
 

  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
Introduction 
 

The goal of chromatin immunoprecipitation (ChIP) experiments 
is to map the binding sites of a molecule (usually a protein) across the 

genome in a cell type or tissue [ ]. ChIP assays start by cross-linking 

cellular interactions between DNA and the bound molecules with 
formaldehyde. The cross-linked chromatin is sheared into small 
fragments by sonication and the DNA-protein complexes of interest 
are recovered using specific antibodies, resulting in an enrichment of 
DNA fragments that were bound by the protein of interest. The 
cross-linking is then reversed and DNA fragments are released from 
the binding complex to be assayed. Usually there is a PCR 
amplification step to increase the amount of starting DNA. The first 
genome-wide ChIP studies used microarray (ChIP-chip) to analyze 
the DNA fragments [2,3], which can now be sequenced directly 
(ChIP-seq) using massive parallel sequencing [4-6].  

 
 
 
 
 
 

 
 

 
  

 
 
 
 
  

Different patterns of “peaks” will form at putative binding sites 
after the sequence reads are aligned to a reference genome. Peaks 
produced by site-specific binding of transcription factors are very 
narrow, while peaks of specific histone modifications are more 
diffusive and can cover large domains of DNA across several 
nucleosomes [7-9]. These two distinct types of binding are termed as 
point source and broad source, respectively. RNA polymerase II is an 
example of mixed source factors, which can form both highly 

localized and spreading peaks at different genome positions [ 0, ]. 

In addition to sequences truly associated with the molecule of 
interest, random background noise is also present due to non-specific 

binding or biases in library construction and sequencing [ 2] [ 3- 6]. 

Peak placement depends upon the background in each independent 
experiment. The use of control samples may mitigate these biases but 
cannot eliminate all sources of noise.  Replication is necessary to 
separate actual biological events from variability resulting from 

random chance [ 0, 8]. Technical replication measures a single 

biological sample repeatedly and allows estimation of the variability in 
the sequencing process. Biological replication measures multiple 
biological samples independently and enables inferences about the 
biological activity of the broader population where the samples are 
drawn. Biological replicates and their advantage over technical 
replicates have been well described in the context of gene expression 

studies such as microarrays (e.g. [ 9-22]) and mass spectrometry [23], 

and more recently in RNA-seq experiments [24,25]. For ChIP-Seq 
experiments, with the ease of multiplexing and the plummeting costs 
of sequencing, increased sample sizes (i.e. number of replicates) are 
not only more affordable but are also becoming standard practice. For 
example, the ENCODE consortium requires a minimum of two 
biological replicates in ChIP experiments [26].  
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Abstract: ChIP-seq experiments identify genome-wide profiles of DNA-binding molecules including transcription factors, enzymes 
and epigenetic marks.  Biological replicates are critical for reliable site discovery and are required for the deposition of data in the 
ENCODE and modENCODE projects. While early reports suggested two replicates were sufficient, the widespread application of 
the technique has led to emerging consensus that the technique is noisy and that increasing replication may be worthwhile. 
Additional biological replicates also allow for quantitative assessment of differences between conditions.  To date it has remained 
controversial about how to confirm peak identification and to determine signal strength across biological replicates, particularly 
when the number of replicates is greater than two.  Using objective metrics, we evaluate the consistency of biological replicates in 
ChIP-seq experiments with more than two replicates. We compare several approaches for binding site determination, including two 
popular but disparate peak callers, CisGenome and MACS2. Here we propose read coverage as a quantitative measurement of 
signal strength for estimating sample concordance. Determining binding based on genomic features, such as promoters, is also 
examined. We find that increasing the number of biological replicates increases the reliability of peak identification. Critically, 
binding sites with strong biological evidence may be missed if researchers rely on only two biological replicates.  When more than 
two replicates are performed, a simple majority rule (>50% of samples identify a peak) identifies peaks more reliably in all 
biological replicates than the absolute concordance of peak identification between any two replicates, further demonstrating the 
utility of increasing replicate numbers in ChIP-seq experiments.  
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There is not yet consensus on how to analyze multiple-replicate 

ChIP-seq samples (Table ). Pooling biological replicates is common 

in current protocols of ChIP-seq experiments. In some cases multiple 
biological samples were pooled and then divided into aliquots before 

sequencing [ 2]. Other investigators sequenced the biological 

replicates separately but pooled the sequencing data together before 

proceeding to data analysis [6, 8,27,28]. Pooling replicates is also 

integrated into the ENCODE framework [29], where the replicates 
were first analyzed separately to determine the Irreproducibility 
Discovery Rate (IDR) [30], and then pooled together for 
identification of the peaks passing the IDR.  

