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The membrane attack complex—also known as C5b-9—is the end-product of the
classical, lectin, and alternative complement pathways. It is thought to play an
important role in the pathogenesis of various kidney diseases by causing cellular injury
and tissue inflammation, resulting in sclerosis and fibrosis. These deleterious effects are,
consequently, targeted in the development of novel therapies that inhibit the formation of
C5b-9, such as eculizumab. To clarify how C5b-9 contributes to kidney disease and to
predict which patients benefit from such therapy, knowledge on deposition of C5b-9 in
the kidney is essential. Because immunohistochemical staining of C5b-9 has not been
routinely conducted and never been compared across studies, we provide a review of
studies on deposition of C5b-9 in healthy and diseased human kidneys. We describe
techniques to stain deposits and compare the occurrence of deposits in healthy kidneys
and in a wide spectrum of kidney diseases, including hypertensive nephropathy, diabetic
nephropathy, membranous nephropathy, IgA nephropathy, lupus nephritis, C3
glomerulopathy, and thrombotic microangiopathies such as the atypical hemolytic
uremic syndrome, vasculitis, interstitial nephritis, acute tubular necrosis, kidney tumors,
and rejection of kidney transplants. We summarize how these deposits are related with
other histological lesions and clinical characteristics. We evaluate the prognostic relevance
of these deposits in the light of possible treatment with complement inhibitors.

Keywords: biopsy, C5b-9 (membrane attack complex [MAC]), histopathology, immunofluorescence,
immunohistochemistry, renal, clinicopathological correlation, glomerular disease
Abbreviations: aHUS, atypical hemolytic uremic syndrome; ANCA, antineutrophil cytoplasmic antibody; COVID19,
coronavirus disease 2019; CR1, complement receptor 1; DAF, decay-accelerating factor; eGFR, estimated glomerular
filtration rate; FB, complement factor B; FD, complement factor D; FHR, complement factor H related protein; FH,
complement factor H; GFR, glomerular filtration rate; HBe, hepatitis B e antigen; HBs, hepatitis B surface antigen; HLA,
human leukocyte antigens; MASP, mannose-associated serine protease; MBL, mannose-binding lectin; PLA2R, phospholipase
A2 receptor; r, Pearson’s correlation coefficient; r, Spearman’s correlation coefficient; SLE, systemic lupus erythematosus;
STEC-HUS, hemolytic uremic syndrome elicited by infection with Shiga toxin-producing enterohemorrhagic Escherichia coli;
TTP, thrombotic thrombocytopenic purpura.

org February 2021 | Volume 11 | Article 5999741

https://www.frontiersin.org/articles/10.3389/fimmu.2020.599974/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.599974/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.599974/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:j.j.e.koopman@lumc.nl
https://doi.org/10.3389/fimmu.2020.599974
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.599974
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.599974&domain=pdf&date_stamp=2021-02-11


Koopman et al. Deposition of C5b-9 in Kidneys
INTRODUCTION

The membrane attack complex is the end-product of the three
complement pathways: the classical, lectin, and alternative
pathway. Activation of these pathways leads to generation of
C5 convertase, which cleaves C5 into C5a and C5b. While C5a
functions as an anaphylatoxin, C5b binds to C6, C7, C8, and
multiple copies of C9, constituting C5b-9, also known as the
membrane attack complex. This complex forms a pore through a
pathogen’s or cell’s membrane—structurally and functionally
similar to perforin produced by cytotoxic T cells—and disrupts
the pathogen’s or cell’s integrity. Formation of C5b-9 can cease
incompletely without anchoring to a membrane, in which case it
circulates as a soluble complex with vitronectin or clusterin,
referred to as sC5b-9 (1, 2). Both C5b-9 and sC5b-9 promote
inflammation and thrombosis.

Activation of the complement pathways plays an essential
role in the pathogenesis of kidney diseases, but the pathways are
involved to varying extents. Glomerular deposition of immune
complexes predominantly activates the classical pathway in
lupus nephritis, the lectin pathway in primary membranous
nephropathy, and both the lectin and alternative pathway in
IgA nephropathy (3). The extent to which C5b-9 is formed varies
as well. The alternative pathway is activated in both C3
glomerulonephritis and dense deposit disease but leads to
more C5b-9 in the former (4–6).

With the clinical development of targeted complement
inhibitors (7–9), it is essential to know which parts of the
complement pathways go awry in specific kidney diseases.
Eculizumab, a monoclonal antibody binding C5, inhibiting its
cleavage, and thus preventing formation of C5b-9, is used to treat
aHUS and some cases of lupus nephritis, C3 glomerulonephritis,
dense deposit disease, IgA nephropathy, and transplant rejection
(10–17). Inhibitors of other complement factors are being
developed (7–9). Although eculizumab seems to benefit
particularly patients in whom much C5b-9 is formed (4, 11,
18, 19), it remains uncertain which patients benefit from which
complement inhibitor.

Levels of sC5b-9 in blood and urine are elevated in various
kidney diseases and associated with their activity and severity (4,
10–12, 20–33). Yet, measurement of sC5b-9 in blood or urine is
cumbersome due to its easy formation in vitro and short half-life
(34). Deposition of C5b-9 in kidneys is thought to better reflect
the involvement of its formation in the pathogenesis of kidney
diseases (35, 36). The membrane-bound form may more
accurately indicate complement activation and disease activity
than its circulating soluble form, as has been shown for other
complement factors in SLE (10, 11, 37, 38). Deposition may also
be associated with prognosis, similarly to deposition of C4d in
IgA nephropathy and kidney transplants (15, 26, 39). Lastly,
deposition indicates that C5a has been formed locally, which
promotes inflammation and thrombosis through the C5a
receptors. This is increasingly recognized as a pathogenetic
process and possible treatment target in various kidney
diseases and transplant rejection (10–12, 14, 15, 17, 26, 32, 40).

Since deposition of C5b-9 in human kidneys has never been
compared across individual studies, it remains uncertain under
Frontiers in Immunology | www.frontiersin.org 2
which conditions, in which diseases, in which areas, and in which
quantities it can be found (35). To aid in this understanding, we
provide a review of studies on deposition of C5b-9 in healthy and
diseased human kidneys. We describe our search strategy and
methods, the methodological characteristics of the 141 included
studies, and the findings of these studies in the Supplementary
Material, which may be used as a reference for future research.
We summarize the main findings derived from these studies in
Figure 1 and Table 1. We illustrate possible correlations between
deposition of C5b-9 and histological lesions or clinical
characteristics in the other figures. We detail the findings in
the text, separately for healthy kidneys, nonimmunological
kidney diseases, kidney diseases due to deposition of immune
complexes, kidney diseases due to activation of the alternative
pathway, vasculitis, general patterns of kidney injury, kidney
tumors, and kidney transplantation. We discuss the findings in
general in a closing discussion.
STAINING TECHNIQUES

Antibodies Against C5b-9
Around 1980, antibodies against C5b-9 were developed for
immunofluorescent and immunoperoxidase staining. These
antibodies recognize neoepitopes that arise when individual
complement factors combine and change their conformation
to form C5b-9 (1, 2). When C6 and C7 bind newly formed C5b,
they expose a lipophilic tail that anchors to a membrane. C8 then
binds this complex and reshapes to penetrate the membrane.
Finally, eighteen copies of C9 integrate into the complex and
penetrate the membrane to form an asymmetrical and flexible
pore (41–43). The neoepitopes recognized by the antibodies are
almost always exposed on polymerized C9 (44–49) and
sometimes on incomplete forms lacking C9 (50–52). Table 2
provides an overview of the antibodies that were used in the
included studies to stain C5b-9 in kidneys.

Staining should be interpreted in the context of the selectivity
of the antibodies, which is limited insofar they also bind
incomplete forms of C5b-9, such as those lacking C9 or
polymerized C9 lacking C5b, as shown in Table 2. These
incomplete forms occur independently of C5b-9, both on
membranes and in blood, and may have similar although
smaller cytolytic or inflammatory effects (1, 2, 64). C5b-9
should, therefore, be stained with a monoclonal antibody that
recognizes a neoepitope on C5b-9 but not its individual
components and preferably not its incomplete forms.

Membrane-Bound Versus Soluble C5b-9
The antibodies cannot make a distinction between C5b-9 that
has anchored a membrane or sC5b-9 that has remained
circulating (65), as apparent from Table 2. Unlike membrane-
bound C5b-9, the lipophilic parts of sC5b-9 are shielded from
membranes as they are capped by vitronectin and clusterin
(1, 66).

Several studies tried to distinguish both types of C5b-9 by
costaining vitronectin, originally called S-protein. This
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FIGURE 1 | Deposits of C5b-9 in healthy and diseased human kidneys. Pie charts show the proportion of studies that reported staining of C5b-9 as absent (light) or
present (dark). Bar charts show the medians of the proportions of patients reported to exhibit staining. Scatter charts show the median staining intensities in these
patients. All charts show data separately for staining in the glomerulus as a whole (glom.), in the mesangium (mes.), along the glomerular capillary wall (cap.), along
the tubular basement membrane (tub.), or in the extraglomerular vascular wall (vas.). Error bars show the lowest and highest reported values. Numbers of studies are
indicated between brackets. Some studies reported only part of the data shown, explaining differences in the numbers of studies between pie, bar, and scatter
charts. Nothing is indicated if the data were never reported. Detailed data per study are listed in Supplementary Table 2. Membranous nephropathy excludes
studies conducted specifically on secondary membranous nephropathy. IgA nephropathy excludes studies conducted specifically on IgA vasculitis with nephritis.
Data on these diseases and on glomerular basement membrane diseases, hypertensive nephropathy, interstitial nephritis, acute tubular necrosis, and kidney tumors
are only listed in Supplementary Table 2 because of a paucity of data. ANCA: antineutrophil cytoplasmic antibody; MPGN: membranoproliferative
glomerulonephritis.
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circulating protein binds incomplete forms of C5b-9, interrupts
its complete formation, and prevents membrane binding (1, 2).
Colocalization was therefore thought to identify soluble sC5b-9
that had deposited in the kidney without anchoring to a
membrane (67–71). Indeed, deposits of vitronectin were
seldomly seen in the absence of C5b-9 (70, 72, 73). However,
vitronectin can also bind complete membrane-bound C5b-9 (60,
64, 65, 74), had a similar distribution as the membrane-bound
regulatory factor CD59 (58), was found without C5b-9 in healthy
kidneys (72, 75), did not always colocalize with C5b-9 in diseased
kidneys (61, 67, 72, 73, 76, 77), colocalized with immune deposits
in diseased kidneys when C5b-9 was deficient (78), was
associated with the extracellular matrix (75), and was localized
in the subepithelial space which it cannot reach when bound to
soluble sC5b-9 (67, 73, 75, 79). Therefore, costaining of
vitronectin cannot be used as an indicator of sC5b-9.

