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Abstract

Coronavirus disease 2019 (COVID-19) is a serious respiratory disease mediated by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The worldwide spread
of COVID-19 has caused millions of confirmed cases and morbidity, and the crisis has greatly
affected global economy and daily life and changed our attitudes towards life. The reproductive
system, as a potential target, is at a high risk of SARS-CoV-2 infection, and females are more
vulnerable to viral infection compared with males. Therefore, female fertility and associated
reproductive health care in the COVID-19 era need more attention. This review summarises
the mechanism of SARS-CoV-2 infection in the female reproductive system and discusses the
impact of the COVID-19 crisis on female fertility. Studies have proven that COVID-19 might
affect female fertility and interfere with assisted reproductive technology procedures. The side
effects of vaccines against the virus on ovarian reserve and pregnancy have not yet been well
investigated. In the future, the female fertility after SARS-CoV-2 infection and vaccination
needs more attention because of the uncertainty of COVID-19.

Introduction

Coronavirus disease 2019 (COVID-19) is a serious respiratory disease mediated by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (Ref. 1). COVID-19 has been
identified as a pandemic by the World Health Organization. The worldwide spread of
COVID-19 has caused millions of confirmed cases and morbidity, and the numbers are still
increasing at an alarming rate (Ref. 2). SARS-CoV-2 is a pathogen with human-to-human air-
borne and aerosol transmission (Ref. 3), and the respiratory system, such as lung, is the main
target for viral infection (Ref. 4). However, studies have also reported symptoms of other
organs and systems, including the kidney, heart and reproductive system (Refs 5–7).
Moreover, females are more vulnerable to viral infection compared with males (Ref. 8), putting
females – in particular, females of childbearing age – at an increased risk of reproductive sys-
tem impairment. Therefore, female fertility and associated reproductive health care in the
COVID-19 era need more attention.

In this study, we summarise the mechanism of SARS-CoV-2 infection in the female repro-
ductive system, review the impacts of the COVID-19 crisis on female fertility and discuss the
current status of reproductive health care during the pandemic.

Mechanism of infection in the female reproductive system

Relationship between SARS-CoV-2 and ACE2

Angiotensin-converting enzyme (ACE) 2, a homologue of ACE, is a zinc metalloprotease with
hydrolase activity (Ref. 9) that is able to hydrolyse angiotensin (Ang) I and Ang II to generate
Ang-(1–9) and Ang-(1–7), respectively (Ref. 10). Ang II and Ang-(1–7) hormones are the
most important hormones produced in the renin-angiotensin system (RAS) and have opposite
effects (Ref. 11). Ang II induces vasoconstriction and inflammatory reactions (Ref. 12), pro-
motes proliferation (Refs 13, 14) and facilitates fibrosis and tissue remodelling (Ref. 15),
whereas Ang-(1–7) has anti-inflammatory properties (Ref. 16), mediates vasodilation
(Ref. 17) and alleviates cardiac and metabolic dysfunction (Refs 18–21). Thus, ACE2, a key
component of the RAS, is essential to balance Ang II and Ang-(1–7) levels (Fig. 1).

The SARS-CoV-2 virus gains access to host cells via attachment to the ACE2 receptor
(Ref. 22). Coronaviruses are spherical-enveloped viruses capsuled with positive single-stranded
RNA. The structural proteins of SARS-CoV-2 are composed of spike (S), membrane (M),
envelope (E) and nucleocapsid (N) proteins. The first three proteins are embedded in the
viral envelope, whereas the N protein, a core component of the nucleocapsid, interacts with
the viral RNA (Ref. 23). Similar to SARS-CoV-1, the viral S protein of SARS-CoV-2 has a
strong affinity for ACE2 (Ref. 24). Viral S proteins have two subunits, the S1 and S2 domains.
The S1 domain directly binds to receptors of host cells, whereas the S2 domain mediates viral
and host cell membrane fusion (Refs 25, 26). This process is also facilitated by the proteolytic
cleavage and activation of viral S proteins induced by the transmembrane protease serine 2
(TMPRSS2) in the cytoplasm (Ref. 27). Then, viral genomic RNA is released into the target
cell cytoplasm and replicates using the host cell organelles, resulting in new virion release
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(Refs 28, 29). SARS-CoV-2 infection has been proven to decrease
the activity and downregulate the expression of ACE2, resulting in
an increase of Ang II recruitment and a decrease in Ang-(1–7)
production in circulation, which explains the inflammatory reac-
tions investigated in COVID-19 patients (Refs 30, 31).