IDR combines pairs of replicates. However, IDR has many 
limitations. For the bivariate model of IDR, the preliminary peaks 
have to contain both high quality peaks and peaks that are most likely 
to be only noise, and the algorithm is currently implemented for only 

a few peak callers such as SPP [3 ] and MACS [32], with the caveat 

that the IDR developer has not optimized for MACS and 
recommends against it. However, investigators may prefer peak callers 
optimized for the binding factor of interest. The more stringent peak 
callers such as CisGenome [33] and QUEST [34] are not currently 
configured in the IDR package. Moreover, IDR relies on the ranking 
of the preliminary peaks and does not handle ties in the ranks, while 
such ties are common in ChIP-seq peaks. A true signal may be 
dropped by IDR when one replicate is noisier, because IDR chooses 
signals with consistent ranking over the signals that rank high in one 
replicate but low in the other. In this scenario, weak signals with 
consistent ranking between replicates are considered more credible 
than signals that were strong in one but weak in the other 
(inconsistent ranking). 

In genomic experiments, independent processing of biological 
replicates is standard. Combined data may be unduly influenced by an 
outlier sample. Detection rates are also reduced, with binding sites 
with smaller signal-to-noise ratios being especially affected. However, 
detection is critical in ChIP-seq experiments for investigators who 
want to obtain maximal information. Another severe limitation of 
analyzing a single combined sample is that it precludes downstream 
quantitative comparisons across samples. Recently attention has been 
drawn to analyzing individual samples separately in ChIP-seq 

experiments [9,35-4 ]. Some groups have proposed to focus on the 

analysis of one replicate, using the additional samples for 
confirmation only [42]. Others have compared overlapping peaks 

from biological replicates for transcription factor occupancy [4 ,43], 

ChIP-seq quality control [44], and study of cell cycle phases [45].  
Still, there is no consensus about how to leverage information 
provided by biological replicates.  

In this study, we analyzed five ChIP-seq experiments with three or 
more replicates. Multiple methods for defining the consensus peaks 
using biological replicates were considered in order to minimize 
variability and maximize consistency. We confirm results from 
genomic studies and conclude that more than two biological replicates 
are essential for ChIP-seq experiments. We propose using a simple 

majority rule for peak identification and show that this yields more 
reliable peaks than absolute concordance with fewer replicates.  

 
Methods 
 

We used five ChIP-seq data sets for this study. Two are 
previously unpublished and created in our labs. The raw data (fastq 
files) of the other three were downloaded from Gene Expression 
Omnibus (GEO).  
a) RNA Polymerase II ChIP-seq in Drosophila melanogaster with 

three replicates, and one input DNA control (GEO accession: 

GSE36 07). 

b) Transcription factor NFKB ChIP-seq [46] (GEO accession: 

GSE 9485) in human lymphoblastoid cell line GM 0847. The 

cells were stimulated with TNF-α to activate NFKB regulation. 
This experiment consisted of five biological replicates and two 
IgG control samples. 

c) FOXA  ChIP-seq in mouse liver with five biological replicates 

and three input control samples [47,48] (GEO accession: 
GSE25836 and GSE33666). 

d) H3K4me3 ChIP-seq in Drosophila melanogaster with three 
biological replicates and three input control samples 
(unpublished).   

e) H3K27me3 ChIP-seq in mouse ganglia with three biological 
replicates, and no input control (unpublished) 

 

Biological replicates from each dataset were individually processed 

and underwent three levels of quality control (Figure ). The fastq 

files were mapped to the genome (FlyBase 5.30 for drosophila, mm9 

for mouse, and hg 9 for human) using Bowtie [49] with options –m 

 –best –strata. Aligned reads were visualized in Integrative Genomics 

Viewer (Broad Institute) [50,5 ] to check the overall read 

distribution shape and signal strength of the factor and the control at 
individual loci. Although not a quantitative metric, visible enrichment 
at known binding regions are expected in a successful ChIP-seq 
experiment. The PCR bottleneck coefficient (PBC) was calculated to 
measure approximate library complexity by taking the ratio of non-
redundant uniquely mapped reads over all uniquely mapped reads. All 
the quality metrics based on the reads themselves and the initial 

alignments are QC .  

