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ABSTRACT Dermonecrotic toxin (DNT) is one of the representative toxins produced
by Bordetella pertussis, but its role in pertussis, B. pertussis infection, remains un-
known. In this study, we identified the T-type voltage-gated Ca2� channel CaV3.1 as
the DNT receptor by CRISPR-Cas9-based genome-wide screening. As CaV3.1 is highly
expressed in the nervous system, the neurotoxicity of DNT was examined. DNT af-
fected cultured neural cells and caused flaccid paralysis in mice after intracerebral
injection. No neurological symptoms were observed by intracerebral injection with
the other major virulence factors of the organisms, pertussis toxin and adenylate cy-
clase toxin. These results indicate that DNT has aspects of the neurotropic virulence
factor of B. pertussis. The possibility of the involvement of DNT in encephalopathy,
which is a complication of pertussis, is also discussed.

IMPORTANCE Bordetella pertussis, which causes pertussis, a contagious respiratory
disease, produces three major protein toxins, pertussis toxin, adenylate cyclase toxin,
and dermonecrotic toxin (DNT), for which molecular actions have been elucidated.
The former two toxins are known to be involved in the emergence of some clinical
symptoms and/or contribute to the establishment of bacterial infection. In contrast,
the role of DNT in pertussis remains unclear. Our study shows that DNT affects neu-
ral cells through specific binding to the T-type voltage-gated Ca2� channel that is
highly expressed in the central nervous system and leads to neurological disorders
in mice after intracerebral injection. These data raise the possibility of DNT as an eti-
ological agent for pertussis encephalopathy, a severe complication of B. pertussis in-
fection.
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Bordetella pertussis causes pertussis (whooping cough), a highly contagious respira-
tory disease that is characterized by a wide range of clinical manifestations,

including bronchopneumonia, hypoglycemia, leukocytosis, and paroxysmal coughing.
The disease also infrequently develops encephalopathy as a sequela that may cause
death or permanent neurological disorders (1–7). Although the molecular activities of
B. pertussis virulence factors have been analyzed in depth, the pathogenesis of pertussis
is not well understood (8–10). The organism produces three representative protein
toxins, pertussis toxin (PT), adenylate cyclase toxin (ACT), and dermonecrotic toxin
(DNT). PT catalyzes ADP ribosylation on the heterotrimeric GTPases of the G�i subfamily
via the enzymatically active domain and can multivalently bind to sialic acid-containing
glycoproteins via its receptor-binding oligomer (8, 11). These toxic actions are consid-
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ered to be related to host immune modulations and some clinical symptoms such as
hypoglycemia and leukocytosis (8, 9). ACT increases the level of intracellular cAMP in
target cells to a supraphysiological level, which results in immunomodulation, including
the marked production of cytokines and dysfunction of immunocompetent myeloid
cells (8, 9, 12). Previous studies using animal models reported that these two toxins
function in the establishment of bacterial infection by altering the inflammatory
responses of hosts (8, 9, 12).

In contrast, nothing is known about the role of DNT in pertussis. DNT is a single-
chain polypeptide of 1,464 amino acids. The N-terminal 30-amino-acid region is re-
sponsible for binding to target cells via an unknown receptor, and the �300-amino-
acid C terminus carries an enzymatically active domain with transglutaminase activity
that activates the small GTPases of the Rho family through deamidation or polyami-
nation (13–17). DNT of Bordetella bronchiseptica, which is virtually identical to that of B.
pertussis (see Fig. S1 in the supplemental material), is known to cause turbinate atrophy
by inhibiting osteoblastic differentiation in atrophic rhinitis, B. bronchiseptica infection
of pigs (18–20). However, the role of DNT in B. pertussis infection has not been
elucidated. In pertussis, unlike atrophic rhinitis, no pathological abnormality in bone
tissues has been reported. Moreover, possible target organs/tissues other than bone
tissues have not been explored.

In this study, we aimed at identifying a receptor(s) for DNT and, based on its tissue
distribution, searched for potential target organs/tissues. Our results demonstrate that
DNT recognizes the T-type voltage-gated Ca2� channels CaV3.1 and CaV3.2 as cell
surface receptors. According to public databases, CaV3.1 is dominantly expressed in the
nervous system. Indeed, the toxin affected cultured neural cells that expressed CaV3.1.
In addition, intracerebral injection of DNT caused flaccid paralysis in mice. We con-
cluded that DNT has aspects of the neurotropic virulence factor of B. pertussis. The
possibility of its involvement in pertussis encephalopathy is also discussed.