ACE2 and ovarian function

It has been reported that ACE2 exists in a variety of mammalian
ovaries, including rats (Ref. 32) and cattle (Ref. 33). Additionally,
ACE2 be detected in ovaries of women of reproductive age
(Ref. 34). ACE2 is highly expressed in stromal cells, theca cells and
granulosa cells, as well as oocytes (Refs 32, 35). In the female repro-
ductive system, ACE2 is predominantly enriched in the ovary
(Refs 36, 37), making it a potential target organ for SARS-CoV-2
infection. Moreover, previous studies have demonstrated that ACE2
has beendetected in embryos before the 8-cell stage and in trophecto-
derm cells of late blastocysts, and TMPRSS2 exists in embryos in the
late blastocyst stage (Ref. 38), revealing a high SARS-CoV-2 infection
susceptibility in peri-implantation embryos (Ref. 39).

Ang II, most abundantly expressed in granulosa cells (Ref. 40),
regulates steroid secretion (Ref. 41), promotes follicle growth

(Ref. 42), facilitates oocyte maturation (Ref. 43), contributes to
follicular atresia (Ref. 44), affects the ovulation process (Ref. 45)
and induces corpus luteum angiogenesis (Ref. 46). Although
Ang-(1–7), found predominantly in theca-interstitial cells,
induces steroidogenesis, especially oestradiol and progesterone
production (Ref. 47), enhances ovulation (Ref. 48), resumes
oocyte meiosis (Ref. 49) and regulates oocyte maturation
(Ref. 50). In addition, ACE2 can be found in follicles in various
developmental stages, and the expression levels are regulated by
the secretion of gonadotrophin, revealing the possible relationship
between ACE2 expression and female fertility. Moreover, the level
of Ang-(1–7) in human follicular fluid has been proven to be
positively related to the oocyte maturation rate. This evidence
supports the significance of Ang-(1–7) levels in the oocyte matur-
ation process (Ref. 50). Furthermore, the decrease in ACE2 activ-
ity induced by SARS-CoV-2 infection can increase circulating
Ang II, which might alter ovarian function, influence the bio-
logical process of oocyte development and maturation, impact
oocyte quality and ultimately impair fertility function (Ref. 36).
In addition, Ang II recruitment also increases oxidative stress
(Ref. 51), which may lead to inflammatory reactions and affect
ovarian physiology and reproductive ability (Fig. 1).

Fig. 1. Components of RAS and its role in female ovarian function. Ang I, angiotensin I; Ang II, angiotensin II; ACE, angiotensin-converting enzyme; Ang-(1-9),
angiotensin-(1–9); Ang-(1-7), angiotensin-(1–7); AT1, angiotensin II type 1; AT2, angiotensin II type 2; RAS, renin-angiotensin system.
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ACE2 and endometrial activity

The uterus – in particular, the endometrium – is essential for
female fertility, and the components of the RAS can be found
in the uterus, especially in endometrial epithelial and stromal
cells (Refs 52, 53). This makes the endometrium more susceptible
to viral damage (Ref. 54), which might induce embryo implant-
ation impairment. Some studies have suggested that RAS compo-
nent expression varies with the menstrual cycles (Refs 37, 52).
ACE2 expression has been proven to be more abundant in the
secretory phase than in the proliferation phase, and lower in stro-
mal cells than in epithelial cells (Refs 55, 56). Moreover, the
expression of ACE2 is reported to increase with female age
(Refs 54, 57). This evidence indicates that older females in the
secretory phase are likely to be more susceptible to endometrial
infection compared with younger women in the proliferation
phase.

Evidence has demonstrated that the maintenance of Ang II
and Ang-(1–7) balance is critical for regulating menstrual cycles
because of the significant role of RAS in angiogenesis and tissue
remodelling. Ang II, with tissue remodelling properties, induces
spiral artery vasoconstriction, facilitates endometrial regeneration,
enhances stromal proliferation and initiates menstruation
(Refs 58–60). SARS-CoV-2 infection in the uterus might disturb
the Ang II/Ang-(1–7) balance, decrease Ang II expression levels
and alter Ang II distributions in the uterus, which may cause
severe endometrial and myometrial disorders (Refs 52, 61), such
as dysfunctional uterine bleeding (Ref. 62). Moreover, several
studies have reported an association between ACE2 expression
and the prognosis of endometrial cancer (Refs 63, 64), revealing
the significant role of ACE2 and RAS in uterine function.