Peak identification from noisy ChIP-seq data is a challenging 
process, for which over 30 programs have been developed (for a 

review see [ 7]). In this study, we used two of the most popular peak 

callers, MACS2 [32] and CisGenome [33], which were found to 

perform better than other peak callers [ 2,30]. These two algorithms 

are also representative of statistical models used for peak finding: 
MACS uses a dynamic Poisson distribution, while CisGenome uses a 
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negative binomial distribution to account for the local biases across 
the genome. 

Both programs were run with default settings with the input 
DNA samples as the control (except the H3K27me3 dataset for 
which the input control is unavailable). Notably, the default setting of 
MACS2 removes duplicate tags at the same location (–keep-
dup=auto) and report peaks with FDR <0.05 (-q 0.05), while 
CisGenome does not automatically remove duplicates by default, and 
the cutoff for peak identification is a fold of enrichment >3 (-c=3.0) 

when a input control is used and > 0 (-c= 0) when the ChIP sample 

is analyzed alone.  

 

 
 
 
 
 
 
 
 
 
 
 

 
Additional settings were explored. For the H3K27me3 data, we 

also present analysis results when removing duplicate tags first and 
using –c=6 besides those generated by the default setting. Parameter 
choices are important and investigators should spend time adjusting 
the parameters in order to obtain a reasonable list of binding sites for 
their factor of interest. Our intention here is not to compare the peak 
callers themselves but to use disparate peak callers with disparate 
settings and diverse data to see if there are universal conclusions about 
processing biological replicates that can be made.  

QC2 is performed after peak identification and included 
summarizing the number of peaks identified as well as metrics to 
evaluate peak quality.  The fraction of reads in peaks (FRIP, [33]) 
was calculated to estimate the global enrichment of signals against the 
background. Normalized strand cross-correlation (NSC) and relative 
strand cross-correlation (RSC) measure enrichment independently of 
peak calling. NSC is the normalized ratio between the fragment-
length cross-correlation peak and the background cross-correlation. 
RSC is the ratio between the fragment-length peak and the read-

length peak (http://genome.ucsc.edu/ENCODE/qualityMetrics. 
html). 

For peaks independently identified from multiple replicates, it is 
unlikely that the exact peak position is the same across independent 
replicates. Peaks were considered overlapping among replicates if at 
least one nucleotide was shared. Unique and common peaks were 
identified across replicates. Peaks found only in a single replicate were 
considered unique. Peaks present in all replicates were considered to 
be common. The simple agreement coefficient was calculated as the 
number of overlapping peaks over all peaks identified in a pair of 
replicates. McNemar’s test [56] evaluates the symmetry of 
identification for unique peaks, providing a measurement of 
agreement between replicates.  

We explored several different ways to define a consensus region 
from peaks overlapping among a set of replicates with various exact 
positions (Figure 2). We compared: the maximum area encompassing 
identified peak regions (“MAX”); the area between the summits of 
overlapping peaks (“SMT”); the area encompassing the known 
footprint size for a specific binding molecule centered at the average 
summit (“ASF”), or using an empirical observation of average peak 
width to determine the boundaries again centered at the average 
summit (“ASW”). If peaks were identified only in a subset of 
replicates, the consensus peaks were determined from the subset where 
individual peaks had been identified. For each of these approaches, 
the coverage in consensus peaks was calculated as the Reads Per 
Kilobase per Million mapped reads (RPKM, [52]) for each sample. 
QC3 was developed to quantitatively evaluate the agreement across 
replicates. Consistency between pairs of replicates was explored using 
weighted Kappa coefficients [53] of ranked coverage (groups=5) and 
Spearman’s correlation. Bland-Altman plots were also used to visually 
examine differences between the two replicates plotted against their 
mean [54,55].   