Clusterin, a protein with a similar function as vitronectin (1,
2), was less often studied. It was present in the vascular wall in
Frontiers in Immunology | www.frontiersin.org 4
healthy kidneys and both the glomerulus and vascular wall in
diseased kidneys, colocalized with C5b-9 according to some but
not to other studies (58, 69, 70, 73, 80). By contrast, CD59, also
known as protectin, is a membrane-bound protein that binds
and inhibits membrane-bound C5b-9 only (1, 2). It can bind the
lipophilic parts of C8 or C9 in incomplete forms of C5b-9,
preventing their penetration of the membrane and integration of
other copies of C9 into the complex (2, 41–43). Reports on its
presence in healthy and diseased kidneys were inconclusive (58,
81–87).

Apart from protective factors like CD59, cells can resist the
cytolytic effects of C5b-9 by shedding parts of their membranes to
which C5b-9 has bound as extracellular vesicles. Extracellular
vesicles are also shed in various other pathological and
physiological processes and can subsequently be targeted by C5b-
9. Extracellular vesicles are present in blood, urine, and kidney
tissue (88, 89). Antibodies cannot distinguish C5b-9 on extracellular
vesicles from C5b-9 bound to cells or circulating sC5b-9.
TABLE 1 | Histological lesions and clinical characteristics correlated with deposits of C5b-9 in diseased human kidneys.

Localization of deposits

Glomerulus Tubules Vascular wall

Hypertensive nephropathy Glomerulosclerosis Loss of vascular smooth
muscle cells; arteriosclerosis

Diabetic nephropathy Mesangial expansion; glomerulosclerosis; IFTA;
severity of nephropathy; type of diabetes;
creatinine; albuminuria

Interstitial inflammation; IFTA; urine
biomarkers of tubular injury;
creatinine; albuminuria

Loss of vascular smooth
muscle cells; vascular AGEs;
arteriosclerosis; severity of
nephropathy; creatinine;
albuminuria

Minimal change nephropathy Glomerulosclerosis IFTA Arteriosclerosis
Membranous nephropathy Mesangial hypercellularity; capsular adhesions;

glomerulosclerosis; proteinuria; disease
progression

Interstitial inflammation; interstitial
fibrosis; creatinine

Arteriosclerosis

IgA nephropathy Mesangial expansion and hypercellularity;
endocapillary hypercellularity; capsular adhesion;
crescents; thrombotic microangiopathy;
glomerulosclerosis; interstitial inflammation; IFTA;
age; creatinine; proteinuria; nephrotic syndrome;
disease progression

Interstitial inflammation; IFTA;
creatinine; proteinuria; nephrotic
syndrome; disease progression

Thrombotic microangiopathy;
arteriosclerosis

Lupus nephritis Histological activity and chronicity indices;
glomerulosclerosis; blood pressure; proteinuria;
serum C3 and C4; lack of treatment effect

Interstitial inflammation; interstitial
fibrosis

Arteriosclerosis

C3 glomerulopathy eGFR
Membranoproliferative
glomerulonephritis
type I

Glomerulosclerosis; serum sC5b-9; disease
progression

Interstitial fibrosis; disease
progression

Arteriosclerosis

Hypertension-
associated
thrombotic
microangiopathy

Proteinuria; plasma complement activity

ANCA-associated vasculitis Mesangial expansion; creatinine; proteinuria Interstitial inflammation; interstitial
fibrosis; creatinine; lack of treatment
effect

Interstitial nephritis Interstitial inflammation; IFTA Interstitial inflammation; IFTA;
arteriosclerosis

Acute tubular necrosis IFTA; degenerative abnormalities of
the tubular basement membrane

Kidney transplant rejection eGFR; Banff score; transplant survival IFTA; anti-ABO antibodies;
transplant survival

Arteriosclerosis
February 2021
Histological lesions and clinical characteristics found to correlate with deposits of C5b-9 in different localizations in the kidney are indicated separately for different kidney diseases, as
discussed in more detail in the text. Characteristics found not to correlate are only discussed in the text.
AGEs, advanced glycation end-products; ANCA, antineutrophil cytoplasmic antibody; eGFR, estimated glomerular filtration rate; IFTA, interstitial fibrosis and tubular atrophy.
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Comparisons of Different
Staining Techniques
Some studies used a combination of antibodies against individual
components, such as C6 and C9, instead of a selective antibody to
stain deposits of C5b-9 (Supplementary Table 1). These
complement factors are, in contrast to C5b-9, ever-present in
blood (45, 46, 55, 60). Some of them—notably C5, C6, and C9—
may be present in the glomerulus when others are not (90–92).
As a result, individual complement factors could stain when
C5b-9 did not (44, 52, 57, 78) and could stain with varying
intensities (44, 52, 57, 67, 76, 93, 94), as illustrated in Figures
3A, B. Staining intensities of C6 and C7 were generally lowest
(44, 52, 94), while that of C9 often resembled that of C5b-9 (18,
44, 94–97).

Only one study compared different selective antibodies against
C5b-9—among which aE11, anti-C5b-9(m), and B7—and found
identical glomerular staining (58). Results obtained with different
antibodies in included studies might vary slightly, but we could not
discern a relation with their selectivities, though comparisons were
hampered by a paucity of data (Supplementary Tables 2 and 3
and Supplementary Figures 1 and 2).

Different staining techniques were rarely compared directly.
Two studies found similar immunofluorescent and
immunoperoxidase staining using anti-C5b-9(m) or anti-MAC
in various kidney diseases (57, 98). One study mentioned that
aE11 did not stain well in paraffin-fixed tissue (28). Direct
immunofluorescent staining of C5b-9 was not, in contrast to
IgG and C3, affected by acidity, denaturation, or proteolysis (95).
Comparisons of staining techniques between included studies
were hampered by a paucity of data. Antigen retrieval and
blocking, secondary antibodies, antibody concentrations, and
detection techniques remained mostly unspecified, yet these
techniques determine whether, how intensely, and how
Frontiers in Immunology | www.frontiersin.org 5
selectively staining is perceived. We provide an example of a
complete description of staining techniques in the legend of
Figure 2. We could not discern differences in results of included
studies depending on staining techniques (Supplementary
Tables 2 and 3), except for a possibly higher frequency of
tubular deposits based on immunofluorescent as compared
with immunoperoxidase staining (Supplementary Figures 3
and 4).

Staining of C5b-9 was similar in tissue obtained with autopsy
or biopsy in studies on diabetic nephropathy and lupus nephritis
(27, 95). In a study on healthy kidneys, it was more often present
in tissue obtained with autopsy than biopsy (27), possibly
because the latter were healthy living donors. Also in included
studies, autopsies might reveal more frequent staining in healthy
but not diseased kidneys (Supplementary Figures 5 and 6).

Clearance of C5b-9
Membrane-bound C5b-9 is stable and cleared slowy. Indeed,
glomerular staining of C5b-9 was equal in patients with active or
chronic lupus nephritis, while that of C3 disappeared from the
latter (18). It was present in biopsies taken both shorter and
longer than twenty weeks after the onset of IgA vasculitis,
whereas C3 and MBL were present in only the former (99). It
remained present with unchanged intensity in patients with C3
glomerulopathy or thrombotic microangiopathy after one or two
weeks (100), after three months (101), after four months (102),
and after a year (103) of treatment with eculizumab. Yet, in other
reports on various kidney diseases, its staining resolved within
three days after administration of eculizumab (104), after three
months to 3 years of treatment with eculizumab (105–108), and
after half a year of treatment with other immunosuppressive
medication (18, 109), as illustrated in Figure 3C. Resolution over
short periods may reflect active shedding of C5b-9 from cells,
TABLE 2 | Selective antibodies used to stain C5b-9 in human kidneys.

Name Clonality Source Binding

C5 C6 C7 C8 C9 Poly-
C9

Incomplete
C5b-9a

Soluble
C5b-9

Membrane-
bound
C5b-9

Ref.

ab55811 Polyclonal Rabbit Unkn. Unkn. Unkn. Unkn. Unkn. Unkn. Unkn. Unkn. Unkn. (53, 54)
aE11 or M0777 Monoclonal Mouse – – – – ± + + + + (46, 51)
Anti-C5b-9(m) Polyclonal Rabbit – – – – – Unkn. Unkn. + + (55, 56)
Anti-MAC Polyclonal Rabbit – – – – – Unkn. Unkn. + + (57)
Anti-MAC-neo Polyclonal Rabbit – – – – – Unkn. + + + (52)
bC5 or A239 Monoclonal Mouse – – – – ± + ± + + (46)
B7 Monoclonal Mouse – – – – ± + Unkn. + + (58, 59)
Kolb 1975b Polyclonal Rabbit – – – – – Unkn. + + + (50)
PolyC9-MA Monoclonal Mouse – – Unkn. – – + – Unkn. + (44)
WU-7,2 Monoclonal Mouse – – – – ± – Unkn. + + (48, 60)
WU-13,15 Monoclonal Mouse Unkn. – – Unkn. ± – – + + (48, 60)
X197 Monoclonal Mouse Unkn. Unkn. Unkn. – + + – Unkn. + (47, 49)
Xia 1988b Monoclonal Mouse – – – – – Unkn. Unkn. + + (61, 62)
3B1 Monoclonal Mouse – – – – – + – + + (45)
1B4 Monoclonal Unkn. Unkn. Unkn. Unkn. Unkn. – + Unkn. + + (63)
F
ebruary 202
1 | Volume 11 | Artic
All antibodies against C5b-9 used for staining of C5b-9 in the included original studies, as specified per study in Supplementary Table 1, are indicated. References to studies on their
binding selectivity are given.
aIncomplete forms of C5b-9 without C9, either soluble or membrane-bound, commonly referred to as C5b-6, C5b-7, and C5b-8.
bNames used in Supplementary Tables 1 and 2 for antibodies without a specific name.
–, no binding; ±, weak binding; +, strong binding; poly-C9, polymerized C9; unkn., unknown.
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initial staining of C5b-9 on extracellular vesicles, initial staining
of circulating sC5b-9, or variability of the staining technique;
resolution over longer periods may reflect a true effect of
complement inhibition.
HEALTHY KIDNEYS