RESULTS
CRISPR-Cas9 screening for DNT receptors. In order to identify a DNT receptor, we

adopted genome-wide screening with the CRISPR-Cas9 system, which is a powerful
technique to identify desired genes. However, DNT is unsuitable as a probe for
high-throughput screening because the enzyme action of DNT, which does not cause
cell death, is not readily detected. We therefore generated DNT-DTA, which consists of
the N-terminal fragment of DNT, including the receptor-binding domain and the
translocation domain (DNT2–1185) (21), and the active domain of diphtheria toxin
(DT26 –218) (Fig. 1A and B). DNT-DTA caused the death of DNT-sensitive MC3T3-E1 and
Rat-1 cells but not resistant cells (22, 23) (Fig. 1C). The cytotoxicity of DNT-DTA was
inhibited in the presence of the binding-domain-containing DNT1–54, suggesting that
DNT-DTA intoxicates the cells by binding to the receptor for DNT (Fig. 1D). Using
DNT-DTA as the probe, we carried out screening (Fig. 2A). MC3T3-E1 cells that stably
expressed Cas9 were transduced with the lentiviral library of single guide RNAs
(sgRNAs) targeting 19,150 genes (5 unique sgRNAs for each gene). After three rounds
of screening with DNT-DTA, sgRNA regions integrated into the genomic DNA of
DNT-DTA-resistant cells were sequenced, and targeted genes were identified (Fig. 2B
and Table S3). From the identified genes, we picked up Dhx29, Taok1, and Cacna1g, on
the basis of the number of unique sgRNAs, and genes encoding membrane proteins,
Tmem151b and Nrg2, and generated 7 clones of MC3T3-E1 mutants for each gene for
further analyses. Sensitivity to DNT-DTA was markedly reduced or abolished in
ΔCacna1g cells, whereas almost all of the other mutant cells were sensitive, but some
clones exhibited reduced sensitivity (Fig. 2C). Therefore, we arbitrarily selected 2 of 7
clones for each mutant and further examined their sensitivity to DNT (Fig. 2D). As
judged by the deamidation of intracellular Rho (Rho63E), ΔCacna1g cells were confirmed
to be resistant to DNT, demonstrating that Cacna1g is involved in the intoxication
process of the toxin.
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CaV3.1 serves as the DNT receptor. Cacna1g (CACNA1G in humans) encodes the
T-type voltage-gated Ca2� channel CaV3.1, which comprises four domains, each con-
taining six transmembrane helices (Fig. 3A). The gene carries at least 12 (for mouse) and
24 (for human) alternative splice variants (24–26). We succeeded in cloning three
distinct cDNAs of the splice variants of Cacna1g, which were tentatively designated
variant 1 (v1), v2, and v3 (Fig. 3A and B). Ectopic expression of v3 but not v1 and v2
restored sensitivity to DNT and DNT-DTA of ΔCacna1g cells and intrinsically DNT-
resistant Balb3T3 cells (Fig. 3C and D and Fig. S2A to C). Immunoprecipitation assays
revealed the interaction between extracellularly added DNT and CaV3.1 on the mem-
brane of MC3T3-E1/ΔCacna1g/�Cacna1g v3 cells (Fig. 3E and Fig. S2D). The cytotoxic
effects of DNT-DTA on MC3T3-E1 cells were reduced in the presence of ProTx-I (Fig. 3F),
a spider toxin that specifically binds to CaV3.1 (27). These results demonstrate that
certain splice variants of CaV3.1 serve as the receptor conferring DNT sensitivity to cells.
In the present study, v3, but not v1 and v2, functioned as the receptor. As the
alternative splice sites of v1, v2, and v3 were located in the first domain (domain 1 [D1])
(Δ5=E2 and Δ5=E8) and the second domain (D2) (ΔE14 and Δ5=E16) (Fig. 3A and B), these
domains may be involved in the interaction with DNT.

DNT is a neurotropic toxin. According to the public databases of the Genotype-
Tissue Expression (GTEx) (https://www.gtexportal.org/home/) project (Table S4) and
BioGPS (http://biogps.org/#goto�welcome), CACNA1G (human) and Cacna1g (mouse)
are dominantly expressed in the cerebellum and other brain tissues and in female

FIG 1 Construction of DNT-DTA. (A) Schematic representation of DNT-DTA. aa, amino acids. (B) SDS-PAGE
and immunoblotting of the purified preparations of DNT, DTA, and DNT-DTA. DNT (lane 1), DTA (lane 2), and
DNT-DTA (lane 3) were applied at 0.5 �g/lane for Coomassie brilliant blue R250 (CBB) staining and at
0.1 �g/lane, 0.2 �g/lane, and 0.2 �g/lane, respectively, for immunoblotting (IB). The samples were probed
with an anti-DNT polyclonal antibody, an anti-DT polyclonal antibody, and an anti-His tag antibody. The
asterisk indicates the lane for marker proteins. Note that DNT-DTA was recognized by anti-DNT and anti-DT
antibodies. (C) Sensitivity of cultured cells to DNT-DTA. DNT-resistant (white bars, Balb3T3, Vero, COS7, and
CHO-K1) and -sensitive (gray bars, MC3T3-E1 and Rat-1) cells were incubated with DNT-DTA for 16 h, and
the rate of cell death was measured. (D) Competitive inhibition of cytotoxicity of DNT-DTA with GST
(glutathione S-transferase)-DNT1–54-His. MC3T3-E1 cells were treated with DNT-DTA in the presence of
400 nM GST or GST-DNT1–54-His, and the rate of cell death was measured. *, P � 0.01; **, P � 0.001
(compared to PBS). Plotted data represent means � standard errors of the means (SEM) (n � 3) (C and D).
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genital organs, suggesting that these tissues are targeted by DNT in Bordetella infec-
tion. We therefore examined if neural cells are affected by DNT. P19 murine embryonal
carcinoma cells differentiate into neural cells, including neurons and glial cells, after
incubation in the presence of retinoic acid (RA) (Fig. S3) (28, 29). The cells responded
to DNT in both the differentiated and undifferentiated states, as judged by morpho-
logical alterations and the deamidation of Rho (Fig. 4A to E). Differentiated P19 cells
highly expressed CaV3.1, compared to undifferentiated cells, in which CaV3.1 expression
was barely detected by immunoblotting (Fig. 4E). Accordingly, Rho of the differentiated
cells was highly deamidated. The differentiated cells lost neurites and aggregated upon
treatment with DNT (Fig. 4A to D). These results are consistent with previous observa-
tions that neurite outgrowth was inhibited by the activation of the Rho signaling
pathway (30–33). NTera2/cl.D1 (NT2) human embryonal carcinoma cells and T98G
human glioblastoma cells were also sensitive to DNT, indicating that the toxin intoxi-
cates cells of human origin, similarly to those of mouse origin (Fig. 4F).