ACE2 and pregnancy

The placenta provides nutrient and oxygen exchange between the
mother and foetus. Although limited studies have investigated and
analysed RAS function in the placenta, all RAS components are
expressed in the placenta (Ref. 65), even in human placental
cell lines (Ref. 66). The RAS has been assumed to regulate placen-
tal function by several studies (Ref. 67). Additionally, ACE2 is ubi-
quitous in the human placenta (Ref. 68), the expression of which
is even higher than that in the lung, indicating that the placenta
might be a potential target for the viral infection. Interestingly,
ACE2 levels differ in various areas of the placenta (Ref. 68).
In placental villi, ACE2 expression levels are most abundantly
detected in the syncytiotrophoblast, cytotrophoblast and vascular
smooth muscle of primary and secondary villi (Ref. 69), whereas
in the maternal stroma, ACE2 is found predominantly in invading
trophoblasts, intravascular trophoblasts and decidual cells
(Ref. 68). ACE2 can be detected from 6 weeks of gestation until
birth, but it is also expressed differently throughout foetal devel-
opment (Ref. 70). It has been proven that ACE2 levels increase in
early gestation but decrease dramatically in late gestation (Refs 71,
72). Furthermore, the most highly expressed areas transfer from
the decidual zone, luminal epithelium and glandular epithelium
to the labyrinth placenta, amniotic epithelium and yolk sac epi-
thelium during gestation (Refs 69, 73).

The RAS is mainly involved in balancing vasoconstriction and
vasodilation and regulating foetal development during pregnancy,
and RAS components are also reported to influence several other
biological processes. Ang II facilitates trophoblast invasion and
angiogenesis (Ref. 74), and the overexpression of Ang II may
result in gestational hypertension, preeclampsia and eclampsia
(Ref. 37). Excessive vasoconstriction in preeclamptic women
induced by high Ang II levels is attributed to the reduction of
blood and nutrition supply in foetuses (Refs 75, 76). Similarly,

decreased serum Ang-(1–7) and increased plasma Ang II levels
can be observed in women diagnosed with preeclampsia
(Ref. 77). Moreover, decreased ACE2 and Ang-(1–7) levels in
the placenta may induce intrauterine growth restriction
(Ref. 73). Additionally, ACE2 knockout in mice during pregnancy
can result in placental function disorders, such as placental hyp-
oxia, and finally foetal growth retardation (Refs 78, 79).
Furthermore, an aberrant Ang II/Ang-(1–7) ratio is associated
with premature birth (Ref. 80) and cardiovascular disorders in
adult offspring (Ref. 81), which could be attenuated by upregulat-
ing ACE2 in rats (Ref. 82).

Impacts of COVID-19 on the female reproductive system

COVID-19 and female fertility

Ovaries may be a potential target for SARS-CoV-2 infection
(Ref. 36), although until now, the impact of viral infections on
female fertility has been debated. Ovarian reserve is used to evalu-
ate female fertility, and basal antral follicle count, anti-Müllerian
hormone (AMH) and sex hormones, such as follicle-stimulating
hormone, luteinising hormone, oestradiol, progesterone and tes-
tosterone, are the most frequently utilised indicators of ovarian
reserve (Ref. 83). In addition, a regular menstrual cycle can also
reflect ovarian reserve in women of reproductive age (Ref. 84).
Li et al. analysed the clinical data from 237 females with a history
of SARS-CoV-2 infection, and they found that nearly a quarter of
the participants had menstrual cycle changes, including volume
and duration changes, despite similar serum AMH and sex hor-
mone concentrations in the compared cohorts (Ref. 85).
Another study reported a negative association between serum
levels of both AMH and oestradiol and the severity of viral infec-
tion (Ref. 86). However, no significant differences have been
observed in women with non-severe and severe COVID-19 in
terms of status, volumes or phases of menstrual cycles. Of note,
COVID-19 may act as a potential risk factor for ovarian function
and cause ovarian injury, including decreased ovarian reserve and
hormone disturbance, in infected women (Ref. 87).

According to previous human oocyte transcriptome and prote-
ome databases, ACE2 and TMPRSS2, the essential molecules for
SARS-CoV-2 entry into host cells, are expressed in human
oocytes from the in vitro fertilisation process (Ref. 88).
Immunohistochemistry analyses in human oocytes, as well as
pre- and peri-implantation embryos, have also reinforced the
strong expression of ACE2 in human oocytes and blastocysts
(Ref. 89). Nevertheless, no studies have systematically evaluated
and reviewed the impacts of SARS-CoV-2 infection on human
oocyte development potential to date. However, in light of the
susceptibility of SARS-CoV-2 infection to early embryonic devel-
opment, great attention should be paid to embryonic develop-
ment potential in infected women. Whether COVID-19 might
cause oocyte and embryo impairments remains elusive and
needs further evaluation.

