loosening of these
measures, in the worst-case scenario, could lead to a dramatic
increase in the number of active cases and a possible prolongation of
the epidemic.

Singapore
FluTE, agent-based influenza epidemic
simulation model [48]

A combined approach of interventions (e.g., quarantine, school
closure, and workplace distancing) is more effective prevent
infections.

COVID-19, coronavirus disease 2019; CT, computed tomography; SEIR, susceptible-exposed-infectious-removed; SIR, susceptible-

infectious-removed.
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COVID-19 [8]. As of May 19, 2020, the total number of cases in Africa is 84,521. The

prediction of Achoki et al. [8] then suggests an increase of more than 16 million cases in

the next 1 month (to June), which is very unrealistic. Mbuvha and Marwala [17] sug-

gested that the combination of prompt preventive and control measures, demographics,

and social factors has resulted in reducing the spread of COVID-19 in South Africa.

Similar mitigating measures are in force in many African countries, and based on this, it

is unlikely that the prediction by Achoki et al. [8] will be realistic. However, it is also true

that there may be a strong underdetection due to limited tests, which might lead to

underestimation of the actual cases in national reports. But even in those cases, a pre-

diction of an increase of more than 16 million cases in the next 1 month might not be

realistic. It has been claimed that the virus will spread more slowly in Africa, particularly

in sub-Saharan Africa, due to the warm climatic conditions, but this hypothesis was

disproved by Ayebare et al. [68]. However, Ayebare et al. [68] further stated that a rapid

Table 16.2 North American studies.

Country/models Publication inference

Canada
Age-structured compartmental model [50]

Active social distancing helps in maintaining health system capacity
and also allows periodic emotional and economic recess for the
masses.

United States
GIS-based spatial model (SLM), SEM,
MGWR [51], logistic models, variants of
SEIR model [53], simplified model [55],
Bayesian logistic growth model [56]

Geographic modeling of COVID-19 is a predictive tool useful for
measuring future disease outbreak. Mitigating the contact rate plays
a role in regulating the widespread of disease at an early phase, and
staying long in quarantine would decline the scale of cases after the
peak.
The trajectory path of COVID-19 can be measured in highly
populated metropolitan areas by simply fine-tuning two control
factors related to (1) populated areas and (2) initiative response from
an organization/public to epidemics.

United States and Canada
Dynamic multimodel [52]

Preliminary data evidence from the author shows that the infection
tracks in both countries keep on changing.

United States and other countries
SEIR model and machine learning [57],
hierarchical logistic model [59]

COVID-19 outbreak is controllable in the foreseeable future if
comprehensive and stringent control measures are taken.
Data of anticipated cases and the shape and pace of the long-term
course of the epidemic can be shown.

Mexico
Discrete and time-dependent Markov
chain, modified SIR model [54], SEIARD
model [6]

The probability distribution of COVID19 is envisaged in every state in
Mexico if there is no precautionary measure of constraint.
It is significant to consider the symptom-free infected persons, as they
represent the major percentage of the infected people and could play
a critical role in the spread of the virus without their knowledge.

Honduras, Ecuador, Costa Rica,
United States
Logistic model, SIR model [58]

The study forecasts the spread of COVID-19 in Honduras and the
model prediction fitted well when tested in predicting the spread for
other countries.

COVID-19, coronavirus disease 2019; MGWR, multiscale geographically weighted regression; SEIR, susceptible-exposed-infectious-

removed; SEM, spatial error model; SIR, susceptible-infectious-removed.
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acceleration in the number of cases will likely overpower the existing weak health

infrastructure. Hence swift action to control the spread in West Africa is required.

Considering the measures that have been taken in most of these countries, a rapid ac-

celeration in the number of cases is unlikely, unless compliance to those measures are

low. Current statistics in Africa are rather suggesting that the pandemic spread is low.