In addition to CaV3.1, CaV3.2 and CaV3.3 are known as the isotypes of the T-type
voltage-gated Ca2� channels, encoded by CACNA1H (Cacna1h) and CACNA1I (Cacna1i),
respectively. As reverse transcription-PCR (RT-PCR) revealed that P19 cells express all
the isotypes (Fig. 5A), we examined the sensitivity of the isotypes to the toxins using

FIG 2 Genome-wide screening for DNT receptors by the CRISPR-Cas9 system. (A) Procedures for genome-wide screening for the DNT receptor(s).
(B) Genes identified after screening. The y and x axes represent the numbers of unique sgRNAs and sgRNA sequence reads for each identified
gene, respectively. (C) Sensitivities of the candidate-gene knockout clones of MC3T3-El to DNT-DTA. Seven knockout clones were selected for each
gene and treated with DNT-DTA, and the rate of cell death was evaluated. Plotted data represent means � SEM (n � 3). *, P � 0.0001 (compared
to MC3T3-E1 parental cells [E1]). (D) DNT-induced deamidation of Rho in the knockout clones of MC3T3-E1. Two of the seven clones shown in
panel C for each gene were further selected and treated with DNT. The numbers of selected clones are shown after the gene names.
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these cells (Fig. 5B and C). Cacna1g and Cacna1h double-knockout P19 cells were
resistant to DNT-DTA and DNT. The single and double knockouts of Cacna1g and/or
Cacna1i did not abolish sensitivity. Cacna1h knockout cells, with or without Cacna1i
knockout, exhibited moderate sensitivity to DNT-DTA and DNT. In addition, Balb3T3
cells ectopically expressing CaV3.1 and CaV3.2, but not CaV3.3, were sensitive to DNT

FIG 3 Identification of CaV3.1 as a receptor for DNT. (A) Schematic illustration of CaV3.1 consisting of four distinct domains (D1 to D4). Missing
regions by alternative splicing in the variants are indicated by black boxes. Each region is designated according to the designations in a previous
study (24). (B) Amino acid sequence alignments of the spliced regions of v1, v2, and v3. Dashes indicate missing regions of the splice variants.
Asterisks indicate conserved amino acid residues. (C) Ectopic expression of Cacna1g v3 restores the sensitivity of MC3T3-E1/ΔCacna1g and Balb3T3
cells to DNT-DTA. MC3T3-E1, MC3T3-E1/ΔCacna1g (left), and Balb3T3 (right) cells with or without Cacna1g complementation were treated with
DNT-DTA. Each bar represents the mean � SEM (n � 3). *, P � 0.0001 (compared with E1 [left] and Balb3T3 [right]). (D) Ectopic expression of
Cacna1g v3 restores the sensitivity of MC3T3-E1/ΔCacna1g (left) and Balb3T3 (right) cells to DNT. The cells were treated with DNT and subjected
to SDS-PAGE, followed by immunoblotting. (E) Immunoprecipitation (IP) assay to detect interactions between CaV3.1 and DNT. After treatment
with DNT, MC3T3-E1/ΔCacna1g/�Cacna1g v3 cells were subjected to an immunoprecipitation assay, followed by immunoblotting with anti-DNT
antibody and anti-CaV3.1 antibody. (F) Competitive inhibition of the cytotoxicity of DNT-DTA with ProTx-I. MC3T3-E1 cells were treated with
DNT-DTA at the indicated concentrations in the presence of ProTx-I and subjected to a cytotoxicity assay. Each bar represents the mean � SEM
(n � 3). *, P � 0.05; **, P � 0.0001 (compared with 0 �M ProTx-I in each DNT-DTA dose group).
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(Fig. 5D). Taken together, CaV3.1 (encoded by Cacna1g) and CaV3.2 (Cacna1h), but not
CaV3.3 (Cacna1i), function as the receptors for DNT. As MC3T3-E1 cells do not express
CaV3.2 (Fig. 5A), we successfully identified Cacna1g as the receptor gene by the primary
screening of sgRNA-introduced MC3T3-E1 cells with the CRISPR-Cas9 system.

