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ABSTRACT

Motivation: Cell populations are never truly homogeneous; individual

cells exist in biochemical states that define functional differences be-

tween them. New technology based on microfluidic arrays combined

with multiplexed quantitative polymerase chain reactions now enables

high-throughput single-cell gene expression measurement, allowing

assessment of cellular heterogeneity. However, few analytic tools

have been developed specifically for the statistical and analytical chal-

lenges of single-cell quantitative polymerase chain reactions data.

Results: We present a statistical framework for the exploration, quality

control and analysis of single-cell gene expression data from micro-

fluidic arrays. We assess accuracy and within-sample heterogeneity

of single-cell expression and develop quality control criteria to filter

unreliable cell measurements. We propose a statistical model ac-

counting for the fact that genes at the single-cell level can be on

(and a continuous expression measure is recorded) or dichotomously

off (and the recorded expression is zero). Based on this model, we

derive a combined likelihood ratio test for differential expression that

incorporates both the discrete and continuous components. Using an

experiment that examines treatment-specific changes in expression,

we show that this combined test is more powerful than either the

continuous or dichotomous component in isolation, or a t-test on

the zero-inflated data. Although developed for measurements from a

specific platform (Fluidigm), these tools are generalizable to other

multi-parametric measures over large numbers of events.

Availability: All results presented here were obtained using the

SingleCellAssay R package available on GitHub (http://github.com/

RGLab/SingleCellAssay).
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1 INTRODUCTION

The development of fluorescence-based flow cytometry (FCM)

revolutionized single-cell analysis. Although populations of cells

sorted by FCM using surface markers may appear monolithic,

mRNA expression of specific genes within these cells can be

heterogeneous (Dalerba et al., 2011) and could further discrim-

inate cell subsets. On the other hand, classical gene expression

experiments [microarrays, RNA-seq, quantitative polymerase

chain reactions (qPCR)] richly characterize a cellular population

but at the cost of reporting a summation of expression from

many individual cells. Recent advances in microfluidic technol-

ogy now permit performing thousands of PCRs in a single

device, enabling gene expression measurements at the single-cell

level across hundreds of cells and genes (Kalisky and Quake,

2011). This provides a technology that probes the stochastic

nature of biochemical processes, resulting in relatively large

cell-to-cell expression variability.
This heterogeneity may carry important information; thus,

single-cell expression data should not be analysed in the same

fashion as population-level data. At the scale of a single cell,

biological variability (the object of interest) and technical vari-

ability (a nuisance factor) are often of the same magnitude,

making it difficult to distinguish between the two. No expression

(i.e. the gene is off) may be detected in individual cells owing to

real biological effects, resulting in zero-inflation of otherwise

continuous measures. These features of single-cell data require

special attention during analysis.
Here, we focus on the reverse-transcriptase qPCR (rt-qPCR)-

based Fluidigm (San Francisco, CA) single-cell gene expression

assay, which provides simultaneous measurements of up to 96

genes on mRNA sources as minute as a single cell. In traditional

rt-qPCR, despite careful measurement of input cDNA concen-

trations, differences in starting material below the limit of detec-

tion require correction for reliable results (Vandesompele et al.,

2002). Subtraction of internal control genes, or averages thereof

is typically used (e.g. the �-Ct method), and results are often

reported in fold increase per cell (Schmittgen and Livak, 2008).

In array-based gene expression, differences in hybridization and

washing of non-specific DNA between chips require additional

correction.
Such normalization schemes are not directly applicable in

single-cell gene expression experiments, nor is it obvious that

they are needed. For single cells, the individual cell is the

atomic unit of normalization and the amount of starting material

naturally measured in number of cells per reaction. Even if

one attempted direct application of traditional normalization*To whom correspondence should be addressed.
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approaches, the dichotomous nature of single-cell expression hin-

ders their use.

Nonetheless, it is important to test for and address any tech-

nical biases. We present a filtering approach for removing out-

lying measurements at the single-cell level that accounts for the

dichotomous nature of the data. Using concordance measures

derived from three datasets where gene expression was measured

at the single-cell and 100-cell levels, we show that classical

rt-qPCR type normalization is not necessary with single-cell

multiplexed PCR data, and that our filtering step removes tech-

nical artifacts that most severely impact quantitation.
A typical goal of gene expression experiments is to search for

differential expression across groups. The zero-inflation of ex-

pression in Fluidigm introduces problems for testing differential

representation of cell subsets characterized by expression

patterns, as well. Traditional tests of differential expression

such as the t-test or other approaches based on normality are

likely inappropriate for zero-inflated data (Gottardo et al., 2006;

Smyth, 2004). Approaches to this problem have varied. Powell

et al. (2012) used a winsorized z-transformation of the expression

values and then treated them as continuous. Glotzbach et al.