The governments of almost all African nations have implemented containment strategies

that include nationwide lockdowns, screening at key places, and quarantine of suspected

people in specified isolation centers [8]. However, the situation report of the past

3 months shows a simultaneous and gradual rise in both incidence and prevalence rates

(of COVID-19). As the world battles with the search for drugs/vaccines that can alleviate

the effect of the pandemic, efforts are also being directed at finding out the exact spread

pattern of the epidemic, how long it takes for a carrier of the virus to be able to infect

others with it, and when it will begin to subside. Currently, modeling of spread patterns

as well as prediction of spread rates seem to be the major tools being used by most

researchers. Aggregation and analysis of relevant data by researchers, modelers, health

organizations, governments, and policymakers is definitely the way forward. Indeed,

large-scale collection of real-time data could help curb the COVID-19 pandemic.

There are, however, a number of teething challenges/bottlenecks to COVID-19-

related modeling and prediction in Africa and other low-income settings. First, the

Table 16.3 South American studies.

Country/models Publication inference

Peru
SIR model [60], predictive Bayesian
nonlinear model [61]

Imprecise data collection and reporting existed at the early stages of
the pandemic. Epidemiologic modeling and prediction helps
authorities to monitor and implement strategies in order to manage
the COVID-19 pandemic.

Brazil
SIQR model [62], SIR model [9],
data-driven age-structured census-based
SIRD-like epidemiologic model [64]

The number of quarantined individuals grew exponentially, stabilized,
and afterward decayed to zero. The long-term simulations forecast
the optimal date to end the policy. It is important to adopt measures
to test the population.
In Brazil, there was the need for more intensive care units to avoid
future overloading. There was the proposal of an urgent intense
quarantine in order to minimize the number of severe cases and
deaths. The need to delay the relaxation of the isolation measures in
order to reduce spread was also recommended.

Brazil, China, Italy, Spain, Iran,
Germany
RGM [63]

The fatality curves of Italy, which were in the middle and China in the
late stage of the COVID-19 pandemic were well presented. The
possibility of adopting effective countermeasures only existed with a
narrow window of opportunity.

Chile
Cubic adjustment model, exponential
total case model [18]

The exponential total case model revealed the daily effort to reduce a
high initial daily growth rate.

COVID-19, coronavirus disease 2019; RGM, Richards growth model; SIQR, susceptible-infectious-quarantine-recovered; SIR,

susceptible-infectious-removed; SIRD, susceptible-infectious-recovered/death.
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General Data Protection Rules/Policies (GDPR) across nations could prevent the release

of personal data of citizens without their consent, and this is a great challenge to

modeling and prediction. Governments of nations may have to carefully override some

of these rules for the greater good of combating the dreaded COVID-19. Alternatively, as

a matter of urgency, governments should enact policies/strategies for sharing data with

minimal privacy issues for analysis/predictive research. Second is the problem of data

availability or even the challenge of “missing data.” Currently, limited data are available

on the early growth trajectory, and there is lack of transparency in data sharing protocols

of most African countries [68]. Furthermore, scarce data (epidemiologic) on COVID-19

adds uncertainty to models of how COVID-19 will spread. This lack of data could also

be the reason why several predictions exist for diverse models in the literature. This is

especially true, as assumptions are still being made by different scientists/modelers on

the behavior of COVID-19. While some believe COVID-19 behaves like influenza

(therefore use influenza data), others believe it behaves like SARS-CoV (hence use SARS

data). These different assumptions are likely to lead to very different COVID-19 model

Table 16.4 African studies.

Country/models Publication inference

Nigeria
Exponential growth model [65]

Epidemiologic statistics relating to COVID-19 epidemic in Nigeria at
the initial stage were scanty, yet the probability of future threats and
numerous asymptomatic cases in Nigeria is high.

South Africa
SIR compartmental model [66]

COVID-19 in South Africa was at its early stage then, but the study
reported the possible effectiveness of mitigating procedures,
demographics, and societal issues in decreasing the spread rate of the
pandemic.