Neurological disorders caused by DNT in mice. The above-described results
suggest that DNT is a neurotropic toxin. Because CaV3.1 is dominantly expressed in the
central nervous system (Table S4), we examined if DNT causes any neurological
disorders by intracerebrally injecting the toxin into mice. From 1 day after injection, the

FIG 4 Neural cells are sensitive to DNT. (A) Morphological changes of P19 {undifferentiated [RA (�)] and
differentiated [RA (�)]} and NT2 cells. The cells were treated with DNT at the indicated concentrations for 24 h. Bars,
50 �m. (B to D) Numbers of nerve roots and neurite segments and total length of neurites of P19 RA (�) cells (see
also Fig. S3C in the supplemental material). The cells were treated with DNT at the indicated concentrations for 24
h in a 12-well plate, and the numbers of nerve roots (B) and neurite segments (C) and the total length of neurites
(D) were evaluated from 4,000 to 25,000 cells in a single well using the Opera Phenix system and Harmony 4.5.
Values are means � SEM (n � 4). (E and F) Immunoblotting of P19 cells (E) and T98G and NT2 cells (F) for
deamidated Rho. The cells were treated with 50 ng/ml of DNT for 24 h.
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mice developed neurological symptoms such as flaccidity of tails and hind limbs
(Fig. 6A and B and Movie S1). These symptoms were not observed with 10-fold-larger
amounts of PT or ACT (Fig. 6B). An enzymatically inactive mutant of DNT, DNTC1305A

(14), did not cause any symptoms, indicating that the Rho-targeting transglutaminase
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FIG 6 DNT-induced encephalitis in mice. (A and B) Clinical signs of neurological disorders in mice intracerebrally injected
with DNT, DNTC1305A, PT, and ACT. The severities of signs were scored as follows: 0 for normal, 1 for limp tail and hind limb
weakness, 2 for partial paralysis of hind limbs, and 3 for complete paralysis of hind limbs. Each plot represents means �
SEM (n � 5). †, all dead. One and two mice died 5 days and 13 days after injection with PT, respectively. (C) Concentrations
of MBP (top) and IL-6 (bottom) in cerebrospinal fluids of mice intracerebrally injected with DNT (n � 8) or PBS (n � 5). Each
data point, representing one mouse, was plotted on the ordinate against each clinical score on the abscissa. (D) Illustration
indicating the injection site (�). Samples were injected with a needle 4 mm long and 0.4 mm in diameter. (E) Macroscopic
images of mouse brains excised 3 days after DNT injection. Note the bloody spots around the cerebellum and olfactory
bulb. (F) MRI images of brains of mice intracerebrally injected with 5 ng of DNT or DNTC1305A. The mice were subjected to
MRI 3 days after injection. Bar, 5 mm. T2-weighted (T2w) imaging and diffusion tensor imaging (DTI) revealed abnormal
high-intensity white signals (arrowheads) in the vicinity of cerebral ventricles of the DNT-injected mice, indicating severe
inflammation (DTI) with watery infiltration (T2w). (G) Histological sections of brains of mice intracerebrally injected with
3 ng of DNT or 5 ng of DNTC1305A. Hemorrhage is noted in the specimen of a mouse injected with DNT (arrowhead). Bars,
100 �m. C, cerebral cortex; H, hippocampus.
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activity of the toxin is necessary for its neurotoxicity. In the mice injected with DNT,
myelin basic protein (MBP) and interleukin-6 (IL-6) levels in the cerebrospinal fluid (CSF)
were markedly increased (Fig. 6C), indicating demyelination and inflammation in the
central nervous system. These signs were similarly stated in a recent case report of
pertussis-associated encephalitis/encephalopathy (3). The levels of both factors corre-
lated with the severity of clinical symptoms. Hemorrhage was noted in brains of mice
injected with DNT upon both macroscopic and microscopic examinations (Fig. 6D, E,
and G). Magnetic resonance imaging revealed severe inflammation with watery infil-
tration along the cerebroventricular area in DNT-injected mice (Fig. 6F). From these
results, we concluded that DNT, when intracerebrally injected, causes encephalitis in
mice.

DISCUSSION

DNT is commonly produced by pathogenic Bordetella species such as B. pertussis, B.
parapertussis, and B. bronchiseptica. B. bronchiseptica DNT is known to cause turbinate
atrophy in swine atrophic rhinitis, B. bronchiseptica infection, by inhibiting osteoblastic
differentiation (18–20). It was also reported that the toxin directly affects osteoblastic
MC3T3-E1 cells, suggesting that osteoblastic cells express the DNT receptor. However,
as only a few cell lines were found to be sensitive to DNT (20, 21, 23), the toxin receptor
was considered not to be ubiquitous and instead was considered to be unique to
particular cells. In this study, we demonstrated that the T-type voltage-gated Ca2�

channels CaV3.1 and CaV3.2 serve as DNT receptors and confer sensitivity to the toxin.
CaV3.1 is reportedly expressed in osteoblastic cells during osteogenesis (34). This is
consistent with previous results that DNT affects osteoblastic cells. Indeed, the sensi-
tivity of osteoblastic MC3T3-E1 cells to the toxin was found to be dependent on the
expression of CaV3.1 (Fig. 5A).