(2011) used the non-parametric, Kolmorgov–Smirnov test for

differences in distribution to find differentially expressed genes

after winsorizing. Flatz et al. (2011) dichotomized the expression

and worked with the binary trait. Of these authors, only Flatz

et al. (2011) and Glotzbach et al. (2011) made use of formal tests

of differential expression. However, as we will see later, both the

continuous and discrete parts of the measurements are inform-

ative for differential expression and should be used. A parametric

test allows directions of difference to be assessed.
Here, we propose a discrete/continuous model for single-cell

expression data based on a mixture of a point mass at zero and a

log-normal distribution. Using this model, we derive a likelihood

ratio test (LRT) that can simultaneously test for changes in mean

expression (conditional on the gene being expressed) and in the

percentage of expressed cells.

2 METHODS

2.1 Datasets and notations

We use three Fluidigm single-cell gene expression datasets described later

in the text. We offer a brief overview of the assay technology used for our

data. Desired cells (e.g. antigen-specific CD8þ T cells) are selected

and lysed, and a cDNA library is generated through rt-qPCR. A short

(c. 15 cycle), multiplexed pre-amplification selects and enriches for the

desired genes. These products are loaded onto the Fluidigm chip, and

gene-specific primers are added for single-cell gene expression quantita-

tion. For the data presented here, we used a 96� 96 format plate, i.e. 96

genes across 96 cells. The design of the chip generates each combination

of the 96 genes and 96 enriched cDNA libraries producing 9216 separate

PCR reactions. After each cycle, the fluorescence is read. The cycle

(or interpolated fraction thereof) at which the fluorescence crosses a

pre-determined threshold is recorded, defined as the ‘ct’ value. For all

datasets considered here, primers were chosen to have 490% amplifica-

tion efficiency.

Dataset A: Twenty-eight 96� 96 format plates of CMV- or HIV-specific

CD8þ single cell T cells were isolated from 16 individuals. The donors’

cells were stimulated with one of four tetramers. Cells were sorted imme-

diately after tetramer incubation (‘unstimulated’) or after 3 hours of

exposure (‘stimulated’). Approximately 90 individual cells were measured

for each patient-stimulation combination (‘unit’).

Dataset B: Ten subjects were considered, and �180 activated CD4þ

memory T cells were sorted per subject, with each subject crossed between

two arrays.

Dataset C: Two subjects were considered. Fluorescent staining of CD4þ

T cells allowed cytometric sorting into CD154þ/� sub-populations.

Approximately 40 cells were sorted per sub-population per subject

across three arrays.

Additionally, for each individual and treatment within each dataset,

aggregates of 100 cells (i.e. 100 cells per well on the array) were isolated

and assayed by Fluidigm technology. The expression measured in these

100-cell aggregates, after dividing by 100, provides a ‘biological’ average

of expression per cell and can be compared with an in silico average of the

single-cell measurements. The concordance between these two averages

serves as a measure of experimental fidelity (Lin, 1989).

Notations: The standard assumptions of qPCR-based assays apply to the

Fluidigm technology, namely that the cycle threshold (ct) is inversely

proportional to the log of fluorescence. The fluorescence is directly pro-

portional to the starting concentration of mRNA (Higuchi et al., 1992;

Karlen et al., 2007). The Fluidigm instrument returns the cycle threshold

(ct); however, we find it more useful to work with the complement of ct,

which we define as the expression threshold (et)

et ¼ cmax � ct

where cmax is the maximum number of cycles used, 40 in our case.

Assuming all reactions are in the exponential amplification phase, this

quantity should be directly proportional to the log-abundance of mRNA,

plus an intercept term corresponding to the number of cycles it takes

for the minimally detectable quantity of mRNA to cross threshold. If

the fluorescence does not cross the threshold after 40 cycles, then the

Fluidigm instrument records a value of N/A, and we say that the gene

is not detected. As we will see in the Section 3, detected genes typically

have a value of ct much less than cmax; suggesting that undetected genes

might be regarded as unexpressed genes. This assumption is supported by

the idea that transcription of mRNA is thought to occur in bursts of

activity (Kaufmann and van Oudenaarden, 2007; Levsky et al., 2002),

followed by quiescence. Other authors have noted this feature in single-

cell expression studies as well (Glotzbach et al., 2011). When looking at

the concordance of the single-cell and 100-cell experiments, this assump-

tion is reasonable and leads to better concordance than omitting the N/A

values. As a consequence, we treat the undetected genes as unexpressed

genes, and we set the corresponding et value to �1 so that the mRNA

abundance is zero (i.e. 2et ¼ 0).

For a fixed sample or experimental unit, let us denote by etij the

expression threshold of well i and gene j, for i ¼ 1, . . . , I and

j ¼ 1, . . . , J. This results in a matrix of log2 �based expression values,

ET ¼ ðetijÞ, just as in array-based gene expression. Similarly, we will

denote by Y ¼ ð yijÞ the matrix of untransformed expression values,

where yij ¼ 2etij . Usually, a well contains one cell, but the Fluidigm tech-

nology can be used with multiple cells per well to quantify the gene

expression of a mixture of cells. As a consequence, we prefer to use the

term ‘well’ instead of ‘cell’. In the three datasets used here, wells will

contain either 1 or 100 cells. Finally, several biological units are typically

measured in an experiment, and in this case, we will use an extra index k

to refer to the biological units.