Uganda
Modified COVID-19 screening/triage
algorithm [67], co-variate-based
instrumental variable regression model [17]

A screening algorithm for COVID-19 that could be adopted for
training health personnel on effective triage of patients, especially in
low-income settings in Sub-Saharan Africa, was produced. It could
also serve as a rapid and simple tool providing decision support on
patients who needed to be isolated or directly tested for SARS-CoV-2

Ghana
Graph-plot-based comparative analysis of
COVID-19 data in Johns Hopkins Center
for Systems Science and Engineering [68]

Comparative analysis does not support the hypothesis that the spread
will be slower in warmer climates. A rapid acceleration in the number
of cases will likely overpower the existing weak health infrastructure.
Hence, swift action to control the spread in West Africa is required.

Rwanda
Cox regression, K-means clustering [8]

Nations having general, demographic, and prior health weaknesses to
serious COVID-related ailment and death are less expected to report
cases. Even if they do, they report with little or no information made
available to the public.

Senegal
WHO report monitoring and assessment
charter, IDV index clustering [69]

African nations imported COVID-19, and many of them were getting
prepared to combat the associated challenges. Improvement of
surveillance strategies and large-scale capacity building were required
to prevent onward spread.

COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SIR, susceptible-infectious-

removed.
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Table 16.5 European studies.

Country/model Publication inference

Italy
Generalized linear model [20], Gauss
error function and Monte Carlo
simulation [70], SEIRD model [71],
solvable delay model [10], logistic growth
model [72], stochastic SIR model [73],
ARIMA [74,81], artificial neural network
(modified auto encoder) and SEIR
model [83]

Strict control measures by the government can efficiently limit the
spread of the virus to nearby areas. Model provides good forecasts of
the number of COVID-19 infections at local level and peak date of
the number of daily positive cases and declaration of cases. Models
could be easily adapted to monitor other infected areas that have
varying restriction policies. If containment measures are implemented
by the government, the spread of COVID-19 virus can be mitigated.
Predictions tend to improve as new cases are confirmed daily, which
can assist the government to make decisions. The SEIR model
produced a better prediction of active cases. Continuation of
restrictive measures and strict compliance with rules on gatherings,
travel restrictions, and closure of commercial activities may reduce the
size of the epidemic.

Belgium
Semimechanistic Bayesian hierarchical
model [75]

There will be reduced growth in the number of daily reported cases if
control interventions are enforced and implemented early enough.
Bayesian models ensured that the modeled deaths can reproduce
observed deaths as closely as possible.

France
Individual SEIR (iSEIR) model and turning
phase concept [76], SIRD model [77]

Turning phase is vital to emergency planning during an outbreak.
Model provides a timeline for effective actions that help fight the
pandemic. Public health officials are provided with estimates that are
more realistic (in terms of time, magnitude, and maximum number of
infected people).

Ukraine
SIR model and Statistics-based
method [78]

Prediction accuracy increases as the number of daily observations
increases. Prediction also reduces if control measures are relaxed or
newly infected people come into the country.

Spain
Support vector regression and random
forest [19]

Possibility of supplying information about the behavior of variables of
interest on the virus spread on a short-term basis. Ensemble model
predicts outbreak 7 days ahead for hospitalized and ICU patients.

United Kingdom
ARIMA model [79], nonlinear
autoregressive artificial neural network
(ANN) [80]

The challenge of exponential growth should be combated with
aggressive interventions. To control the pandemic and its infection at
the hospital level, there is the need to adopt rapid control measures.
Model predicts a huge number of confirmed cases in Austria,
Belgium, Norway, Switzerland, the United Kingdom, and Netherlands
but with negligible number of recovery and death cases. The larger
the data (confirmed cases), the higher the prediction rate. AI is
efficient in forecasting future cases and deaths of coronavirus
outbreak by using historical data.

Germany
Logistic growth model and SEIR
model [82]

Epidemiologic data collection, modeling, and predicting trends are
important for providing effective public intervention strategies.