In many cases peaks were present in all replicates, but there are 
also cases where peaks were only identified in a subset of replicates.  
We proposed a “simple majority” rule and considered a peak 
identification to be consensus if it was detected in a majority of 

replicates, based on the reasoning that ( ) if peak detection were 

random the likelihood of seeing a peak in the same location in 
multiple replicates would be small, and (2) given the noisy nature of 
ChIP-seq samples, a particular tool’s chance of not identifying a peak 
in a region (false negative) is known to be large (Supplemental Figure 
7).  As the sample size of a ChIP-seq experiment increases, requiring 

an absolute consensus ( 00% agreement) will increase the false 

negative rate substantially. The majority rule allows for the simple 
extension of consensus between two replicates (the guideline proposed 
by [26]), to more complex situations.  A majority consensus peak is 
supported by the majority of samples, allowing possible dissent in the 
other replicates. Naturally, this introduces the question of reliability 
of the peaks that have not been called unanimously. To determine 
whether the missing peak in some of the replicates was due to the lack 
of reads or merely a potential false negative from the peak discovery 
software, we tested for evidence that reads were enriched in the 
replicates where the software failed to identify them initially. For each 
sample, we used the peaks identified in that sample to estimate the 
distribution of RPKM values for peaks in that particular sample. 
RPKM values for peaks less than the 25th percentile were considered 
the background. We used a Z-test where the null hypothesis is that its 
RPKM was not greater than the background. The peak was 
considered to be detected above background (DABG) when the null 
hypothesis was rejected (i.e. RPKM of the peak was greater than the 
25th percentile of the RPKM of all peaks of that sample). 

 

Figure 1. Analysis pipeline for ChIP-seq experiments. Each biological 
replicate is individually aligned to the appropriate reference (Aln), Peaks 
are identified (e.g. CisGenome or MACS). Quality control 1 (QC1) includes 
visual examination in a genome browser and quantification of total reads, 
uniquely mapped reads, and PCR bottleneck coefficient (PBC). Quality 
control 2 (QC2) includes evaluation of the number of peaks, the fraction of 
reads in peaks (FRIP), phantom peaks and common and unique peaks.  
Consensus peaks summarized from overlapping peaks with four different 
criteria (described in Methods and Figure 2). Quality Control 3 (QC3) 
examines correlation and agreement across replicates.  
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The Gene Feature Format (GFF) file containing the genomic 
annotation of D. melanogaster was downloaded from:  
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.3

0_FB20 0_07/.  

The promoters were defined as +/-2kb from the TSSs. The genic 
regions were taken as the upstream 2kb from the TSSs until the 
downstream 2kb from the transcript terminate sites (TTSs). 
Agreement between the RPKM of pairs of replicates was inspected 
using Bland-Altman plots for both promoters and genic regions. 

 
Results 
 

For all of the experiments we examined, the read level QC  

showed that the sequencing depth and quality varied among replicates 

(Supplemental Table  and 2). Sufficient numbers of total reads and 

uniquely mapped reads were necessary for binding site discovery. The 
RNAPII data met the rule of thumb promoted for the minimal 

mapped reads per sample, which is 2 million for drosophila, and 0 

million for mammalian genome [26]. Under this rule the FOXA  and 

NFKB experiments appeared to lack sequencing depth.  The first 
replicate of the H3K4me3 data had much fewer reads compared to 

the other replicates. Consistent with their biological functions, the 
binding signals of RNAPII and H3K4me3 were associated with genic 
regions with more prominent peaks near the transcription start sites 

(TSSs) (Supplemental Figure ). Clear and narrow peaks were found 

at the TSSs of known NFKB targets such as TP53 [57,58], NFKBIA 

[59,60], NFKB  [6 ] (Supplemental Figure ) and SHH [62]. 

QC2 revealed that the numbers of peaks independently identified 
were different for replicates of the same experiment (Supplemental 

Table ) and the difference between peak calling programs was 

evident. The performance of same parameter settings depended upon 
the particular experiment, and there was not an immediately 
transparent mapping between the two underlying models of MACS2 
and CisGenome. Using default settings, MACS2 [32] identified more 
peaks in the RNAPII data while CisGenome [33] identified more in 
other datasets. CisGenome peaks were also wider, especially for the 
NFKB data. Multiple consecutive peaks identified by MACS2 in 
RNAPII were frequently identified as a single peak by CisGenome 

(Supplemental Figure ). The fraction of reads in peaks (FRIP) 

varied corresponding to the number of peaks being identified 

(Supplemental Table ). Parameter exploration demonstrated the 

differences between MACS2 and CisGenome in the default settings 
beyond the underlying statistical models (Poisson vs. negative 
binomial). For example, the plentiful redundant reads in low PBC 
samples have to be removed deliberately for CisGenome but are 