Knowledge on deposition of C5b-9 in healthy kidneys is crucial
to understand its relevance in kidney diseases. Tissue from
healthy kidneys is, however, generally unavailable for research.
Frontiers in Immunology | www.frontiersin.org 6
Deposition was, consequently, explored infrequently and only in
small, ill-defined, and sometimes heterogeneous groups. These
groups mostly served as controls in studies on patients with
kidney diseases, yet might themselves not always have healthy
kidneys. For example, in a rare study providing such details,
controls were biopsied because of proteinuria, hematuria, edema,
hypertension, or an elevated creatinine up to 522 mmol/l and
sometimes had lesions consistent with a mesangioproliferative
glomerulonephritis (52). Other sources of tissue included
autopsies, biopsies of kidney transplants before, during, or
after transplantation, biopsies without histological lesions
A B

FIGURE 2 | Staining of C5b-9 in a healthy and a diseased kidney. Examples of staining of C5b-9 from our laboratory are shown. (A) In a healthy kidney, staining
was present in the vascular pole of the glomerulus and the vascular wall of extraglomerular arteries and focally with less intensity along Bowman’s membrane and
the tubular basement membrane. This tissue was obtained with a biopsy from a living donor before kidney transplantation. (B) In a kidney of a patient with aHUS,
staining was present along the glomerular capillary wall, in the vascular wall of extraglomerular arteries and focally along Bowman’s membrane and the tubular
basement membrane. This tissue was obtained with a clinically indicated biopsy. Both tissues were fixed, paraffin-embedded, and sectioned. After deparaffinization
(xylol and ethanol) and antigen retrieval (PBS-0.1% Proteinase XXIV, P8038, Sigma), sections were washed and endogenous peroxidase was blocked (PBS, 0.1%
NaN3, 1% H2O2) for 30 min at room temperature. Sections were washed (PBS) and incubated with mouse anti-human C5b-9 (2 µg/ml, aE11, HM2167, Hycult
Biotech, Uden, the Netherlands) or an isotype control (mouse IgG2a, 2 µg/ml, X0943, Dako, Jena, Germany) in PBS with 1% BSA over night at room temperature.
Next day, slides were washed and incubated with goat anti-mouse horseradish peroxidase (HRP, 5 µg/ml, P0447, Dako) for 30 min at room temperature. Slides
were washed and incubated with rabbit anti-goat HRP (2.5 µg/ml, P0449, Dako) for 30 min at room temperature. Slides were washed and developed using
NovaRED following protocol (Vector Labs, Peterborough, UK) and counterstained (Mayer’s hematoxylin, 1.09249.0500, Merck, Darmstadt, Germany) for 25 s. Slides
were not counterstained with eosin, which explains why tubules may seem dilated. Slides were dried overnight at room temperature before being covered using
entellan (1.07961, Merck).
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and C9 in kidney biopsies of patients with IgA nephropathy (n = 18). Antibody anti-MAC-neo was used for staining of C5b-9. We plotted previously published
individual data (52). (B) Glomerular staining intensities of C5 and C9 are compared in kidney biopsies of patients with IgA nephropathy (n = 15). We plotted
previously published individual data (76). (C) Staining intensities of C5b-9 in the mesangium (mes.) and along the capillary wall (cap.) are shown for first and repeat
biopsies with the time between both biopsies in patients with lupus nephritis (n = 8) who responded or did not respond to immunosuppressive treatment. Antibody
aE11 was used for staining. We plotted previously published individual data (18).
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conducted in most cases because of microscopic hematuria,
unaffected parts of kidneys nephrectomized because of a
kidney tumor, and unclear sources.

In these presumably healthy kidneys, deposits of C5b-9 were
absent (31, 52, 70, 76, 90, 92, 95, 102, 110–125) or sparse and
granular in the mesangium (18, 28, 44, 67, 72, 75, 77, 96, 97, 102,
103, 111, 126–133) and vascular pole (18, 44, 126, 132, 134).
Deposits were variably reported to be present or absent in the
capillary wall (18, 27, 28, 44, 52, 67, 70, 75, 97, 103, 111, 112, 123,
126, 127, 129, 132, 134). Deposits were furthermore reported
occasionally along Bowman’s capsule (28, 96, 103, 111, 128, 129)
and segmentally and granularly along the tubular basement
membrane (18, 28, 46, 67, 70, 72, 75, 83, 94, 96, 97, 103, 118,
127, 129, 135, 136). Deposits were more prominent in the
vascular wall (18, 27, 28, 44, 67, 70, 72, 75, 77, 84, 94, 96, 97,
103, 111, 124, 126, 127, 130, 131, 134, 135, 137–139) but absent
from peritubular capillaries (83, 130). In the vascular wall,
staining covered on average 6% of the media (84). We provide
an example of sparse mesangial staining and more prominent
vascular staining in a living donor before kidney transplantation
—probably the closest representation of a healthy kidney—in
Figure 2A.

Immunoelectron microscopy revealed C5b-9 granularly along
extracellular striated membranous structures—thought to be cell
membrane fragments—in the mesangium, glomerular basement
membrane, tubular basement membrane, and adjacent to
myocytes in the vascular wall but not on cells themselves. This
was similar for autopsies (126), nephrectomized kidneys (96),
biopsies (72), and kidney tissue of unclear source (44, 97).

Formation and deposition of C5b-9 is physiologically
expected to be negligible in healthy kidneys, as confirmed by
several studies. Sparse and segmental deposition, as described in
other studies and as shown in Figure 2A, may be explained by
localized cellular injury acquired during aging, due to subclinical
or unrecognized kidney disease, or as a result of tissue sampling.
This explanation fits observations of deposits of C5b-9 being
accompanied by deposits of C1q, C3, C4, or FH in the
glomerulus (18, 27, 44, 83, 96, 103, 131) and by deposits of C3,
C4, or FH along the tubular basement membrane and in the
vascular wall (44, 67, 70, 75, 94, 96, 103, 134, 138). This
explanation suggests that deposition of C5b-9 is more likely in
tissue obtained from older individuals, in the presence of a
kidney tumor, or with autopsy.

In one comparative study, staining of C5b-9 was absent from
the kidney of a fetus, sparse in the mesangium and vascular wall
in a newborn but stronger in the mesangium and in the vascular
wall and additionally appearing along the capillary wall and
tubular basement membrane in two adults aged 55 and 65 years
(44, 126). In two individuals with unknown ages, glomerular
staining was independent of age (137). Although only a limited
number of other studies reported ages, glomerular staining
seemed more common and more intense in those that
included older individuals (Supplementary Table 2).

Deposition of C5b-9 might be more frequent in kidney tissues
obtained with autopsy than biopsy or nephrectomy, as discussed
in the previous section.
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Staining of C5b-9 in the vascular wall is recognized as a
positive control (19, 134). Staining in the vascular pole of the
glomerulus was similarly common (Figure 2A). In addition to
the explanation above, staining in association with the
vasculature may reflect the recently discovered ability of renin
to cleave C3 and activate the alternative pathway (101, 140).

Apart from the vasculature, deposition of C5b-9 in
presumably healthy kidneys was less common and less intense
than in most kidneys diseases, as shown in Figures 1 and 2 and
discussed hereafter.
NON-IMMUNOLOGICAL
KIDNEY DISEASES

Minimal Change Nephropathy
In minimal change nephropathy, complement activation is not
known to play a pathogenetic role. Complement factors and
immunoglobulins are usually absent from the kidney. In line
with this, deposition of C5b-9 was similar as in healthy kidneys,
being absent from the glomerulus or weakly present as fine
granules in the mesangium but not in the capillary wall, and
more intense in the vascular wall, predominantly in areas of
vascular hyalinosis and sclerosis (57, 61, 67, 70, 72, 75, 79, 81, 85–
87, 96, 98, 113, 121, 128, 139, 141–143). Few studies reported
slightly more frequent and intense staining in the glomerulus as
compared with healthy kidneys (18, 116, 117). One study
reported prominent deposits along Bowman’s capsule (79).
Deposits were furthermore focally present along the tubular
basement membrane, concentrated in areas of tubulointerstitial
injury (18, 57, 67, 70, 72, 75, 79, 96, 142, 143). Immunoelectron
microscopy revealed that deposits were associated with striated
membranous structures or cell remnants in the glomerular
basement membrane, mesangium, podocyte foot processes,
tubules, and vascular wall (72, 79).

Glomerular Basement
Membrane Diseases
Patients with glomerular basement membrane disease, like
Alport’s syndrome, were used as negative controls. They had
no or only traces of deposits of C5b-9 or other complement
factors in the glomerulus (18, 85–87, 130, 139, 143), except for
areas of glomerulosclerosis (96, 143). Reports were inconsistent
as to whether they had deposits along the tubular basement
membrane and in the vascular wall (18, 96, 130, 143).

Hypertensive Nephropathy
Hypertension can be regarded as a chronic smoldering
inflammatory disease. It is associated—through unclear
mechanisms—with activation of complement and formation of
C5b-9, which contribute to vascular injury and end-organ
dysfunction in animal models (40).

Glomerular deposits of C5b-9 were more common and
extensive in patients with hypertensive nephropathy than in
young women with hypertension or healthy individuals (44,
131), while deposits of C3 were absent (44, 67, 144). C5b-9
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was found extensively in the mesangium, including the
juxtaglomerular region, in a coarse granular pattern along
Bowman’s capsule but not or only focally along the capillary
wall (44, 67) and sometimes along the tubular basement
membrane (44, 67, 95, 143). It was predominant in glomerular
and vascular areas of expansion, sclerosis, and hyalinization (44,
67, 143). Vascular staining was moderately intense and covered
10% of the arterial media, similar to hypertension without
nephropathy but more intense and extensive than in healthy
kidneys (44, 67, 84). The extent of staining in the media
correlated with loss of smooth muscle cells in hypertension
with or without nephropathy (r = 0.82 and r = 0.79,
respectively) (84).

Preeclampsia
Preeclampsia, characterized by hypertension and proteinuria in
pregnancy, is partly attributable to activation of complement in
the placenta and along the endothelium elsewhere. It is
associated with elevated levels of C5a and sC5b-9 in blood and
urine, which explains why treatment with eculizumab has
beneficial effects (32). The only study on deposits of C5b-9
found them rarely and segmentally in the glomerulus, mostly
in areas of glomerulosclerosis. Other localizations were not
evaluated (131).

Diabetic Nephropathy
Chronic hyperglycemia leads to glycation of proteins, referred to
as advanced glycation end-products. These proteins may expose
neoepitopes that are recognized by C1q and MBL, which activate
the classical and lectin pathways. Glycation of factors that
normally inhibit complement activation, like CD59, may
enhance complement activation or directly induce formation of
C5b-9. As a result, sC5b-9 circulates at higher levels in diabetes,
Frontiers in Immunology | www.frontiersin.org 8
is excreted in urine in diabetic nephropathy, and deposits in
various organs affected by diabetes (27, 28, 30, 113, 145).