COVID-19 and pregnancy

SARS-CoV-2 infection, which constitutes a threat to both the
mother and foetus, may be associated with various pregnancy
and neonatal complications (Refs 90, 91). Reduced ACE2 levels
in gravidas after infection induce a rise in placental Ang II levels,
which promotes vasoconstriction in the placenta, accompanied by
an increasing risk of gestational hypertension, and ultimately pre-
term birth and intrauterine growth restriction (Ref. 80). A recent
systematic review also concluded that gravidas with COVID-19
have a higher risk of maternal death and preterm birth, and
their babies are more likely to be hospitalised in the neonatal
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department (Ref. 92). Currently, no evidence has clearly proven
that COVID-19 causes placental dysfunction, whereas to avoid
possible obstetric risks, more obstetricians and gravidas reportedly
prefer caesarean section (Refs 91, 93). Additionally, because of the
high expression of ACE2 in the kidney, COVID-19-associated
acute kidney injury is quite frequent (Ref. 94), and renal failure
subsequently serves as a risk factor for death in hospitalised
patents, particularly critically ill patients (Refs 95, 96). A previous
study has reported viral infection in renal tubular cells (Ref. 97)
and increased ACE2 levels in the kidneys of pregnant mice
(Ref. 98). Thus, maternal kidney function during pregnancy in
infected women is worthy of our attention.

It has been reported that foetuses born to mothers diagnosed
with COVID-19 tested positive for nucleic acid identification
through nasopharyngeal or anal swabs a few days after birth
(Ref. 99). Moreover, newborns of infected women exhibited ele-
vated serum SARS-CoV-2 immunoglobulin (Ig) M levels 2 h
after birth, indicating the probable occurrence of intrauterine
infection (Refs 100, 101). These cases suggest that infants may
be infected during gestation. Nevertheless, a systematic review
of 936 neonates with maternal infection has found that only 27
of them (2.9%) had a positive viral RNA test, revealing that ver-
tical transmission of SARS-CoV-2 has a low incidence (Ref. 102).

According to GeneCards, ACE2 exists in the female breast,
providing an entry site for SARS-CoV-2 infection (Ref. 37).
A study performed SARS-CoV-2 nuclei acid identification tests
in breast milk specimens from three infected females, and one
of them tested positive, revealing the possibility of maternal–
infant transmission by breastfeeding (Refs 37, 103). Moreover,
the immune system of neonates has not been fully established
(Ref. 104), and close contact during breastfeeding may lead to a
higher risk of potential viral infection. Two cases of neonatal
infection caused by unprotected breastfeeding by new mothers
diagnosed with COVID-19 have also been reported (Ref. 37).
Thus, although breastfeeding can effectively reduce the risks of neo-
natal infections in the respiratory and gastrointestinal systems and
metabolic disorders (Ref. 105), we still strongly recommend artifi-
cial feeding to infectedmothers. If the mothers insist on breastfeed-
ing, adequate disinfection of hands and mask wearing should also
be encouraged before and during breastfeeding to minimise the
chance of viral transmission through close contact (Ref. 106). In
addition, a disinfected breast pump is also recommended.

COVID-19 and human gametes and embryos

Limited studies have provided direct evidence of the impact of
SARS-CoV-2 infection on human gametes and embryos until
now. Wang et al. found that SARS-CoV-2 infection in females
might not negatively affect female fertility and embryo develop-
ment by analysing assisted reproductive technology (ART) data
(Ref. 107). The study compared the embryo outcomes of females
with and without a history of SARS-CoV-2 infection via propensity
score matching and found that the ovarian reserves and ovarian
responses between groups were similar, as were the proportions
of mature oocytes, fertilised oocytes, high-quality embryos and
available blastocysts. No significant differences were found in
terms of clinical pregnancy rate or miscarriage rate. Although the-
oretically, human oocytes and embryos are at a high risk of viral
damage, much about the crisis, including the impact on fertility,
remains unidentified, and evidence of the direct impact of
SARS-CoV-2 infection on gametes and embryos is lacking.