It is also known that the CaV3 channels, which are expressed in neural tissues and
cardiac and smooth muscles, are involved in neuronal excitability, pacemaker activity in
the sinoatrial node, the circadian rhythm of sleep and wakefulness, hormone secretion,
and peripheral pain sensation (35–37). According to public databases, CaV3.1 is
dominantly expressed in the central nervous system, whereas CaV3.2 expression does
not exhibit a characteristic tissue distribution (https://www.gtexportal.org/home/gene/
CACNA1H). Being attracted to this point, we examined the neurotoxicity of DNT at the
cellular level and found that it affected neural cells in vitro, indicating that DNT has
aspects of a neurotropic toxin; this is the first example of a neurotropic virulence factor
produced by B. pertussis. These results prompted us to explore if DNT is involved in
neurological disorders that are recognized as pertussis encephalitis/encephalopathy;
peripheral nervous disorders have not been observed in B. pertussis infection, although
the CaV3 channels are also known to be distributed in the peripheral nervous system.
The intracerebral injection of DNT, but not PT and ACT, caused encephalitis in mice.

In B. pertussis infection, encephalitis/encephalopathy (here, we use the term “per-
tussis encephalopathy” according to previous reports) has long been recognized as a
rare complication, which develops in up to 1% of patients and imposes a significant
burden (6, 7); studies from 2001 to 2003 in the United States reported that 33 of 28,998
patients (0.11%) developed encephalopathy (38). The pathophysiology and etiological
agents of encephalopathy remain unknown. Possible explanations included hemor-
rhage in the central nervous system resulting from increased venous pressure due to
coughing paroxysms, hypoxia, venous stasis attributable to leukocytosis, hypoglycemia,
and secondary infections by neurotropic microbes. However, some case reports ne-
gated these explanations and instead pointed out unknown toxins or toxin-like com-
ponents of B. pertussis as the causative agents (3, 4, 7). DNT, which causes encephalitis
in mice, may be the most probable candidate for such a bacterial component. On the
other hand, DNT has been considered to play little role in the pathogenesis of pertussis,
partly because it is not secreted but remains localized in the bacterial cytoplasm (8, 39,
40). To bridge this gap, we retrieved case reports of pertussis encephalopathy that
clearly stated the course of the disease (1–5, 7). Only a few reports were available, but
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in 4 of 6 case reports, the patients, in the early stages or before developing neurological
disorders, were administered �-lactam antibiotics including, cefuroxime (4), amoxicillin
(5), cephalexin and ampicillin (7), or piperacillin (3). �-Lactam antibiotics inhibit the
synthesis of peptidoglycan and may therefore liberate DNT from bacterial cells. Indeed,
we confirmed that treatment of B. pertussis infection with ampicillin and piperacillin
resulted in the release of active DNT (Fig. 7). Macrolides such as erythromycin, clari-
thromycin, and azithromycin, which are the first-line antibiotics for pertussis, did not
release DNT.

In this study, we raised the possibility of DNT as an etiological agent of pertussis
encephalopathy. However, as not all pertussis patients develop encephalopathy, sev-
eral other factors should be involved in its development. The use of �-lactam antibiotics
releasing DNT from bacterial cells may be one of the risk factors. Cofactors may also be
required to help DNT cross the blood-brain barrier and enter the central nervous
system. PT, which was reported to affect the integrity of cerebral barriers (41, 42), may
function as such an accessory factor. Indeed, PT is known to exacerbate experimental

FIG 7 Liberation of DNT from B. pertussis treated with antibiotics. (A) Dose-response curve of bactericidal
effects of antibiotics on B. pertussis. B. pertussis Tohama I was suspended in SS medium to give an optical
density at 650 nm (OD650) value of 0.2. After a 6-h incubation, the indicated antibiotics were added to
the cultures at the indicated concentrations. After further incubation for 24 h, OD650 values of the
cultures were measured. ABPC, ampicillin; PIPC, piperacillin; EM, erythromycin; CAM, clarithromycin; AZM,
azithromycin. Each plot represents means � SEM (n � 3). No error bars appear for some points because
the SEM values were smaller than the size of the symbols. (B) Immunoblotting for DNT in the culture
supernatants of B. pertussis treated with the following antibiotics: ABPC at 4 �g/ml, PIPC at 2 �g/ml, EM
at 0.125 �g/ml, CAM at 0.125 �g/ml, and AZM at 0.125 �g/ml. The concentrations of antibiotics were
determined according to the dose-response curve shown in panel A. (C) Immunoblotting for deamidated
Rho in MC3T3-E1 cells treated with the culture supernatants or DNT. The cells were treated with the
culture supernatants of B. pertussis wild-type (WT) or Δdnt cells that were incubated with or without the
antibiotics.
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autoimmune encephalomyelitis in mice (43, 44). In addition, the anamnestic history,
vaccinations, age, and sex of patients and other bacterial components may influence
the onset of encephalopathy. Although further studies are required to address many
remaining questions, our study provides a clue to understanding the pathophysiology
of pertussis encephalopathy.