Glomerular deposits of C5b-9 were more common in patients
with diabetic nephropathy than in healthy individuals (27, 28, 44,
72, 96, 113, 126, 139, 143). Deposits were found ubiquitously and
granularly in the mesangium, coarsly along Bowman’s capsule,
and focally along the capillary wall (28, 44, 67, 70, 96, 126),
although more along the capillary wall than in the mesangium in
one study (113). Deposits were coarsely present along the tubular
basement membrane with MBL and MASPs (28, 44, 67, 70, 72,
96, 126, 142) and in the vascular wall (28, 44, 67, 70, 72, 84, 96,
126), also with higher staining intensity than in healthy kidneys
(28, 84). Intense staining in the glomerulus and vascular wall was
likewise observed in a case of recurrent diabetic nephropathy
after transplantation (113). Deposits were most extensive in
glomerular, tubular, and vascular areas of expansion, sclerosis,
hyalinization, and amyloidosis (28, 44, 67, 70, 72, 96, 126, 143)
but absent from crescents (72, 96). Glomerular and vascular
deposits were only slightly more frequent in diabetic
nephropathy than in diabetes without kidney disease (27), as
reproduced in Figure 4A.

Immunoelectron microscopy revealed that C5b-9 colocalized
with cell membrane fragments in areas of glomerulosclerosis, in
the glomerular basement membrane, tubular basement
membrane, and vascular wall but not bound to epithelial,
mesangial, or tubular cells (96, 126).

Histological Correlates
As reproduced in Figure 4B, glomerular deposits of C5b-9 were
increasingly common in more severe cases of diabetic
nephropathy (27). The extent to which staining covered the
arterial media likewise increased from 10% in mild to 28% in
severe diabetic nephropathy (84).
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Staining intensity of C5b-9 was reported to correlate with the
severity of histological lesions. In the glomerulus, it correlated
with the degree of mesangial expansion; in both the glomerulus
and tubules, it correlated with the degree of tubular injury and
atrophy (27, 28, 96, 143). In the tubules and interstitium
combined, it correlated with the number of interstitial
infiltrating cells (r = 0.53, p < 0.01), interstitial volume (r =
0.56, p < 0.01), and the degree of tubular and interstitial
inflammation and injury (r = 0.52, p < 0.01) (28). In the
vascular wall, C5b-9 colocalized with glycated CD59 (113) and
other advanced glycation end-products and apoptotic smooth
muscle cells (84).

Clinical Correlates
Staining intensity of C5b-9 throughout the kidney was higher in
patients with higher creatinine and more albuminuria. Staining
intensity in the tubules and interstitium combined correlated
weakly with levels of urine markers reflecting tubular injury.
Staining did not correlate with the plasma level of sC5b-9 (28).
One study found glomerular deposits more often in patients with
diabetes type 1 than type 2, as shown in Figure 4C, possibly due
to a longer disease duration (27).
KIDNEY DISEASES DUE TO
IMMUNE COMPLEX DEPOSITION

Primary Membranous Nephropathy
Primary—formerly idiopathic—membranous nephropathy is
caused by autoantibodies that bind antigens expressed by
podocytes, in most cases PLA2R. These autoantibodies are
predominantly of the IgG4 class, which cannot bind C1q and
thus cannot activate the classical pathway. Rather, the lectin and
alternative pathways are activated, given that C3, C4, FH, FB,
andMBL, but not C1q, affect the risk of membranous nephropathy
and are generally present in the subepithelial immune deposits.
However, the pathways may be variably activated due to variation
in the characteristics of the autoantibodies and their antigens, even
during the disease’s course. Autoantibodies of the IgG1 class
directed against exostosin or neutral endopeptidase activate the
classical pathway (24, 25).

Formation of C5b-9 is regarded essential for the development
of kidney injury and proteinuria (24, 25). It disrupts proteins of
organelles, the cytoskeleton, and slit diaphragm of podocytes.
The urine level of sC5b-9—probably shed by podocytes—
correlates with disease activity. In animal models, deficiency or
inhibition of C5, C6, or C8 prevents deposition of C5b-9 and
proteinuria (24, 25, 79, 123).

In line with this, staining of C5b-9 was more intense and
extensive in membranous nephropathy than in healthy kidneys
(18, 44, 67, 72, 75, 82, 96, 123, 139), also when recurring in a
transplant (147). It was intense in the glomerulus (57, 81, 82, 139,
143, 148–151), always along the capillary wall, but not or hardly
in the mesangium (18, 44, 67, 72, 75, 77, 79, 87, 98, 112, 123, 141,
147, 152–155), in a granular (77, 82, 112, 154), linear (123), or
mixed pattern (79). It was furthermore focally found along
Frontiers in Immunology | www.frontiersin.org 9
Bowman’s capsule (79, 152), as coarse granules along the
tubular basement membrane (18, 44, 57, 67, 70, 72, 75, 79, 96,
112, 142), occasionally on tubular cells (79, 112), in the vascular
wall (18, 57, 67, 72, 96, 112), in capsular adhesions, crescents, and
glomerular and vascular areas of hyalinosis and sclerosis (44, 57,
67, 70, 72, 77, 96, 143). The extent of tubular staining varied
widely between 10 and 88% (112). Not all studies specified
included cases as specifically primary membranous nephropathy.

Immunoelectron microscopy revealed that C5b-9 was
associated with striated membranous structures in immune
deposits, basal membranes of adjacent podocyte foot processes,
the glomerular basement membrane, and the mesangium, more
often so in stage IV than I or II (72, 79, 152).

Histological Correlates
C5b-9 colocalized with immune deposits containing IgG, C3,
and sometimes C1q and C4 in the capillary wall in all stages of
primary membranous nephropathy (44, 67, 70, 72, 75, 77, 81, 82,
87, 96, 112, 139, 143, 147–149, 152, 154–156), except for stage I
according to one report (72). It colocalized with causative
autoantibodies in subepithelial immune deposits (150, 155,
156). By contrast, it was absent from the glomerulus where its
inhibitors clusterin and CD59 were present (80, 82). Staining
along the capil lary wall correlated with mesangial
hypercellularity (87), as illustrated in Figure 5A. Staining was
more frequent in glomeruli with than without capsular adhesions
(83 vs. 17%) (77). The extent of glomerular staining correlated
with neither the stage of disease nor the extent of tubular staining
(112). Tubular staining was concentrated in areas of interstitial
inflammation and fibrosis and tubular atrophy (57, 70, 72, 96,
112), as reproduced in Figure 5B.

Clinical Correlates
Glomerular staining intensity correlated with the amount of
proteinuria (57); patients with glomerular staining had more
proteinuria than those without (3.6 vs. 2.3 g/d) (77). The extent
of tubular staining correlated with creatinine (112), as
reproduced in Figure 5C. Glomerular and tubular staining
intensities of C5b-9 did not correlate with blood pressure, the
nephrotic syndrome, hematuria, or serum levels of C4 or C3
(87, 112).

As illustrated in Figure 5D, glomerular staining intensity
seemed associated with the outcome during treatment among
children (87). In a case of lupus-like membranous nephropathy,
however, staining remained unchanged despite decreased
proteinuria after 40 weeks of treatment with intraveneus
immunoglobulins (149).

Secondary Membranous Nephropathy
Secondary membranous nephropathy is caused by autoantibodies
that circulate due to infections, autoimmune diseases,
malignancies, or medication. They deposit in the subepithelial
and often also the subendothelial space and activate the classical or
lectin pathway (24, 25). Only few studies reported on deposition of
C5b-9 in secondary membranous nephropathy. It was present in
immune deposits in medication-induced membranous
nephropathy stages II and III but not I (96, 157). It was
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similarly found in immune deposits along the capillary wall in
membranous nephropathy due to hepatitis B (152)—although not
in all cases (77)—where it colocalized with HBe and sometimes
HBs (152).

IgA Nephropathy
In IgA nephropathy, galactose-deficient IgA due to aberrant
glycosylation is bound by autoantibodies and deposits as
immune complexes in the mesangium. There, it causes
mesangial expansion and inflammation with widely varying
histological and clinical presentations (15, 17).

Circulating and deposited IgA–containing immune
complexes can activate the alternative and lectin pathways but
not the classical pathway. C3, FH, and properdin of the
alternative pathway and sometimes C4d, MBL, and MASPs of
the lectin pathway deposit in the mesangium too. C1q of the
classical pathway is only infrequently present. Whether only the
alternative or also the lectin pathway is activated probably varies
between patients (15, 17, 158). As their end-product, the urine
level of sC5b-9 is elevated and associates with disease severity.
Inhibiting the formation of C5b-9 with eculizumab has
inconsistent beneficial effects in patients (15, 17, 21, 158, 159).

In small comparative studies, all or almost all patients with
IgA nephropathy had deposits of C5b-9 in the glomerulus that
were more intense, more diffuse, and more coarse than in healthy
individuals (44, 52, 67, 72, 75, 81, 96, 97, 124, 128, 139). All
individual components of C5b-9 were two to four times more
abundant in the glomerulus in patients with stable IgA
nephropathy than in healthy individuals as quantified with
mass spectrometry (124).

Mostly small descriptive studies found C5b-9 as coarse
granules in the glomerulus (57, 58, 72, 76, 81, 137, 139, 143,
158, 160, 161)—always in the mesangium, sometimes also along
the capillary wall (19, 44, 52, 67, 75, 96, 97, 110, 115, 124, 128,
Frontiers in Immunology | www.frontiersin.org 10
162–166), in one case report only along the capillary wall (159)
—, along Bowman’s capsule (52, 162, 163), as coarse granules
(19, 44, 52, 57, 70, 72, 75, 96, 97, 110, 115, 163) or linearly (110,
115) along the tubular basement membrane and occasionally on
tubular cells (110), and in the vascular wall (19, 52, 57, 67, 72, 96,
110, 115, 137, 162). Deposits along the capillary wall were
localized in the subepithelial space (97, 164). The extent of
staining in tubules varied widely between 19 and 87% (110,
115). Deposits were furthermore present in areas of mesangial
expansion and in glomerular and vascular areas of amyloidosis,
hyalinosis, and sclerosis (19, 44, 57, 67, 72, 75, 96, 97, 143) but
not in crescents (19, 72, 96, 97). Among patients with IgA
nephropathy or IgA vasculitis with nephritis together, deposits
were less frequent in the mesangium and vascular wall (19, 167).
One case of IgA nephropathy with thrombotic microangiopathy
exhibited no deposits (130).

Immunoelectron microscopy revealed deposits of C5b-9 in
various patterns: as homogeneous fine granules along the
glomerular basement membrane in the paramesangial region,
as rings or ribbons associated with striated membranous
structures or cell remnants in the glomerular basement
membrane, subepithelial space, mesangium, tubular basement
membrane, and vascular wall, and as patches in electron-dense
deposits in the mesangium (72, 97).