AI, artificial intelligence; ARIMA, autoregressive integrated moving average; COVID-19, coronavirus disease 2019; ICU, intensive-care

unit; SEIR, susceptible-exposed-infectious-removed; SEIRD, susceptible-exposed-infectious-removed-dead; SIR, susceptible-infectious-

removed; SIRD, susceptible-infectious-recovered/death.
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predictions. Besides, the problem of missing data is huge. The actual number of infected

persons, for instance, may differ from the number of reported cases, thus making even

the scarce data not a true reflection of reality. Missing or inaccurate data in Africa can be

attributed to weaker surveillance systems, poor contact tracing and active case detection,

slow testing and clinical diagnosis, and the challenge of asymptomatic patients or car-

riers of the COVID-19 virus [8,68,69]. Third is the fact that although a number of sta-

tistical models exist for the prediction of disease spread, a lot of them are not suitable for

the prevailing circumstances in Africa, as some of the parameters for effective working of

such models are lacking or completely unavailable in some low-income settings like

sub-Saharan Africa [8,17].

For South America, we came across seven articles mainly from Peru, Brazil, and Chile.

In Peru, the number of cases is expected to peak at around 13,000 infected people

around April 22 [62]. In addition, assuming an intervention level similar to the one used

in China, the total number of deaths in Peru is expected to be 612 [63]. As of April 29, the

number of cases is 31,190, which is more than two times the predicted peak. In addition,

Table 16.6 Australian studies.

Country/model Publication inference

Australia
Australian census-based epidemic model
(ACE-Mod) [84], individual-based
(UK-based) Simulation model and
compartmental model [85], risk stratified
transmission model [86], SARIMA
model [87]

Government should enforce strict compliance with laid down
strategies to curtail the spread of the virus, as low compliance leads
to an increase in the spread of the virus. Isolation alone is not
sufficient to curtail the spread. A combination of measures is needed
to strengthen overall decrease in cases. Also, records of travel
patterns of residents and foreign travelers will assist in
implementation of new COVID travel restrictions.

SARIMA, seasonal autoregressive integrated moving average.

FIGURE 16.2 By-continent distribution of the 69 articles included in this review.
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the number of deaths is 854 as of April 29, 2020. These statistics indicate that the current

observed values greatly differ from the predicted ones. The higher number of current

deaths compared to the 612 predicted might be due to the fact that the measures taken

in the country are not similar to those of China. In this line, Canabarro et al. [66], in their

Brazilian study, concluded that there are inadequate measures put in place to combat

the pandemic and proposed an urgent intense quarantine to avoid the situation of

overwhelming their health systems with cases invariably. Also, the study proposed a

delay in the relaxation of the undergoing isolation measures in order to avoid an increase

in the spread of the infections in a short period. Other studies in the region also suggest

that there is a narrow chance, after the onset of the epidemic, during which the gov-

ernment can execute effective countermeasures [18]. Moreover, Gilbert et al. [70] suggest

that the current policies should be prolonged, if not, they will only be able to shift the

Table 16.7 By-model distribution of the 69 articles included in this review.

Model type Qty %

Compartmental model (SIR, SEIR, SIRD, SIQR,
moving-in-move-out models)

35 42.37

Logistic growth model 5 8.47
Regression model 5 8.47
ANN 3 5.08
Predictive Bayesian nonlinear model 3 5.08
Time series models 3 5.08
Deep learning 2 3.39
Exponential growth model 2 3.39
Graph-plot-based comparative analysis 2 3.39
Simulation model 2 3.39
Spatial Moran index 2 3.39
Australian census-based epidemic model (ACE-Mod) 1 1.69
Binomial-distribution likelihood framework 1 1.69
Cox regression 1 1.69
Cubic adjustment model 1 1.69
Gauss error function 1 1.69
Gompertz model 1 1.69
K-means clustering 1 1.69
Richards growth model (RGM) 1 1.69
Risk stratified transmission model 1 1.69
Screening/triage algorithm 1 1.69
Sentiment analysis 1 1.69
Solvable delay model 1 1.69
Space-time cube (STC) 1 1.69
Tree-based model 1 1.69
von Bertalanffy growth model 1 1.69
Weibull distribution 1 1.69

ANN, artificial neural network; SEIR, susceptible-exposed-infectious-removed; SIR, susceptible-infectious-removed; SIQR, susceptible-

infectious-quarantine-recovered; SIRD, susceptible-infectious-recovered/death.
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peak of infection into the future, keeping the value of the peak in almost the same value.

Also, authors suggested the importance of testing the population as a means to combat

the pandemic.