Figure 2. Defining the consensus regions for overlapping peaks across replicates. (A). Scheme showing different methods of combining individual peaks into a 
consensus. MAX: the maximum area encompassing all peak regions. SMT: the area between the summits of peaks. Summits of individual peaks are marked in 
red. The average summit of individual peaks is shown as the star. ASF: the area in the size of the footprint of the bound protein with the average summit as the 
center. ASW: the area centering the average summit in the size of the average peak width. (B) Snapshot of signals (grey bar charts on top), algorithmically 
identified peaks (black) and the consensus regions (blue) for point source factors that form narrow peaks at the transcription start site (TSS). The ChIP signals 
are distinct compared to the input control. The outlooks of the signals are highly similar for all five replicates when the signal range is not set but allows auto-
adjustment to the local background (not shown). Here the range is set to a constant to allow comparison of the relative signal strengths, which vary across 
samples. The peaks identified in individual samples are similar in their position and width. (C) Snapshot for broad source factors whose binding signals span an 
entire gene (cropped at the 3’ end for readability). There are bigger differences in the identified peaks across replicates.   
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automatically removed in MACS2. When this step was repressed in 
MACS2 by the --keep-dup option, the number of peaks became 
comparable to that identified by CisGenome for RNAPII and NFKB 
(data not shown). When redundant reads were removed, the number 
of peaks identified by CisGenome and the FRIP dropped noticeably 
and was closer to that of the default settings in MACS2 
(Supplementary Table 3; Supplementary Table 4). Peak-independent 
measurements of enrichment such as Normalized strand cross-
correlation (NSC) and relative strand cross-correlation (RSC) 
suggested three of the NFKB replicates were of medium quality, and 
the remaining samples were of high or very high quality 
(Supplemental Table 2). 
 

Without prohibitively costly independent validation experiments, 
the rate of false positive and false negative peaks cannot be accurately 
estimated. However, consistency of replicates provides a proxy for 
such an estimate, as the general assumption is that peaks identified in 
multiple samples, in approximately the same region, represent the 
same protein/DNA binding phenomenon. As showed by the peak 
level QC2, despite discrepancies in the number of peaks identified by 
CisGenome and MACS2 in individual replicates, the numbers of 
common peaks were more comparable between the two programs 
(Table 2; Supplemental Table 3).    

 

 
The proportion of overlapping peaks between a pair of replicates 

reflects sample agreement, which was fair for the RNAPII and NFKB 
data (Supplemental Table 3a). The agreement was reasonable for the 
H3K27me3 data when MACS or adjusted CisGenome was used, but 
decreased when the peaks were identified using the default settings of 
CisGenome (Supplemental Table 3a). For H3K27me3 dataset, we 
focused on the results from adjusted instead of the default settings of 
CisGenome. Similarly, the default CisGenome also did not perform 
well for the H3K4me3 data. This was probably because CisGenome, 
unlike MACS2, was not optimized for histone signals (broad peaks). 

The FOXA  data also had few reproducible peaks across replicates. 

Compared to the other datasets, the FOXA  data appeared noisier in 

the genome browser and we were not able to observe noticeable peaks 

near known selected FOXA  target genes. The metric we proposed 

(proportion of overlapping peaks) and the existing metrics 
(sequencing and mapped reads) all suggest high background noise in 
these data. The researchers in the original report combined the five 
replicates into one sample prior to analysis.  

Generally, the number of peaks increases with the number of 
sequence reads for both CisGenome and MACS2 (Supplemental 

Table ), consistent with previous studies [ 0]. McNemar’s test [56] 

demonstrates that the unique peaks do not match for a given pair of 
replicates, with more peaks being identified in samples with greater 
sequencing depth (Supplemental Table 3b). However, this pattern 
was not strictly followed by the samples with high PCR bottleneck 
coefficient values (PBC>0.7).  
 