MATERIALS AND METHODS
Antibodies, immunoprecipitation assays, magnetic resonance imaging (MRI) analyses, and other

utilized methods are given in Text S1 in the supplemental material.
Bacterial strains and cultures. B. pertussis strain Tohama I was maintained in the laboratory. A

dnt-deficient mutant of B. pertussis Tohama I was generated according to methods described previously
(45). B. pertussis was grown in Stainer-Scholte (SS) medium or on Bordet-Gengou agar (Becton, Dickinson,
Franklin Lakes, NJ, USA) containing 0.4% (wt/vol) polypeptone or HiPolypeptone (Wako Pure Chemical
Industries, Ltd., Japan), 0.8% glycerol, 20% defibrinated horse blood, and 10 �g/ml ceftibuten (BG plate).
The culture supernatants of B. pertussis were harvested by centrifugation at 6,800 � g for 5 min and
filtered through a 0.22-�m-pore-size filter.

Recombinant DNT and DNT derivatives. The primers used for plasmid construction are listed in
Table S1. The plasmids encoding DNT and DNT derivatives of B. bronchiseptica were constructed as
follows. pQEDNTwt and pGEXDNT1–54-His were constructed as described previously (22). pDTA1 was
provided by E. Mekada, Osaka University (46).

For DNT-DTA/pQE40, DNA fragments were amplified by PCR with a combination of primers, EcoRV-
DNT1009Fw and DNT1185-DTARv, and pQEDNTwt as the template and with another combination of
primers, HindIII-DTA28Rv and DNT1185-DTAFw, and pDTA1 as the template. The resultant fragments were
used as the templates for PCR to amplify DNA fragments encoding DNT-DTA using the primers
EcoRV-DNT1009Fw and HindIII-DTA28Rv. The obtained fragments were inserted into the EcoRV-HindIII site
of pQEDNTwt by the seamless ligation cloning extract (SLiCE) technique (47).

For DNT-DTA/pColdII, the DNA fragment encoding DNT-DTA was amplified by PCR with a combina-
tion of primers, NdeI-DNT2Fw and EcoRI-DTA218Rv, and DNT-DTA/pQE40 as the template and inserted
into the NdeI-EcoRI site of pColdII (TaKaRa) by the SLiCE technique.

The plasmids for DNT and DNT derivatives of B. pertussis were constructed as follows. For BpDNTwt/
pQE40, a DNA fragment covering the DNT gene was amplified by nested PCR using B. pertussis Tohama
I genomic DNA as the template with the first primers BpDNT-nested-F and BpDNT-nested-R and the
second primers BamHI-BpDNT2-F and Bp-DNT1464-HindIII-R. The resultant PCR product was inserted into
the BamHI-HindIII site of pQE40 (Qiagen) by the SLiCE technique.

For BpDNTC1305A/pQE40, site-directed mutagenesis was used to replace Cys with Ala at position 1305
in BpDNTwt/pQE40 using a QuikChange kit and the primer pair DNTC1350A-F and DNTC1305A-R.

The expression plasmids were introduced into Escherichia coli M15(pREP4) or BL21(DE3), and the
recombinant DNT proteins were produced and purified by Ni or glutathione affinity chromatography
according to the manufacturer’s instructions (Qiagen, TaKaRa, and GE Healthcare). The recombinant
proteins of full-length DNT were further purified by anion-exchange chromatography with a MonoQ
column (GE Healthcare) in 20 mM Tris-HCl (pH 7.6) containing 1 M urea and eluted with a linear gradient
of NaCl from 10 to 500 mM in the same buffer. The purified DNT proteins were dialyzed against and kept
in 50 mM phosphate buffer (pH 7.4) containing 0.3 M Na2SO4 and 1 M urea at 4°C.

Cell cultures. All media for cell cultures were supplemented with 10% fetal calf serum (FCS) unless
otherwise specified. All cell lines were grown at 37°C under 5% CO2 in air. The MC3T3-E1 (mouse
osteoblast) and T98G (human glioblastoma) cell lines, provided by K. Irie, Fukuoka University, were
cultured in alpha minimum essential medium (Gibco Laboratories). The Balb3T3 (clone A31) (mouse
embryo fibroblast), Vero (African green monkey kidney epithelial), COS7 (African green monkey kidney
fibroblast), and Rat-1 (rat fibroblast) cell lines were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) (Sigma-Aldrich). P19 (mouse embryonal carcinoma) cells were cultured in alpha minimum
essential medium (Sigma-Aldrich) containing 1% GlutaMAX supplement (catalog number 35050-061;
Gibco Laboratories). Differentiation of P19 cells was stimulated by incubation in the presence of retinoic
acid (RA) at 500 nM as described previously (28). NTera2/cl.D1 (NT2) (human embryonal carcinoma) cells
were cultured in DMEM plus GlutaMAX-I (catalog number 10566-016; Gibco Laboratories). CHO-K1
(Chinese hamster ovary epithelial) cells were grown in Ham’s F-12 medium (Wako). 293FT (human
embryo kidney epithelial) and Plat-E (human embryo kidney epithelial) cells were cultured according to
the manufacturer’s instructions.