Histological Correlates
Glomerular deposits of C5b-9 colocalized with IgA and C3–
containing immune complexes (44, 52, 57, 67, 70, 72, 75, 76, 81,
96, 97, 110, 128, 137, 143, 158, 160, 161, 165). Their staining was
less intense than that of IgA (52, 76, 137). The localization and
intensity of their staining correlated with those of C3 mRNA
expression (128).

Various studies reported a relation between staining of C5b-
9 and histological lesions. Glomerular staining intensity
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correlated with the extents of mesangial expansion and
hypercellularity, glomerulosclerosis, interstitial inflammation,
interstitial fibrosis, and tubular atrophy (57, 115, 128, 137, 139,
163). It also seemed correlated with the extent of proliferative
glomerulonephritis (52), as illustrated in Figure 6A. Individual
components of C5b-9 were two times more abundant in
patients with than without global mesangial hypercellularity,
endocapillary hypercellularity, or moderate to extensive
interstitial fibrosis or tubular atrophy but equally abundant in
patients with or without glomerulosclerosis (124). Glomerular
deposits were more frequent when capsular adhesion and
crescents were present (76), while those with cellular or
fibrocellular crescents had more intense staining (166).
Deposits seemed also more frequent in the glomerulus (27 vs.
12%, p = 0.06) and vascular wall (68 vs. 46%, p = 0.06) when
thrombotic microangiopathy was present (167). Global
glomerular staining was associated with loss of podocytes (r2 =
0.18, p < 0.05), perhaps due to their lower expression of CR1 (r2 =
0.45, p < 0.05), which antagonizes complement activation (164).
Tubular staining intensity correlated with the extents of interstitial
Frontiers in Immunology | www.frontiersin.org 11
inflammation and fibrosis and tubular atrophy (57, 72, 96, 110,
115), as reproduced in Figure 6B.

Although the aforementioned studies included children, two
studies including only children did not find any correlation
between glomerular or tubular staining and histological lesions
(19, 97).

Clinical Correlates
Various studies also reported a relation between staining of C5b-
9 and clinical outcomes. Glomerular and tubular staining
intensities of C5b-9 correlated with creatinine (110, 115, 128),
as shown in Figures 6C, D. They were also higher in patients
with heavy proteinuria or the nephrotic syndrome (19, 52, 163),
as illustrated in Figure 6E, although these correlations did not
hold in sensitivity analyses (19). Amounts of its individual
components in microdissected glomeruli were higher when
blood pressure was higher or when eGFR was lower but not
related to proteinuria (124). A correlation between glomerular
staining intensity and age was reported without further details
(137). Otherwise, staining was not related with age, sex,
p = 0.45
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hematuria, serum levels of immunoglobulins, C3, or C4, or
disease duration (19, 52, 76, 97, 110, 128, 137).

Glomerular deposits of C5b-9 were more often present (41 vs.
89%, unadjusted odds ratio 12, p = 0.004) and stained more
intensely in progressive as compared with stable IgA
nephropathy (158). Amounts of C5 through C9 were about
twice as high in the former as compared with the latter, which
was among the largest difference of all studied proteins (124).

Among children with IgA nephropathy or IgA vasculitis with
nephritis, those with deposits of C5b-9 in the glomerulus or
tubules received immunosuppressive medication more often
than those without deposits (89 vs. 62%, p = 0.02) and had,
probably as a result, a shorter time to recovery (unadjusted
hazard rate 0.17, p = 0.02) (19). In adults who had C5b-9 in more
than half of the tubules, creatinine increased from 150 to 248
µmol/l during a mean follow-up of 30 months, while it remained
stable around 88 µmol/l in those who had less tubular deposits
(110). An undefined relation between glomerular and tubular
staining intensities and creatinine after a longer follow-up was
reported too (115).

IgA Nephropathy With Complement
Factor Deficiency
Mild forms of IgA nephropathy were reported in patients with
complement factor deficiencies limiting formation of C5b-9, in
whom disease could arise from sublytic effects of incomplete
C5b-9. Two children with a congenital C9 deficiency developed
IgA nephropathy with mesangial deposits of C3, C5, and C8 but
not C9 or C5b-9. Their histological lesions were only mild, eGFR
remained normal, and proteinuria resolved spontaneously (78).
An adolescent with IgA nephropathy and homozygous C3
deficiency exhibited weak mesangial staining of C5b-9 together
with immunoglobulins, C1q, C4, and properdin but not C3. He
too had only mild histological abnormalities (93). An adult man
with C9 deficiency suffered from progressive IgA nephropathy
without deposition of C5b-9 (151).

IgA Vasculitis With Nephritis
IgA vasculitis—or Henoch-Schönlein purpura—can present with
a nephritis that closely resembles IgA nephropathy, so that some
regard it as a systemic form of IgA nephropathy. Activation of
the alternative and lectin pathways are similarly thought to
underlie the nephritis (168, 169). In the few studies conducted
specifically on patients who had IgA vasculitis with nephritis,
deposits of C5b-9 were present in the mesangium and capillary
wall, colocalized with IgA and C3–containing immune
complexes (52, 61, 75, 85, 99, 139), along the tubular basement
membrane, and in the vascular wall (75, 96). Mesangial deposits
of C5b-9 were less common in patients with mesangial deposits
of IgA1 only, in whom the alternative pathway was activated,
than in those with deposits of both IgA1 and IgA2, in whom the
lectin pathway was also activated (73 vs. 100%). Four patients
without deposits of C5b-9 had less intense staining of IgA and C3
but paradoxically more proteinuria than 27 with deposits
(median 210 vs. 80 mg/dl) (85). Deposits of C5b-9 were not
different between children with IgA vasculitis or IgA
Frontiers in Immunology | www.frontiersin.org 12
nephropathy but were less clearly associated with prognosis in
the former (19).

Lupus Nephritis
Autoantibodies that circulate in SLE give rise to lupus nephritis
when they form or deposit as immune complexes in the
glomerulus. They activate the classical pathway, reflected in
most patients by specific full-house deposition of IgG, IgA,
IgM, C1q, and C3. Activation of the alternative pathway,
seems essential too, given that more C3 than C4 deposits, that
deficiencies of factors of the alternative pathway, like FB and FD,
ameliorate lupus nephritis, and that deficiencies of its inhibitory
factors, like FH, promote lupus nephritis in animal models
(10, 11).

Formation of C5b-9 may be both a cause and consequence of
deposition of immune complexes and cellular injury (11, 119).
Levels of sC5b-9 are elevated in blood and urine of patients and
correlate with disease activity. Pointing to a causative role,
inhibition of C5 reduces histological lesions, proteinuria, and
mortality in animal models, while eculizumab exerts beneficial
effects in patients (10, 11).

In line with such a role, glomerular and tubular deposits of
C5b-9 were more common in patients with lupus nephritis than
healthy individuals (18, 44, 46, 67, 72, 75, 81, 96, 111, 119, 133,
139). Descriptive studies on mostly small numbers of patients
reported ubiquitous deposits in the glomerulus (18, 46, 58, 72, 77,
81, 95, 96, 111, 119, 133, 139, 143, 170, 171)—both in the
mesangium and along the capillary wall (18, 44, 57, 67, 75,
111, 172–174) and sometimes along Bowman’s capsule (119,
171) —, linearly or granularly along the tubular basement
membrane (18, 44, 57, 67, 70, 72, 75, 95, 96, 119, 142, 151,
171), and in the vascular wall (18, 57, 67, 72, 95, 96, 119, 171).
Deposits were also present in glomerular and vascular areas of
hyalinization, sclerosis, and fibrinoid necrosis (44, 57, 67, 70, 95,
96, 143) but not in crescents (72, 96, 171).

Deposits of C5b-9 were mainly located in the mesangium in
lupus nephritis class II, III, or IV and granularly along the
subepithelial side of the capillary wall in class V, although
mesangial deposits often extended into the capillary walls and
vice versa (18, 77, 95, 111, 152, 172). They colocalized with
immune deposits containing immunoglobulins and other
complement factors in all classes (44, 46, 57, 67, 70, 72, 75, 77,
81, 95, 96, 143, 152, 172, 173). Glomerular, but not tubular,
staining of C5b-9 was more intense in more severe classes,
increasing from I and II to III and V and being strongest in
class IV (18, 95, 111, 119, 139, 171, 174). In lupus nephritis with
thrombotic microangiopathy, staining intensity was variable in
the glomerulus and strong in the vascular wall (100, 130, 175).

Immunoelectron microscopy revealed that C5b-9 was
associated with immune deposits, striated membranous
structures, and partly shedded cell membrane extensions or
with cell membrane fragments in the mesangium, the capillary
wall, and glomerular basement membrane without signs of
cellular lysis (95, 96, 152, 172). Some cell membrane fragments
in the glomerular basement membrane appeared to be infolding
degraded parts of podocytes (170, 172). C5b-9 was furthermore
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associated with structural defects of the tubular basement
membrane (95).

Histological Correlates
Staining intensity of C5b-9 correlated with those of
immunoglobulins and C3 (70) and with loss of podocytic
expression of CR1 (111). Glomerular staining intensity of C5b-
9 did not consistently correlate with histological signs of active or
chronic nephritis. In a small study, it correlated with the activity
index (111), but in other studies it rather correlated with the
chronicity index, although weakly (174), or with neither index
(18, 171). It did not correlate with the number of macrophages in
the glomerulus (18). Tubular staining colocalized with interstitial
inflammation (70, 95) and correlated with interstitial fibrosis (18,
57, 72, 96), as reproduced in Figure 7. The extents of glomerular
and tubular staining of C5b-9 did not correlate mutually
(95, 171).

Clinical Correlates
Correlations between deposits of C5b-9 and clinical
characteristics were studied little. Patients with lupus nephritis
class V and other types of membranous nephropathy had more
proteinuria if they had deposits in the capillary wall (3.6 vs. 2.3 g/
l, p < 0.02) (77). Patients with various classes of lupus nephritis
were more often men (39 vs. 6%, p = 0.06), had higher blood
pressure (133/82 vs. 117/70 mmHg, p < 0.03) and seemed more
frequently to have low serum levels of C3 (92 vs. 65%, p = 0.10)
(171) and C4 (57) if they had deposits in the glomerulus. There
were no correlations with age, race, symptoms of SLE,
medication, creatinine, hematuria, hemoglobin, albumin, or
serum level of anti-dsDNA autoantibodies (18, 77, 171).