Read coverage within specific peaks provides a quantitative 
measurement of enrichment above background. We calculated the 
Reads Per Kilobase per Million mapped reads (RPKM, [52]) in the 
consensus regions for common peaks (defined in Methods). Because 
differently defined consensus regions mostly varied in width (Figure 
2), the choice of consensus region affected read coverage and in turn 
the estimate of sample agreement, though this effect was small (Figure 
3; Supplemental Figure 2). ASF consensus peaks had relatively lower 
agreement across replicates, indicating that ASF is not a good choice 
of consensus despite its usage of biological knowledge of a protein’s 
footprint size. It has been reported that although factors bind short 
regions of DNA (typically 5–25 bp), the DNA fragments that are 

pulled down typically cover a wider region of 50–600 bp around the 

binding site [ 3]. Therefore the width of identified peak regions does 

not always reflect the actual resolution of biological binding size. We 
also examined the enrichment in the corresponding regions of peaks 
identified in the replicate with the most reads. This is comparable 
with other ChIP-seq studies that arbitrarily selected one replicate as 
the reference sample (e.g. [42]). Unsurprisingly, such “consensus” 
peaks were heavily biased towards the sample that was selected as the 
standard (Supplemental Figure 2).  

For RNAPII and NFKB, CisGenome called fewer peaks that had 
higher agreement across replicates (Supplemental Figure 3: BA plots 
with a narrower Y-axis where points are symmetrical around 0, higher 
Kappa and Spearman’s coefficient), indicating these peaks were of 
higher quality. These peaks were also wider, including more reads that 
covered broader regions. In the H3K4me3 data, MACS2 identified 
fewer but higher quality peaks compared to CisGenome. The first 
replicate of H3K4me3 data was less correlated with the other 
replicates (Supplemental Figure 4), possibly an outlier, which was 
hinted by its lower read counts. The adjusted CisGenome and 
MACS2 yielded comparable Kappa and Spearman’s coefficients for 
the H3K27me3 data. However, the distribution of the BA plots 
indicated that CisGenome peaks have better agreement (Supplemental 
Figure 6).  

Despite the difference in the number of identified peaks, the 
RNAPII, NFKB and H3K27me3 replicates were highly correlated in 
terms of signal quantification (Figure 3; Supplemental Figure 5; 

Supplemental Figure 6). QC based on sequencing depth (QC ) and 

peak calling results (QC2) may identify the third replicate of NFKB 
experiment as failed; however, when measured quantitatively (QC3), it 
actually had good agreement with other samples (Supplemental Figure 
5).  
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Figure 3. Consistency across replicates of the RNAPII ChIP-seq experiment. (A) Boxplot of weighted Kappa coefficients. The coverage in the consensus peak 
was binned into five ranked groups. The agreement of such ranked coverage between replicates was reflected by the weighted Kappa coefficients. A value over 
0.75 indicates excellent agreement, which was met for all replicates regardless of the consensus being used. (B) Heat map of the Spearman correlation of the 
coverage in the consensus peak. Correlations were high. (C) Bland-Altman plots show the relationship between the difference (Y axis) and the mean (X axis) for 
a pair of replicates. Narrow and symmetrical plots reflect better agreement. Replicate 2 and replicate 3 are shown here, but other pairs (Replicate 1 vs 
Replicate 2, Replicate 1 vs Replicate 3) have similar patterns. Data shown are based on CisGenome peaks and more information is in Supplemental Figure 3.  
 

Figure 4. Percentages of peaks detected above background (DABG) in 
replicates where no algorithmically identified peaks were present. The 
read coverage (RPKM) in each identified peak, unique or common, was 
compared to the lower quartile of coverage in all peaks for that sample. 
The peak was detectable if the difference was statistically significant by a Z 
test.  Peaks that were identified in the majority of replicates had a higher 
ratio to be confirmed by DAGB compared to those were unique in one 
replicate (Supplemental Table 3. The Y axis is the percentage of the peaks 
DABG and the mean is indicated by the sold line while the whiskers are 
the 25 and 75 percentile values. 
 