Future of COVID-19: vaccine and female reproductive health

During the post-pandemic era, vaccinations against COVID-19
seem to be general and essential, and the potential impact of

vaccines on human fertility and offspring health deserves our
concern and attention. A study collected and analysed data
from online search queries in Google regarding the COVID-19
vaccine and fertility after the announcement of the COVID-19
vaccine emergency use authorisation by the Food and Drug
Administration of the USA. Interestingly, they found a dramatic
increase ranging from more than 200% to nearly 3000% in
fertility-related search volume, demonstrating an increasing con-
cern about the side effects of vaccines on human fertility
among the general public (Ref. 108). According to the vaccine
platform, the existing vaccines against COVID-19 are mainly
categorised into three types: mRNA vaccines, replication-defective
live viral vectors and recombinant subunit-adjuvanted protein
vaccines (Ref. 109). BNT162b2, a Pfizer/BioNTech mRNA
SARS-CoV-2 vaccine with an efficacy of 95%, contains mRNA
coding viral S proteins of SARS-CoV-2 that enter cells to mediate
immune responses by antibody production (Ref. 110). An animal
study has investigated the effects of BNT162b2 on female fertility
and offspring development in rats. Female fertility evaluation,
embryonic development and neonatal development were similar,
and no adverse effects of BNT162b2 were detected between the
control group and the vaccine group (Ref. 111). Similarly, a recent
clinical self-controlled study included 36 couples undergoing
ART treatments before and after BNT162b2 administration and
compared patients’ performance and ovarian reserve in Israel,
and no differences were observed in terms of ovarian response,
stimulation processes or embryological parameters (Ref. 112).
Moreover, another study showed a similar follicular quality in
BNT162b2-vaccinated and -unvaccinated women (Ref. 113).
Furthermore, there is a lack of data on other types of
COVID-19 vaccines on fertility, despite the fertility safety of
BNT162b2 investigated by the current studies. Future studies
with larger sample sizes and longer follow-up periods are required
to validate the existing results.

Considering the potential placental damage caused by
SARS-CoV-2 infection, vaccine safety in pregnancy is a question
of debate. Notably, none of the current vaccine clinical trials were
conducted on pregnant women. The Centers for Disease Control
and Prevention released the data of a large survey on the safety of
the BNT162b2 vaccine in March 2021 (Ref. 113). Among 55 mil-
lion individuals who received the vaccination in the United States,
approximately 30 000 became pregnant by February 2021. A total
of 1815 gravidas receiving BNT162b2 vaccines were enrolled in
the vaccine safety survey. No increased risk of obstetric complica-
tions, such as miscarriages and preterm birth, was reported in
these enrolled participants. Moreover, no pregnancy-related
adverse effects were reported in the majority of these gravidas.
Thus, in the updated report, the American College of
Obstetricians and Gynecologists recommended the COVID-19
vaccine to gravidas (Ref. 113). Recently, a randomised controlled
trial was registered to investigate and evaluate vaccine safety in
gravidas, and more trials on pregnant women should be carried
out (Ref. 114).

In addition, the concern about whether neonates can benefit
from the vaccination of mothers through placental antibody
transfer is increasing. Neonatal Fc receptor (FcRn) mediates the
circulating IgG transport from mothers to offspring across the
placenta, and placental IgG transfer exhibits an upward trend
throughout gestation (Refs 115, 116). Moreover, increased levels
of FcRn and FCGR3 in the placenta induce selective transfer of
antibodies, especially IgG1 antibodies, the most promising
subclass of IgG antibodies in immunotherapy (Refs 117, 118).
A recent study reported that SARS-CoV-2 infection induces an
increase in competitive IgG and FCGR3A levels in the placenta,
greatly compromising placental antibody transfer, compared
with influenza and pertussis, especially in the third trimester
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(Ref. 119). Furthermore, the modification patterns of transferred
SARS-CoV-2 antibodies differ from other diseases, exhibiting
lower levels of antibodies with galactosylated modification in neo-
nates (Ref. 119), which has certain guiding significance for the
optimisation of placental antibody transfer. Considering a greater
impairment of placental antibody transfer in the third trimester,
the second trimester is recommended for vaccination against
SARS-CoV-2. However, the effective and safe dosage and timing
of vaccination during pregnancy need more evaluation.

Conclusion

The COVID-19 crisis has greatly affected daily life and changed
our attitudes towards life. It is likely to persist for years, and we
have to bear it and learn how to coexist with the pandemic.
The reproductive system, as a potential target, is at a high risk
of SARS-CoV-2 infection. The subsequent effects on female fertil-
ity and reproductive health care cannot be ignored and warrant
further investigation. In this review, female reproduction issues
related to the pandemic have been addressed, including ovarian
function, pregnancy and assisted reproductive care, and several
studies have provided evidence that COVID-19 might affect
female fertility and interfere with ART procedures. Moreover,
the side effects of vaccines against the virus on ovarian reserve
and pregnancy have not yet been investigated, and studies with
larger sample sizes should be conducted to ensure the safety of
these vaccines. In the future, the female fertility after
SARS-CoV-2 infection and vaccination needs more attention
because of the uncertainty of COVID-19.
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