Glomerular deposits of C5b-9 seemed to predict treatment
effect: patients with deposits responded less often, with an
Frontiers in Immunology | www.frontiersin.org 13
unadjusted odds ratio of 0.60 (p = 0.58) for any response after
a year of treatment (18) and a multivariate-adjusted odds ratio of
0.22 for any response after six months of treatment (171). Their
staining intensity seemed to correlate with treatment effect too,
although the change in intensity in biopsies repeated after
treatment did not (18), as illustrated in Figure 3C. In a case of
recurrent lupus nephritis class II, mesangial staining was similar
as in a first biopsy taken 5 years earlier, while staining of
immunoglobulins and other complement factors had
increased (170).

Lectin Pathway
The lectin pathway has recently been suspected to contribute to
the pathogenesis of lupus nephritis. Polymorphisms of MBL
increase the risk of lupus, its circulating level is high in patients
with lupus nephritis, and it frequently deposits in their kidneys
(18, 24, 176). Glomerular deposits of C5b-9 and MBL concurred
in 82% and their staining intensities correlated well in eleven
patients with lupus nephritis. C5b-9 and MBL were also
deposited in Bowman’s capsule, tubules, and the vascular
wall (119).

Membranoproliferative Glomerulonephritis
Immune complex-mediated membranoprol i fe rat ive
glomerulonephritis is regarded a disease of an activated
classical pathway, elicited by deposition of immunoglobulins
and subsequently leading to codeposition of complement
factors. Deposits of C5b-9 were present with immune
complexes along the capillary wall (108), although C5 through
C9 were only rarely detected with mass spectrometry of
microdissected glomeruli (90). In two teenagers treated with
eculizumab, the extent of glomerular staining decreased slightly
and histological inflammation improved, but GFR and
proteinuria improved in only one of both. With similar clinical
characteristics and serum complement levels, the successfully
treated case differed only by exhibiting histological thrombotic
microangiopathy (108).
KIDNEY DISEASES DUE TO ALTERNATIVE
PATHWAY ACTIVATION

C3 Glomerulopathy
C3 glomerulopathy is regarded a disease of an activated alternative
pathway, characterized by deposition of C3 but no or scarce
deposition of immunoglobulins or other complement factors. Before
this pathogenetic distinction, C3 glomerulopathy and immune
complex-mediated membranoproliferative glomerulonephritis were
together classified into membranoproliferative glomerulonephritis
types I, II, and III according to the localization of immune deposits.
An essential role of C5 has been demonstrated in animal
models of membranoproliferative glomerulonephritis and C3
glomerulopathy, but rather through effects of C5a on its
receptor than formation of C5b-9. Deficiency or inhibition of
C5 or the C5a receptor, reduces histological lesions, creatinine,
proteinuria, and mortality, whereas deficiency of C6—preventing
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deposition of C5b-9—does not (177, 178). Correspondingly,
inhibition of C5 with eculizumab has beneficial effects in only
a subset of patients (4, 5, 7–9).

C3 glomerulopathy is subdivided into C3 glomerulonephritis
and dense deposit disease according to the microscopic
appearance of electron-dense immune deposits in the
glomerular basement membrane (4, 5). As a possible difference
in pathogenesis, formation of C5b-9 is presumed to be more
pronounced in C3 glomerulonephritis than dense deposit disease
(4–6). Individual components of C5b-9 were indeed more
abundant in microdissected glomeruli in the former when
quantified with mass spectrometry (5, 91, 92), although
immunofluorescence staining of C5b-9 was similar in both
disease subtypes (103). Staining intensity in both was higher
than in healthy kidneys (103) and correlated with those of C3
and FHR5 (102).

In C3 glomerulonephritis, C5b-9 was found in the
mesangium, along the capillary wall, Bowman’s capsule, most
of the tubular basement membrane, and in the vascular wall
(102, 103, 107, 179, 180). Serial biopsies revealed that glomerular
staining of C5b-9 and other complement factors increased as the
disease progressed (102, 106, 107), regressed during three
months to 3 years of treatment with eculizumab along with
histological and clinical improvement in three patients (106, 107)
but remained unchanged during four months to a year of
treatment with eculizumab despite varying histological and
clinical responses in three other patients (102, 103).

In dense deposit disease, staining of C5b-9 was intense in the
glomerulus (57, 75, 101, 103, 105, 181), similarly when
recurring after kidney transplantation (102, 182). They
surrounded immune deposits in the mesangium, along the
capillary wall, and diffusely along the tubular basement
membrane and additionally formed granules along the
interstitial side of the tubular basement membrane (44, 103,
126, 181). Treatment with eculizumab resulted in disappearance
of their staining after 13 to 18 months in two patients, but
unaltered staining after three months to a year in three other
patients, with histological and clinical improvement in all five
(101, 103, 105, 106).

In a study on patients with C3 glomerulonephritis or dense
deposit disease together, median eGFR was 15 ml/min/1.73 m2

lower (p = 0.03) if glomerular staining of C5b-9 was maximally
intense than less intense (102).

Deposition of C5b-9 was reported to be similar in
membranoproliferative glomerulonephritis types I, II, and III
(75). In membranoproliferative glomerulonephritis type I,
deposits of C5b-9 were practically always present in the
glomerulus—both in the mesangium and capillary wall
similarly to immune deposits —, frequently along the tubular
basement membrane (44, 57, 67, 72, 75, 96, 114, 139, 143), and in
the vascular wall (57, 67, 72, 96) with variable but higher staining
intensity than in healthy kidneys. They surrounded immune
deposits in the mesangium, along the capillary wall, and along
the tubular basement membrane (44, 72, 96). Immunoelectron
microscopy revealed that they were also associated with striated
membranous structures in extracellular matrix and with partly
Frontiers in Immunology | www.frontiersin.org 14
shedded cell membrane extensions of mesangial, endothelial, and
epithelial cells without signs of cellular lysis (96). Glomerular,
tubular, and vascular deposits were concentrated in areas of
sclerosis (44, 57, 67, 72, 96). Glomerular staining intensity
correlated with the serum level of sC5b-9 (114). In two
children with unspecified types of membranoproliferative
glomerulonephritis, of whom only one had deposits of C5b-9
in the glomerulus and along the tubular basement membrane,
frequent relapses despite treatment occurred in the one with
deposits, whereas the one without deposits reached complete
remission after seven months (98, 141).

Postinfectious Glomerulonephritis
Postinfectious glomerulonephritis is often clinically
indistinguishable from C3 glomerulopathy and may be
regarded an acute variant of a similar pathogenesis (4, 5).
Deposits of C5b-9 were found along with immune deposits in
the mesangium, along the capillary wall, the tubular basement
membrane, and in the vascular wall with higher intensities
than in healthy kidneys (67, 86, 143, 183, 184). Staining was
restricted to the capillary wall in cases biopsied two weeks after
the disease’s onset but increasingly extended into the
mesangium after three weeks (183). Glomerular staining
intensity was not correlated with age, disease duration, blood
pressure, creatinine, proteinuria, hematuria, endocapillary
hypercellularity, or crescents, but the number of subepithelial
hump-like immune deposits—considered characteristic of
postinfectious glomerulonephritis—was higher when staining
was intenser (median 0.2 vs. 0.5 per glomerulus, p =
0.002) (86).

Thrombotic Microangiopathy
aHUS is a thrombotic microangiopathy caused by genetic
mutations or autoantibodies that activate the alternative
pathway, eventually leading to formation of C5b-9 on
endothelial cells. In animal models of aHUS, deficiency or
inhibition of C5 reduces the thrombotic microangiopathy and
histological lesions, creatinine, kidney failure, and mortality.
Contrary to C3 glomerulopathy, these effects are brought about
through formation of C5b-9 rather than C5a. Deficiency of C6 or
C9—preventing deposition of C5b-9—has similar effects as
deficiency or inhibition of C5, whereas deficiency of the C5a
receptor does not (185, 186). In patients, inhibition of C5 with
eculizumab has become standard treatment (12, 187). Regarded a
typical finding (12), intense staining of C5b-9 was present in
almost all biopsies, in the mesangium, along the capillary wall,
along the tubular basement membrane, and predominantly in
the vascular wall (75, 103, 130, 188) but not in peritubular
capillaries (130). An example is shown in Figure 2B. In a late-
stage case, staining was weak in the mesangium, absent from the
capillary wall, and intense in the vascular wall (100). Staining in
recurrent aHUS after transplantation was similar to that in native
kidneys (130). Despite its beneficial effects, staining of C5b-9
remained unchanged after treatment with eculizumab (103).

In STEC-HUS, the alternative pathway is activated by direct
and indirect effects of the Shiga toxin (189). Although deposition
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of C5b-9 was found granularly along the capillary wall, in the
vascular pole, and in the vascular wall of peritubular capillaries in
a child (122) and diffusely in the glomerulus in an adult (190), it
was not found in the kidney in eleven other adult patients (130,
153). In line with this, treatment with eculizumab has only
exerted beneficial effects in a few children (122, 153).

The alternative pathway is also activated in TTP (120).
Deposition of C5b-9 was found along the capillary wall in few
glomeruli, in few tubules, in the vascular wall but not in
peritubular capillaries, without clear clinical or histological
correlates (120, 132).

Thrombotic microangiopathy after hematopoietic stem cell
transplantation is characterized by variable complement
activation (191). C5b-9 stained moderately in the mesangium
and capillary wall in one case, weakly in only the mesangium in
another case, and strongly in the vascular wall in both cases.
Similar staining was found before and after treatment with
eculizumab in one of them (100).

Thrombotic microangiopathy elicited by hypertension has
been postulated as often attributable to genetic mutations or
autoantibodies that activate the alternative pathway. Supporting
this postulation, C5b-9 was often deposited together with C3 and
C4d along the capillary wall, segmentally in the vascular pole,
and always in the vascular wall in patients with hypertension-
associated thrombotic microangiopathy. Staining was intense,
though weaker in recurrent cases after transplantation. Staining
intensity did not correlate with age, sex, blood pressure, the
plasma level of sC5b-9, or disease severity but seemed to
correlate with proteinuria and correlated with complement
activity, as illustrated in Figure 8. Treatment with eculizumab
Frontiers in Immunology | www.frontiersin.org 15
prevented progression to end-stage kidney disease and
recurrence after transplantation (144, 192, 193).

In a heterogenous group of patients with thrombotic
microangiopathy, the localization and intensity of staining of
C5b-9 did not correlate with the presence of immunoglobulins or
histological signs of active thrombotic microangiopathy (100).
VASCULITIS

ANCA-associated vasculitis manifests as a crescentic and
necrotizing glomerulonephritis with scarce deposits of
immunoglobulins or complement factors, referred to as pauci-
immune. Nonetheless, factors of the alternative pathway,
including C3, FB, and properdin, can be found in the
glomerulus. Activation of the alternative pathway and the
subsequent formation of C5a are essential in its pathogenesis,
while their inhibition attenuates the development of kidney
injury in both animal models and human patients (14, 22, 23).