Figure 5. Spearman correlation coefficients were similar when the peaks 
were identified in all replicates or in the majority of the replicates. 
However, the correlation was much lower for uniquely identified peaks.  
The Y axis is the correlation coefficient and the mean is indicated by the 
sold line while the whiskers are the 25 and 75 percentile values. 
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Due to the noisy nature of ChIP experiments and limitations of 
peak calling programs, peak identification varies across samples. 
Requiring support from all replicates for common peaks is likely to 
increase the false negative rate. We hypothesized that if a peak was 
identified in more than 50% of the replicates (i.e. two out of three, 
three out of five) there is sufficient support for its existence. More 
peaks were included as common under this majority rule (Table 2 
“Common in the majority”). We tested whether the failure to identify 
a peak in some replicates is likely to be a false negative or whether 
there is  no enrichment of binding in that area for that replicate. The 
probability of detection above background (DABG) was used to 
determine whether the observed signal in the putative peak region was 
greater than the first quartile of detected peaks in that sample (Z test 
p<0.05, see Methods). Visual inspection using the genome browser 
found clear peaks at the TSS of known NFKB targets such as TP53 

[57,58], NFKBIA [59,60], NFKB  [6 ] and SHH [62], though 

these peaks were not identified in all replicates by CisGenome or 

MACS2 (Supplemental Figure ). In addition, there were also distinct 

increases of signal near the TSS of BRCA2 and PTEN, both of 
which are known targets of NFKB [63,64] but were not identified as 
peaks (Supplemental Figure 7). The absence of peaks identified at 

these regions may be the result of insufficient coverage or excessive 
noise at these genome positions.  

Compared to the absolute consensus, more peaks were included as 
common under the majority rule (Table 2 “Common in the 
majority”). For the RNAPII data, peaks that were identified in the 
majority of replicates had a high confirmation rate using the test for 
detection above background (DABG) particularly when compared to 
tests for DABG for unique peaks, regardless the peak caller used or 
the consensus definition (Figure 4; Supplemental Table 4). Similarly 
in the H3K27me3 data, the DABG was 55% - 58% in the other 
replicates for the peaks identified solely in the third replicate, but 

increased to 8 % - 85% when the peaks were also identified in an 

additional replicate. More than 92% of unique peaks in NFKB’s first 
replicate were also supported by other replicates. This suggests that 
many genuine signals were missed by the peak callers. Consistent with 

the QC  and QC2, peaks identified only in the third and fourth 

replicates of the NFKB data, were significantly above background 

only in % and 25% of the other replicates. When the majority rule 

was used, 00% of the peaks were also identified by DABG in the 

additional two replicates.  DABG thus enables additional quality 
assessments, and an objective measure of whether peaks identified by 
the majority rule have supporting evidence in all replicates. 

Figure 6. Bland-Altman plots showing the sample agreement, using genomic features as the quantification unit. The difference (Y axis) between a pair of 
replicates at the genomic feature (transcript for RNAPII [A] and TSS for H3K4me3 [B]) was plotted against the average of two samples. (A) Enrichment in the 
transcripts showed agreement for all replicates of the RNAPII data. (B) The first replicate of H3K4m3 appears to be an outlier sample, with little agreement with 
other replicates, while the second and third replicates agreed with each other in their enrichment near the TSS.  
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Spearman’s correlation between pairs of replicates was high, as 
expected, when using peaks that were identified by the peak callers in 
all replicates. The correlation was only slightly lower when the peaks 
that were identified in the majority were also included (Figure 5 
showing RNAPII; Supplemental Table 6). However, when only one 
replicate was required for peak identification, the correlation in 
enrichment among replicates dropped dramatically (Figure 5 showing 
RNAPII; Supplemental Table 6), indicating that peaks identified in 
the majority of replicates were comparable to the common peaks, 
both of which were much more reliable than those identified in one 
replicate.  
 

The performance of different methods for determining consensus 
peaks was dependent upon the mode of molecular binding, data 
quality and peak caller used. For the data we examined, MAX, SMT 
and ASW consensus peaks yielded a high estimate of consistency for 
point and mixed source factors. It was less conclusive for the broad 
source factors. Genomic features may serve as a reasonable alternative 
as quantification unit for well annotated genomes. For example, based 
on the biology that H3K4me3 marks are associated with TSSs, 
sample consistency can be inferred by inspecting the read coverage at 
TSSs. Even for factors whose functions are less defined, the regulation 
of many proteins are gene centric, therefore the binding strength in 
the nearby genic regions may provide a measure of the biological 
activity.  

We calculated the coverage in the surrounding regions of TSS for 
the H3K4me3 data and coverage in the transcripts for the RNAPII 
data. Enrichment in the TSS surrounding regions was in good 
agreement for the second and third replicates of the H3K4me3 data 
(Figure 6). Consistent with other measures, the first replicate of 
H3K4me3 seems to be an outlier sample. The enrichment in the 
transcripts was in good agreement for all replicates of the RNAPII 
data (Figure 6).  