Cas9-expressing MC3T3-E1 cells. The DNA fragment encoding enhanced green fluorescent protein
(EGFP) was obtained from pX330mEGFP (48) by digestion with FseI and inserted into the FseI site of
pPB-pgkBSD-CBh-hSpCas9n, which is a derivative of pPB-SA hyg NP21 pA (48, 49), yielding pPB-pgkBSD-
CBh-hSpCas9n-EGFP. Subsequently, the pgkBSD region of the plasmid was replaced by pgkNeo, a
phosphoglycerate kinase 1 (PGK) promoter-driven neomycin resistance gene. The obtained plasmid was
designated pPB-pgkNeo-CBh-hSpCas9n-EGFP. MC3T3-E1 cells were cotransfected with pPB-pgkNeo-CBh-
hSpCas9n-EGFP and pCMV-hyPBase (49), which carries a piggyBac transposase, using the Neon trans-
fection system (Invitrogen) according to the manufacturer’s instructions and were cultured for 24 h and
then for 6 days in the presence of 400 �g/ml of G418. Independent clones of the surviving cells were
isolated by the limiting-dilution method. A clone that highly expressed Cas9-EGFP, as judged by
fluorescence microscopy, was selected and designated Cas9-E1.

Bordetella Dermonecrotic Toxin Causes Encephalopathy ®

March/April 2020 Volume 11 Issue 2 e03146-19 mbio.asm.org 11

https://mbio.asm.org


Generation of the genome-wide Cas9-E1-sgRNA library and screening. We utilized genome-wide
mouse lentiviral CRISPR guide RNA (gRNA) library v1 (50) (catalog number 50947; Addgene), which
contains five unique sgRNAs for each of 19,150 genes. 293FT cells were transfected with the library
plasmids by using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. The
medium was replaced 24 h after transfection, and lentiviral vectors were obtained 2 days after trans-
fection by centrifugation of the culture supernatant at 1,700 � g for 15 min at 4°C. At a multiplicity of
infection (MOI) of 0.3, 107 cells of Cas9-E1 were infected with the lentiviral library on 150-mm dishes in
the presence of 8 �g/ml of Polybrene (Millipore) such that a single sgRNA was introduced into more than
30 cells. The cells were selected by incubation in the presence of 8 �g/ml of puromycin and screened
with DNT-DTA, as follows.

For the first round of screening, 5 � 107 cells were treated with 2 �g/ml of DNT-DTA in 100-mm
dishes. After the 36-h treatment, the cells were washed three times with Dulbecco’s modified phosphate-
buffered saline (D-PBS) to remove dead cells. The remaining cells were reseeded, incubated for 24 h, and
subjected to another round of toxin screening. After three rounds of screening, the remaining cells were
collected, and their genomic DNA was extracted by isopropanol precipitation and subjected to the
following analyses, together with the genomic DNA from untreated original cells. The regions of sgRNA
were amplified by PCR from the genomic DNA templates using the primers pST-Cas9-S27 and pST-Cas9-
AS28 with Q5 Hot Start high-fidelity DNA polymerase (New England BioLabs). The PCR products were
sequenced using Ion PGM (Thermo Fisher Scientific).

Generation of MC3T3-E1 and P19 knockout cells. pX330mEGFP carrying sgRNA for each target
gene (Table S2) at the BbsI site was introduced into MC3T3-E1 cells by electroporation or into P19 cells
with Lipofectamine 3000 (Invitrogen). After the 48-h incubation, EGFP-expressing cells were sorted and
placed into each well of a 96-well plate using the FACSAria II system (BD Biosciences). The knockout cells
were used for the following assays after cultivation for at least 14 days.

Establishment of Cacna-expressing cells. cDNA of Cacna1g was obtained by PCR using the cDNA
library prepared from MC3T3-E1 cells as the template and primers BS300 and BS297 and inserted into the
BamHI-NotI site of pCX4pur, provided by Tsuyoshi Akagi (51). Plat-E cells were transfected with
the resultant plasmids, pCX4pur-Cacna1g-v1, -v2, and -v3, using Lipofectamine 3000 according to the
manufacturer’s instructions. The medium was replaced 16 h after transfection. The culture supernatant
containing viral vectors was collected by centrifugation 2 days after transfection and filtered on a
0.45-�m-pore-size polyvinylidene difluoride membrane. Balb3T3 or Cacna1g knockout MC3T3-E1 cells
(2 � 104 cells) were seeded into each well of a 6-well plate. After 2 days, the medium was replaced
with that containing the appropriately diluted retroviral supernatant and 8 �g/ml of Polybrene. Two
days after infection, the puromycin-resistant cells were selected by incubation with 8 �g/ml of
puromycin for at least 3 days. cDNAs of Cacna1h and Cacna1i were obtained by PCR using Fantom
clones (52) (clone identification numbers M5C1001I06 and M5C1084D17, respectively; DNAFORM) as
the templates, the primers BamHI-Cacna1h-F1 and Cacna1h-NotI-R1, and the primers BamHI-
Cacna1i-F1 and Cacna1i-NotI-R1. The cDNAs were cloned into the vector and introduced into
Balb3T3 cells as described above.