Staining of C5b-9 was more frequent and more intense in
patients with ANCA-associated vasculitis than in healthy
individuals (22, 116, 139). It was found in the glomerulus (53,
116, 139, 143, 194), both in the mesangium and along the
capillary wall (22, 116), in a patchy and granular pattern,
colocalized with C3d, FB, and properdin (22, 116, 143, 194).
Staining was predominant in glomeruli with crescents (116, 194).
It was furthermore seen granularly in the vascular wall (22, 116).
No glomerular or vascular staining was found in one case with
thrombotic microangiopathy (130).

Glomerular staining intensity of C5b-9 was lower in
glomeruli that were normal, mildly hypercellular (116), or
focally affected (53), as illustrated in Figures 9A, B. It
correlated with proteinuria (r = 0.63, p < 0.001) in one (22)
but not another study (53). The frequency, extent, and intensity
of glomerular staining of C5b-9 did not correlate with the type of
ANCA, clinical vasculitis activity, eGFR, serum and urine levels
of sC5b-9 or C3, the presence of glomerulosclerosis, crescents,
thrombotic microangiopathy, interstitial fibrosis, or tubular
atrophy, or the occurrence of end-stage renal disease or death
(22, 53, 116, 194), except for a trend toward higher creatinine in
patients with more intense staining (116), as illustrated in
Figure 9C.

Similar findings were reported for patients with ANCA-
negative pauci-immune crescentic glomerulonephritis. They
had granular deposits of C5b-9 in the mesangium, along the
capillary wall, and in the vascular wall, more often and more
intense than in healthy kidneys. Deposits were predominant in
crescents. They colocalized well with C3d and, if present, C4d
and FB. Glomerular staining intensity did not correlate with age,
sex, hemoglobin, proteinuria, or dependence on dialysis but
correlated with creatinine (117), as shown in Figure 9D.

Among patients with idiopathic rapidly progressive
glomerulonephritis, of whom three-quarters were ANCA-
positive, deposits of C5b-9 were present in the glomerulus, the
vascular wall, and a third of the tubules and prominent in
fibrocellular and fibrous crescents. Staining was independent of
presence and type of ANCA. Tubular, but not glomerular,
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microangiopathy (n = 6). The antibody used for staining was unspecified.
Relations were tested with Pearson’s correlation (r). We plotted previously
published individual data (192).
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staining of C5b-9 correlated with markers of inflammation and
fibrosis, creatinine, and a lack of treatment effect (195, 196).
GENERAL PATTERNS OF KIDNEY INJURY

Interstitial Nephritis
Formation of C5b-9 participates in the development of
interstitial inflammation and fibrosis, but the mechanisms are
unclear (197). As one explanation, the alterative pathway may be
activated in the tubules and peritubular interstitium due to
modification of C3 by ammonia, produced as a result of
proteinuria (198). The C5b-9 formed there is partly excreted in
the urine, more so in severe forms of acute tubulointerstitial
nephritis (31).

In patients with acute tubulointerstitial nephritis, staining of
C5b-9 was weak in the glomerulus and vascular wall, similar to
healthy kidneys (70, 96, 143, 199) but more intense in the
interstitium and along the tubular basement membrane as
compared with healthy kidneys or kidneys with acute tubular
necrosis (31, 70, 199). It covered 39% of tubules (31). Tubular
and vascular staining were most diffuse and intense in areas of
interstitial inflammation and fibrosis (70, 96, 139, 143). Across
various underlying glomerulopathies, the extent and intensity of
tubular staining correlated with the severity of interstitial
inflammation (r = 0.84, p < 0.001) and interstitial volume (r =
0.79, p < 0.001) (139).

Patients with juvenile nephronophthisis, a congenital
ciliopathy with chronic tubulointerstitial nephritis and tubular
cysts, also had more frequent and more intense tubular staining
than healthy individuals. Staining was associated with signs of
apoptosis and striated membranous structures (118).
Frontiers in Immunology | www.frontiersin.org 16
Acute Tubular Necrosis
Deposition of C5b-9 in tubules—and elsewhere in the kidney—
has been proposed as a physiological mechanism for removal of
cell remnants (94), but it is also a pathogenic mechanism by
which activation of the alternative pathway causes kidney injury
after ischemia and reperfusion, a common cause of acute
tubular necrosis (136, 197, 200), or during proteinuria (20,
198, 201). In animal models of ischemia and reperfusion injury
and of proteinuria, deficiency of C5 or C6 protects against
tubular deposition of C5b-9 and acute tubular necrosis (198,
201, 202).

Patients with acute tubular necrosis had segmental thick
linear deposits of C5b-9 along the tubular basement membrane,
primarily in proximal tubules and atrophic tubules and
similarly to C3 (94, 135, 136, 200). Tubular, but not
glomerular or vascular, deposits were more frequent,
widespread, and intense than in patients without tubular
atrophy and necrosis or without kidney disease (94, 136).
Deposits were not seen in or on tubular cells (136). They
covered 15% of tubules in acute tubular necrosis due to
medication or autoimmune disease (31), but the majority of
tubules in most cases of acute tubular necrosis due to
medication, sepsis, or ischemia-reperfusion after kidney
transplantation (136).

Six autopsy cases of COVID19 with acute loss of eGFR
exhibited common acute tubular necrosis, variable interstitial
inflammation, and minimal glomerular lesions. All had deposits
of C5b-9 on tubular cells, together with viral antigens, while two
had sparse deposits in the glomerulus and in the vascular
wall (125).

One case of adenovirus-associated hemorrhagic cystitis,
characterized by severe tubular degeneration and necrosis, but
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minimal interstitial inflammation or glomerular lesions, had
coarse granular deposits of C5b-9 along the tubular basement
membrane and, with less intensity, along Bowman’s capsule.
They colocalized with C3 and adenoviral antigens (203).

Across various glomerulopathies, the extent and intensity of
tubular staining of C5b-9 correlated with the extents of
degenerative lesions of the tubular basement membrane,
including thickening (r = 0.51, p < 0.05), lysis (r = 0.77, p <
0.05), detachment of tubular cells (r = 0.46, p < 0.05), and
membranous structures to which C5b-9 was bound (r = 0.75, p <
0.05) (142).

Reflux Nephropathy
Chronic urolithiasis, chronic vesicoureteral reflux, and chronic
pyelonephritis, which characterize reflux nephropathy, expose
the kidney to bacterial pathogens that activate the classical and
alternative complement pathways. Inhibition of their activation
prevents kidney injury in animal models (204–206). In three
small studies on reflux nephropathy, deposits of C5b-9 were not
or scarcely found in histologically normal glomeruli—similarly
to healthy kidneys—but as intense coarse granules in areas of
glomerulosclerosis together with C3 and properdin. Podocytes
had regressed in these areas. Deposits were furthermore found
along the tubular basement membrane without C3 (44, 75, 127)
and extensively in the vascular wall (44).
KIDNEY TUMORS

In clear cell renal cell carcinomas, no deposits of C5b-9, but
abundant deposits of C1q and pentraxin-3 were present (207),
the latter of which can activate the complement pathways in
various ways (208). In various types of renal cell carcinomas,
staining of C5b-9 was similarly absent or weakly present in only a
sixth to a tenth of tumors, covering not more than half of each
tumor (138, 209). Enhanced expression of CD59 and other
inhibitory factors might explain the absence of C5b-9 (138,
207, 209). Yet, in another study on various types of renal cell
carcinomas, staining of C5b-9 was weak in 55% and moderate in
27% of tumors, despite enhanced expression of inhibitory
factors. The tumors could be partitioned into those with
deposits of only C3 due to activation of the alternative
pathway—with much necrosis as a cause or consequence —,
those with deposits of IgG and C1q due to activation of the
classical pathway, and those without immune deposits. Although
present in all three groups, stainings of C5b-9 and inflammatory
markers were most intense in tumors with activation of either
pathway (210).
KIDNEY TRANSPLANTATION

During kidney transplantation, the donor’s death and the
transplant’s surgical excision, transportation, and reperfusion
all contribute to activate the complement pathways. The extent
of complement activation influences the function of the kidney
Frontiers in Immunology | www.frontiersin.org 17
transplant. The serum level of sC5b-9 is elevated in deceased
donors and predicts the risk of acute rejection and chronic graft
failure after transplantation. Deposits of C5b-9 in transplants
are not taken into account—contrary to the routine assessment
of deposits of C4d, especially in peritubular capillaries—as a
diagnostic criterion for antibody-mediated rejection as part of
the Banff classification (16, 26, 29). Complicating the
interpretation of their relevance, deposits of C5b-9 in kidney
transplants may result from physiological deposition in the
donor as in healthy kidneys, from kidney disease in the donor,
from the transplantation itself, from rejection in the recipient,
as well as from de novo or recurrent kidney disease in
the recipient.

Ischemia and Reperfusion Injury
Ischemia and reperfusion—inevitable consequences of
transplantation—induce acidosis and reactive oxygen species,
which both lead to activation of the lectin and alternative
pathways and subsequent inflammation, especially in the
tubulointerstitium. Inhibition of C5b-9 formation ameliorates
the inflammation (13, 16, 26). Nonetheless, in human kidney
transplants, deposits of C5b-9 were absent from the tubules and
vascular wall both before and shortly after reperfusion, despite a
transient elevation of sC5b-9 in arteriovenous samples in
between (211). This may explain why eculizumab does not
prevent delayed transplant function (13, 16, 26). On the other
hand, once kidney transplants suffered from delayed function,
C5b-9 appeared in the glomerulus and tubules (54).

Kidney Transplant Rejection
Antibodies against donor antigens on the transplant’s
endothelium activate the classical pathway (13, 16, 26). As a
result, in acutely rejected transplants, deposits of C5b-9 were
present in the glomerulus and vascular wall with higher staining
intensities than in healthy kidneys and with variable staining
intensity along the tubular basement membrane (54, 67, 70, 83,
100, 104, 130, 143, 211, 212). The proportion of glomeruli that
contained deposits varied widely between 8 and 77% (54). In the
glomerulus, deposition was restricted to the mesangium (67, 96,
212), extended along the capillary wall (70, 100), or was restricted
to the capillary wall (143). Tubular and vascular deposits were
concentrated in areas of sclerosis (67, 70, 143). C5b-9 was absent
from peritubular capillaries, despite the presence of C4d, which
was explained by concurrent presence of CD59 (83, 130, 212). In
one group of patients biopsied a week after transplantation
according to protocol, of whom the majority experienced acute
rejection, no deposits were found other than those found at the
time of transplantation (129). Glomerular and tubular
depositions did not correlate with each other or with age, sex,
creatinine, proteinuria, HLA mismatch, or the severity of
rejection (54, 83). Depositions throughout the kidney
diminished strikingly in three days after acute antibody-
mediated rejection was successfully treated with eculizumab in
one (104) but not another case (100). The efficacy of eculizumab
to prevent or treat rejection remains uncertain (13, 16).