 
Discussion 
 

Noise may be introduced during many steps of ChIP. Some may 
be technical issues in IP, library construction, or sequencing. Other 
noise may be due to biological differences among individual samples. 
As the tissue specificity of transcription factor binding and DNA 
modification has been demonstrated by the ENCODE project, we 
also expect that the tissue samples are more heterogeneous than the 
cell lines, which may be more heterogeneous than prokaryotes. The 
noise makes peak identification from ChIP-seq data a challenging task 
and demands some guidelines for considering all the sources of 
variability. Towards this end, we analyzed three publically available 
ChIP-seq data, and two of our own datasets with three or more 
biological replicates. Consistent with expression profiling techniques, 
we find that more replicates produce results that can be quantitatively 
as well as qualitatively evalauted. We propose that ChIP experiments 
should include at least three replicates and use the consensus peaks 
found in a majority of samples. Peaks common in all samples and 
peaks unique to a single sample can be used as an indicator of 
individual sample quality. Deeply sequenced experiments, such as the 
RNAPII data in this study, had better concordance among replicates 
than those with lower read counts. Encouragingly, reproducible peaks 
could still be determined from those studies with lower coverage. 

Quantification of the signals in the consensus regions was 
consistent among replicates even when a peak was not initially 
identified for a particular replicate. Despite their distinct models for 

peak identification, the two different programs used in this study 
(CisGenome and MACS2) produced comparable quantitative 
measurements of consensus peaks and led to similar conclusions about 
the utility of replicates. Although we focused on default settings for 
this exercise, adjusting settings on peak callers can improve the 
concordance of peak identification among replicates.  

The real binding sites are unknown for most ChIP studies. The 
strategy that requires identification of a peak in all replicates (absolute 
consensus) will exclude genuine binding sites. The failure to detect a 
peak in a particular sample may be due to low coverage or high 
background at a particular peak position, in combination with the 
uncertainty in peak calling algorithms. A practical approach to 
maximize site discovery is to increase the number of replicates.  We 
showed that peaks that were identified in the majority of replicates 
were likely to be enriched above background in the replicates where 
the initial peak calling process had failed.  When more than two 
replicates were examined, many peaks that would be considered 
unqiue in the pair of replicates were confirmed in an additional 
replicate. Peaks identified in the majority  (>50%) of replicates were 
frequently confirmed in the missing replicates when they were 
specifically tested for detection among background, while the 
confirmation rate for unique peaks were much lower, suggesting these 
majority peaks were more likely to be true positives. Equally 
importantly, no single replicates were the source of most discrepancies 
and so the inclusion of more replicates improved the number and 
quality of peaks for all replicates. The majority rule may be applied to 
other IP-seq studies. Twice as many microRNA binding sites were 
identified from two out of three replicates than from all three 
replicates using high-throughput sequencing of RNA isolated by 
crosslinking immunoprecipitation (HITS-CLIP) technology [65].  

Real target sites may not recur uniformly across replicates above 
background as defined by a particular peak discovery algorithm. 
Annotation-based approaches provide quantification that is 
independent of peak calling. They are complementary to peak 
identification for promoter/transcript-associated protein binding, or 
can be employed when peak calling is difficult. Notably, they cannot 
replace peak callers, as many binding sites would be missed, as it has 
been demonstrated by previous ChIP experiments that transcription 

factors, even transcription activators such as STAT [6] and E2F  

[66,67], can bind in regions of the genome previously unknown, 
though the function of the binding remains unclear.   

The decade-long debates on replication for microarray 
experiments [68] and more recently RNA-seq data [69] applies to the 
current discussion of ChIP-seq data. Not only is an increase in 
replication sensible from a statistical point of view, allowing a 
quantitative assessment of differences between groups, it enables 
identification of a higher number of reliable signals out of the noisy 
ChIP-seq data. The more variablity in the sample source, the more 
biological replicates will be necessary. More replicates provide a shield 
against undercalling, as a particular peak caller is unlikely to identify 
all peaks in all replicates. In cases where a certain peak is missing in 
one sample but present in other replicates, the signal in the missing 
sample can be estimated from other replicates and tested for detection 
above background in that replicate.  
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