Cell culture assay. For the assay of DNT-DTA cytotoxicity, 5 � 103 cells were seeded into each well
of a 96-well plate and incubated for 24 h. The medium was replaced with that containing DNT-DTA, and
the cells were subsequently incubated for 36 h or the indicated periods. DNT-DTA was used at 2 �g/ml
unless otherwise specified. Cell viability was quantified using Cell Counting kit 8 (catalog number
343-07623; Wako). The absorbance at 450 nm of each well was measured using the Glomax multide-
tection system (Promega). The rate of cell death was calculated by the equation cell death (%) � (Abuf

� Atox)/(Abuf � Atrtn) � 100, where Abuf, Atox, and Atrtn are the net absorbances of the untreated sample,
the toxin-treated sample, and the Triton X-100-treated sample, respectively.

For the detection of cytopathic effects by DNT, cells were seeded into a 24-well plate at 2.0 � 104

cells/well and incubated for 24 h. The cells were further incubated without FCS for 24 h and then
incubated with or without 50 ng/ml of DNT for an additional 16 h. The cells were fixed with 4%
paraformaldehyde in D-PBS, permeabilized with 0.5% Triton X-100 in D-PBS for 5 min, and stained with
rhodamine-phalloidin. Images were taken with a FluoView FV10i microscope (Olympus, Tokyo, Japan).
Independently, cells were seeded at 2.4 � 105 cells/well into a 6-well plate and treated with DNT as
described above. After treatment, the cell lysates were obtained by ultrasonic treatment using a
Bioruptor sonicator (Cosmo Bio, Tokyo, Japan), followed by centrifugation. Proteins in the supernatants
were precipitated with cold 10% trichloroacetic acid and subjected to SDS-PAGE and immunoblotting for
deamidated Rho.

P19 cells were differentiated into neural cells according to a method reported previously (28).
The differentiated cells were seeded into a 6-well plate at 3.6 � 106 cells/well, incubated for 6 days,
and treated with DNT preparations at the indicated concentrations. Undifferentiated cells were
seeded at 1.2 � 105 cells/well and similarly treated with the DNT preparations after a 2-day
incubation.

Animal experiments. Seven-week-old female specific-pathogen-free (SPF) C57BL/6J mice (Japan
SLC) were intracerebrally inoculated with 25 �l of DNT (10 or 5 ng [ca. 60 or 30 fmol]), DNTC1305A (10 ng
[ca. 60 fmol]), pertussis toxin (PT) (65 ng [ca. 600 fmol]), or adenylate cyclase toxin (ACT) (110 ng [ca.
600 fmol]) under anesthesia with isoflurane or a mixture of midazolam, medetomidine, and butorphanol
at final doses of 2, 0.3, and 5 mg/kg body weight, respectively (Fig. 6D), and monitored for clinical signs
of encephalopathy 1 min a day for up to 19 days. In independent experiments, cerebrospinal fluid (CSF)
was obtained from the cisterna magna 7 days after inoculation, and the concentrations of myelin basic
protein and interleukin-6 in CSF were determined by using an MBP enzyme-linked immunosorbent assay

Teruya et al. ®

March/April 2020 Volume 11 Issue 2 e03146-19 mbio.asm.org 12

https://mbio.asm.org


(ELISA) kit (catalog number OKCD02716; Aviva Systems Biology) and a mouse IL-6 DuoSet ELISA (catalog
number DY406-05; R&D Systems), respectively.

For histological studies, mice were intracerebrally injected with PBS or recombinant DNT (3 ng) or
DNTC1305A (5 ng) of B. pertussis, sacrificed by CO2 after 3 days, and perfused with 0.9% NaCl followed by
4% paraformaldehyde (Wako) through the right atrium. The brain was excised, fixed in 4% paraformal-
dehyde at 4°C overnight, and embedded in paraffin using the TP120 tissue processor (Thermo Fisher
Scientific). Thin sections were obtained using a horizontal microtome (Yamato Kohki, Saitama, Japan)
with an 8-�m setting and stained with hematoxylin and eosin (HE). Images were taken with an FSX-100
fluorescence microscope (Olympus, Osaka, Japan).

All animal experiments were approved by the Animal Care and Use Committee of the Research
Institute for Microbial Disease, Osaka University, and carried out according to the regulations on animal
experiments at Osaka University.

Statistical analysis. Statistical analyses were performed by one-way analysis of variance and
Dunnett’s or Tukey’s multiple-comparison test using Prism 8 (GraphPad Software).
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