Chronically rejected transplants had similar deposition of
C5b-9 as acutely rejected transplants (54). In a group of
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patients with acute or chronic antibody-mediated rejection
together, weak, granular, and subendothelial staining along
the capillary wall was found in 24% and staining in the
peritubular capillaries in 2%, whereas staining of C4d was
present in both localizations in almost all patients. Those
with global and diffuse glomerular staining of C5b-9 had a
lower eGFR (26 vs. 34 ml/min/1.73 m2, p = 0.04), more often
double contours (100 vs. 40%, p = 0.01), and a higher Banff
score (1.7 vs. 0.8, p = 0.01). They also had a shorter transplant
survival (median 6 vs. 41–44 months, p = 0.02), though not
after adjustment for other risk factors (134).

One study compared deposition of C5b-9 in biopsies
conducted because of a clinical suspicion of rejection and
biopsies conducted according to protocol in patients with
ABO-incompatible transplants. Almost all rejections were
acute T-cell mediated; the numbers of confirmed rejections
were not reported. Deposition of C5b-9 was more common in
the glomerulus, tubules, and peritubular capillaries in the
clinically indicated biopsies, whereas depositions of C1q, C3c,
and C4d were similar. Peritubular C5b-9 in these biopsies
correlated with titers of anti-ABO antibodies before
transplantation (r = 0.72, p = 0.002) and with the occurrence
of rejection (r = 0.52, p = 0.02) (213).

De Novo Kidney Disease After
Transplantation
Deposition of C5b-9 in kidney diseases arising after kidney
transplantation was similar as in native kidneys. Among
patients who developed de novo membranous nephropathy,
deposits were restricted to the mesangium as fine granules in
those with stage I and were localized along the capillary wall
together with immune deposits in stage II (214). Cases who
developed thrombotic microangiopathy without rejection—a
common phenomenon, often without a clear cause (26)—had
few deposits in the mesangium, but many deposits in the vascular
wall, similar to cases without thrombotic microangiopathy (100).
DISCUSSION

This review is the first to provide an overview of studies on
deposition of C5b-9 in healthy and diseased human kidneys.
Other reviews have summarized the various mechanisms
through which C5b-9 exerts its lytic and sublytic effects on
kidney cells (43, 64, 88, 101, 187, 197, 215–217).

In healthy kidneys, staining of C5b-9 was absent, weak in the
mesangium, or more prominent in the glomerular vascular pole
and the extraglomerular vascular wall, for which we discuss
possible explanations in the section on healthy kidneys. Across a
wide spectrum of kidney diseases—excluding minimal change
nephropathy and glomerular basement membrane diseases—
staining of C5b-9 was more frequent, extensive, and intense, as
outlined in Figure 1 and detailed in Supplementary Table 2.

In kidney diseases due to deposition of immune complexes
and kidney diseases due to activation of the alternative pathway,
glomerular deposits of C5b-9 colocalized with immune deposits
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containing immunoglobulins or other complement factors (44,
57, 67, 73, 75, 81, 96, 126, 143, 218). Correspondingly,
glomerular staining of C5b-9 was more frequent, diffuse, and
intense than in healthy kidneys and kidney diseases without
immune deposits (44, 67, 75, 96, 126, 143), was found along the
capillary wall in membranous nephropathy and lupus nephritis
class V, in the mesangium in IgA nephropathy and lupus
nephritis classes III and IV, and throughout the glomerulus in
C3 glomerulopathy, thrombotic microangiopathies, and
vasculitis. Studies generally regarded these deposits of C5b-9 as
most likely locally formed along with the immune deposits as
part of the cause of disease.

In all kidney diseases, deposits of C5b-9 were prominent in
areas of glomerulosclerosis, tubulointerstitial injury, and vascular
hyalinosis and sclerosis. This finding was clearest in hypertensive
and diabetic nephropathy, interstitial nephritis, and acute tubular
necrosis. These deposits did not consistently colocalize with
immunoglobulins or other complement factors (19, 27, 44, 54,
67, 70, 72, 73, 75, 94–97, 103, 118, 127, 134, 139, 141, 175, 200),
although C5b-9 and C3 colocalized more often in areas of
glomerulosclerosis when immune deposits were present in other
areas of the glomerulus (44, 67, 143) and both C5b-9 and C3 were
more prominent in tubules and arteries in areas of
tubulointerstitial injury (44, 57, 67, 75, 94, 96, 135, 139, 143,
200). These deposits may either be formed locally when
complement pathways are activated by cellular injury or
originate in urine or blood when sC5b-9 passes the tubular or
vascular wall. sC5b-9 can be formed in or excreted into the tubular
lumen, particularly in presence of proteinuria (20, 33, 198, 201).
The observation that C5b-9 resided on both sides of the tubular
basement membrane, but C3 only on the interstitial side (44), fits
with an origin in the tubular lumen. Studies generally regarded
these deposits of C5b-9 as a nonspecific consequence of kidney
injury rather than a cause of kidney disease.

Across kidney diseases, deposits of C5b-9 seemed associated
with cell membrane fragments rather than bound to cells
themselves, as revealed by immunoelectron microscopy. Cells
may have shed these fragments after C5b-9 has bound the cells or
C5b-9 may have bound these fragments after having been shed
by cells, as discussed in the section on staining techniques. Both
processes, though, contribute to cellular activation, proliferation,
inflammation, sclerosis, and fibrosis.

Studies using immunohistochemical staining cannot unravel
whether deposits of C5b-9 are a cause of kidney disease or a
consequence of kidney injury and cannot distinguish between
C5b-9 that has bound cells, has been shed by cells, has bound
extracellular vesicles, or has remained soluble. Table 3
summarizes these and other inherent limitations.

Whether C5b-9 is a cause of kidney disease or a consequence
of kidney injury does not affect its potential as a prognostic
marker. Deposition of C5b-9 indicates that complement activity
has resulted in formation of both C5a and C5b-9, both of which
may participate in the causation of disease and the response to
tissue injury. Indeed, the presence and intensity of staining of
C5b-9 correlated with histological lesions, clinical characteristics,
prognosis, and treatment effects in various kidney diseases, as
February 2021 | Volume 11 | Article 599974

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Koopman et al. Deposition of C5b-9 in Kidneys
summarized in Table 1. Illustrations of such correlations are
given in the figures, while a complete discussion of possible
correlations is given in the text.

Further analytical comparisons and firm conclusions were
hampered by a lack of detailed data and descriptions of methods
and results in the included studies, as summarized in Table 3. As
a consequence, we could not precisely specify differences in
deposition of C5b-9 as dependent on staining techniques and
between kidney diseases due to deposition of immune
complexes, kidney diseases due to activation of the alternative
pathway, and kidney diseases due to other mechanisms.

Future studies are necessary to overcome the limitations of
current studies, to confirm our findings, and to answer
remaining questions as proposed in Table 3. To facilitate
analytical comparisons, future studies should systematically
study deposition of C5b-9 in well-described populations and
tissues with detailed data and descriptions of their methods and
results. Immunohistochemical studies may be strengthened by a
combination with other techniques, such as immunoelectron
microscopy or mass spectrometry of microdissected glomeruli,
which are more objective, sensitive, and quantitative (90–92,
124, 180).

In this review, we aim to motivate and guide future studies
on deposition of C5b-9 in human kidneys by summarizing the
available data and by identifying the data that still lack. We
describe when deposition of C5b-9 in kidneys may be
regarded a cause of kidney disease and when a consequence
of kidney injury. We substantiate that staining of C5b-9 in
Frontiers in Immunology | www.frontiersin.org 19
kidneys, although not yet routinely conducted, promises to
be valuable for evaluating activation of complement
pathways, estimating prognosis, and identifying possible
treatment targets.
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TABLE 3 | Summary of the limitations and remaining questions of immunohistochemical studies on deposition of C5b-9 in human kidneys.

Inherent limitations of current studies in general
• They cannot unravel whether deposits of C5b-9 are a cause of kidney disease or a consequence of kidney injury.
• They cannot distinguish between locally formed C5b-9 bound to cells, C5b-9 bound to or shedded as extracellular vesicles, and sC5b-9 originating in urine or

blood.
• They cannot assess when deposits have arisen, so that, given their slow clearance, deposits may have chronically accumulated.
• They evaluate staining subjectively and semiquantitatively.
Specific limitations of current included studies
• Included patients were generally ill-characterized.
• Staining techniques were often described very concisely.
• Different staining techniques and antibodies were seldomly compared.
• The method of evaluating staining was mostly undefined.
• The method of evaluating staining was variable. As examples, traces of staining were usually considered negligible but sometimes counted as positive (18) and

scoring systems were used incidentally and incomparably (19, 31, 52, 83, 84, 87, 94, 116, 117, 135, 136, 139, 142, 209).
• Variability of staining among individual patients with the same kidney disease was rarely documented, while it might be large (57).
• Staining across different kidney diseases was directly compared in only few studies (44, 57, 67, 70, 72, 75, 79, 84, 96, 98, 126, 141–143).
• Colocalization with immunoglobulins and other complement factors, especially in tubules and vessels, was reported only briefly.
• Correlations between deposits and histological lesions or clinical characteristics were not studied systematically.
• Changes in staining were uncommonly tracked through time or treatment.
Remaining questions for future studies
• Does staining of C5b-9 differ when directly comparing staining techniques and antibodies?
• Is staining more common in tissue obtained with autopsy than biopsy or nephrectomy? And can this be explained by a different selection of patients?
• How do deposits of C5b-9 differ between kidney diseases due to deposition of immune complexes, due to activation of the alternative pathway, and due to other

mechanisms?
• How do deposits vary among patients with the same kidney disease?
• Are deposits dependent on the age and sex of patients?
• With which immunoglobulins and other complement factors do deposits colocalize in various localizations and in various kidney diseases?
• What structures are associated with deposits on immunoelectron microscopy?
• How fast are deposits cleared in various kidney diseases and across individual patients with the same kidney disease?
• How do deposits change through time and treatment? And how does the change relate to variable activation of complement pathways, for example in

membranous nephropathy?
• Do deposits consistently predict prognosis and treatment effect? And how does this depend on their localizations and on the underlying kidney disease?
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6. Corvillo F, Okrój M, Nozal P, Melgosa M, Sánchez-Corral P, López-Trascasa
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