In North America, emphasis related to modeling found in the literature focuses more

on the United States, Mexico, and Canada [52,53,55], while other countries in the region

with a growing intention and spread of the epidemic are yet to be considered. Also,

limited data are available on the early growth trajectory and lack of transparency in data

sharing protocols of most countries in the continents under consideration [54]. There are

few studies on modeling and prediction that have leveraged on the available COVID-19

data in the North American region. Most authors still use China and Italy datasets to

predict the spread in other countries, which may be uncertain [6,56,61]. Therefore dis-

ease models are built on assumptions and historical data collected from other diseases.

Furthermore, studies have shown that there are different preventive measures carried

out in curbing the spread of COVID-19 in North America, and the effectiveness of these

measures can be subject to the policymaker’s informed decision in specific countries of

the studies [55e57].

Asia is one of the continents that has been active on COVID-19 research. Combining

AI with classical compartmental models provides a better prediction of the disease

spread [16,46]. Using AI, Rabajante [46] predicts the epidemics will end in China by the

middle of April. The number of daily cases in China has considerably dropped down,

although the risk of a second wave of the pandemic is still permanent. As could be ex-

pected, Kang et al. [33] found that the number of infected persons in densely populated

regions may likely increase and the need to further prevent the transmission, possibly to

avoid a second wave. In particular, the number of confirmed cases in China is expected

to exceed 76,000 [43], and current statistics (82,858 cases as of April 29, 2020) are in line

with this prediction. The authors, however, reported COVID-19 as still an unclear in-

fectious disease. In India the lockdown and social distancing measures were found to be

effective in preventing the disease spread [34,36]. Using linear regression, Pandey et al.

[37] found overfitting as a major problem with disease spread time series data and that

shortage of training data needs to be addressed. As found in South America, Chatterjee

et al. [38] also reported that healthcare resources may be overwhelmed, specifically by

the end of May 2020, in India. In Iran, the epidemic is predicted to flatten as from April

28, 2020, if appropriate public behavior and government intervention are in place [39].

Large underreporting at an early stage of the COVID-19 outbreak has also been high-

lighted in many countries including Iran, Bahrain, Iraq, Kuwait, Oman, Afghanistan, and

Pakistan [41]. In Japan, Karako et al. [42] found that infections and spread are meant to

reduce if hours spent in crowded zones are cut to 2 h. Many of the restriction policies put

in place as a result of the outcome of various research carried out using data-driven AI

and epidemiologic models have proven to yield a considerably positive effect on

reducing the spread, as many Asian countries are currently not experiencing any addi-

tional new cases. Exceptions are countries like Indonesia, Singapore, Philippines, and

Vietnam, recording high new cases of 529, 465, 214, and 314, respectively, as at May 16,

2020, with 17 and 6 new cases in Malaysia and China, respectively. These countries may
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need to adopt additional measures to quicken the lessening of the cases as low as possible

to curtail the pandemic. New measures such as contact tracing apps, compulsory wearing

of face masks in outside engagement, social responsibility, and collaborative open source

repository are underway, which are believed to use AI analytics to provide better predictive

solutions.

Studies carried out on European countries show that forecast models can be developed

with AI technologies to predict COVID-19 outbreaks. For instance, the model developed

by Vattay [74] shows that COVID-19 pandemic will end in Italy by May 8, 2020. In reality,

the weekly surveillance report from the WHO shows that as of 16th May, there has been a

drastic reduction in the number of cases by 53%. This reduction in the number of cases

started from the 14th epidemiologic week (April 6 to April 12, 2020), which has made the

government of Italy to relax some of its lockdown rules from 4th May. The works of Perone

[76], Nesteruk [79], and Ghazaly et al. [82] involving Italy, France, Spain, and Russia reveal

that predictions improve as new cases are confirmed daily. This implies that “the larger

the data (number of confirmed cases), the higher the prediction rate.” This has brought up

the need for collection of larger volumes of data (big data) made available in a timely and

accurate manner. A similar study by Zhou et al. [6] on eight high-risk countries including

Italy, Germany, France, Spain, and some Asian countries using LGM and SEIR model also

shows that collection of epidemiologic data is essential to achieve accurate forecast

models. In addition, there might be an increased number of cases in Europe, if control

measures are relaxed and if there is nonenforcement or strict compliance with govern-

ment rules [76,77,79]. Enforcement of rules, including closure of public gatherings and

schools and travel restrictions, may help curb the spread of the epidemic.

In the case of Australia, to the best of our knowledge, as of the time of writing this

report, a few studies on modeling and prediction of COVID-19 have been reported in the

literature. This includes the work of Zhang et al. [84] that used the Australian census-

based epidemic model (ACE-Mod) and showed that low compliance with intervention

strategies such as lockdown, social distancing, and the use of face mask could lead to an

exponential rise of the pandemic in Australia and that high compliance with these

intervention strategies will lead to a strong control of the spread of the virus in under

15 weeks. In the study by Fox et al. [85], a simulation and compartmental model was

used to model the impact of the outbreak of COVID-19 on intensive-care units in New

South Wales, and results from this study show that as the number of infected people

increases, the intensive-care units would be overwhelmed if the intervention strategies

provided by the government are not accompanied by an effective and substantial in-

crease in critical care services. The risk stratified model employed by Moss et al. [86]

shows that measures such as isolation and quarantine are not sufficient to curtail the

spread of the virus. Also, the model forecasts that if the pandemic is prolonged, it will

exceed the capacity of the Australian healthcare system. Results from the seasonal

autoregressive integrated moving average (SARIMA) model used in the study by

Liebig et al. [87] suggest an exponential growth in the epidemic curve, but records of

travel patterns of residents and foreign travelers could help the government to imple-

ment travel policies that could flatten the curve.
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As of May 18, 2020, Antarctica is the only continent left in the world without a

reported case of COVID-19. There has not been any scientific evidence reported in the

literature for this exemption, but researchers are making efforts to unravel the reasons

behind the current immunity in this region.

4. Conclusion
The chapter provides insight into the spread of COVID-19 across the continents of the

world. It presents an analysis of the current confirmed and death cases in the different

continents. It also analyzes the current studies that have been carried out on this topic

on a continent-by-continent basis. Our review showed a strong commitment of re-

searchers to understand the spread of COVID-19, possibly due to the fact that it is a

pandemic that has affected all the countries in the globe. Nevertheless, our study reveals

that literature in this area was dominated by research from Asia and Europe, followed by

North America. Very few contributions emanated from other continents including Africa

while no study was reported in Antarctica. Most of the models and predictions were

based on compartmental epidemiologic models and a few used advanced machine

learning techniques, despite being a promising modeling approach to address un-

certainties in estimation, especially for long-term prediction. Combining AI with clas-

sical compartmental models actually provides a better prediction of the disease spread.

While some models have accurately predicted the end of the epidemic in some coun-

tries, other predictions strongly depart from the reality. Different assumptions were

often made in parameterizing the models (for instance, assumptions and historical data

collected from other diseases or other countries), and these assumptions might be wrong

and might not fit the local contexts, leading predictions to significantly deviate from

actual observations. Careful attention should be paid to this aspect in the future

research. Furthermore, free access for researchers to some key data such as age, gender,

comorbidity, historical medical data of cases, and deaths is currently an important

limitation that future research dealing with relevant aspects of the disease transmission

and caused-death should address. Nonpharmaceutical interventions such as lock-

down, social distancing, face mask use, among others, were the measures put in place

to control the disease in all continents, although some countries were reluctant about

these. Many of these restriction policies have proven to yield considerably positive

effects on reducing the spread in many continents. Nevertheless, the virus is still not

fully known. Therefore consistent commitment from scholars is needed to provide

timely reliable information that could guide decision-makers, especially because

there are increasing alerts on the risk of a second wave of the pandemic in many

places if appropriate measures are not taken until an effective drug or a vaccine is

developed. The statistics provided in this study was based on the realities of COVID-

19 pandamic in the world and the associated computational models developed by

researchers for modeling and predicting the spread of the virus between the period of

November 2019 and June 2020.
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