2.2 A model for single-cell expression

As described previously, for a given cell, a gene can be defined as on

(i.e. a positive et value is recorded) or as off (i.e. the gene is undetected

and yij ¼ 0). To simplify our model, we will denote by vij ¼ 1½yij40� the

indicator variable equal to one if the gene j is expressed in well i and zero
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otherwise. Following classical statistical conventions, we use upper cases

to denote the random variables and lower cases to denote the values

taken by these random variables. Using these notations, we introduce

the following model of single-cell expression

ðYijjVij ¼ 1Þ � logNormal ð�j, �
2
j Þ ð1Þ

ðYijjVij ¼ 0Þ � �0 ð2Þ

Vij � Be ð�jÞ ð3Þ

where �0 denotes a point mass at zero, �j and �
2
j are the log2-based mean

and variance expression-level parameters conditional on the gene being

expressed (i.e. Vij ¼ 1), and �j is the frequency of expression of gene j

across all cells. In the datasets considered here, the frequency of expres-

sion greatly varies across genes from 0 to 0.99 with a median value of �j
�0.1 (see Supplementary Fig. S1). Assuming a log-Normal model for

ðYijjVij ¼ 1Þ is equivalent to modeling ðETijjVij ¼ 1Þ as normally distrib-

uted. The empirical distribution of the data (Fig. 1 and Supplementary

Figs S8–S10) motivates our selection of a log-normal distribution and

follows observations of previous authors (Bengtsson et al., 2005).

Thus, in a particular gene, three parameters characterize the expression

distribution: �j, �j, the mean and standard deviation of the etijjVij ¼ 1,

and �j, the Bernoulli probability of expression.

2.3 Quality control and filtering

The Fluidigm assay is sensitive, and owing to the exponential amplifica-

tion of starting mRNA, even minute contamination can render a mea-

surement unreliable. Similarly, variation in cell preparation can have

significant impact on the resulting experiment and data, such as uninten-

tional empty wells, which would distort estimates of �j. This suggests

identifying, and possibly removing outliers before conducting further

analysis. We examine both the discrete component vij and the continuous

component ðetijjvij ¼ 1Þ in screening for outliers. We define the robust

z-transformed positive expression value as

zij �
etij �mediani ðetijÞ

k �MADiðetijÞ
,

where the median and median absolute deviation (MAD) are calculated,

for a given gene, over expressed cells (i.e. vij ¼ 1), and k ¼ 1:48 is a

scaling constant that gives the standard deviation in terms of the MAD

for the normal distribution. Next, let fi ¼ asin
ffiffiffiffiffi
�vi�
p

be the Bernoulli var-

iance-stabilizing transformation of the proportion of genes expressed in

well i. Then, we define the robust z-transformed fraction as

�i �
fi �mediani ð fiÞ

k �MADið fiÞ

where the median, MAD and k are as defined previously. This leads to

the following steps for filtering:

(1) Remove null cells with no detected genes, i.e. Vij ¼ 0, for all j.

(2) Pick threshold for z filtering (tz); threshold for � filtering (t�).

(3) Calculate zij and �i:

(4) Remove wells in which genes have jzj4tz OR j�j4t�.

Step 1 removes wells where no cells were loaded, and thus all measured

expression values are null. It is important to perform this step first to

prevent break-down in the median and MAD estimates for the zeta

values in experiments with many amplification or FCM failures.

Finally, step 4 removes unreliable wells that either have an extreme pro-

portion of expression or extreme cell � gene expression values. The

thresholds tz and t� control the tolerance to outliers; therefore, typical

advice for outlier thresholding applies. Biological replicates, such as the

100-cell replicates described in Section 2.1, permit the assessment of intra-

class deviance, and then the thresholds can be selected to minimize this

deviance. We present such a calculation in the Supplementary Material.

Using this approach, we find that picking tz ¼ 9, t� ¼ 9 works well for the

datasets we consider here, see Section 3.

2.4 Testing for ET differences between experimental

groups

One typical goal of gene expression analysis is to test for difference in

expression patterns between experimental units. Here, we focus on testing

differential gene expression between two paired-biological units, e.g.

before and after stimulation. Our framework should be generalizable to

other types of situations, see Section 4. The classical test for changes in

mean for samples with continuous measurements is the t-test. Conversely,

if only a change in � were of interest, then a contingency table test (Chi-

square, Fisher’s exact or Bernoulli likelihood ratio) is appropriate.

However, in our case, we would like to test for a change in � and �

simultaneously, as both could be biologically relevant. Formally, we wish

to test

H0 : �0 ¼ �1 and �0 ¼ �1

versus the alternative

Ha : �0 6¼ �1 and �0 6¼ �1:

This can be accomplished using an LRT that would simultaneously

test for differences in means or proportions of expression.

Suppose that I wells are assayed in each unit, though the unbalanced

case (I0 6¼ I1) would be treated similarly with obvious changes of

notation. Based on (1), the likelihood function for one gene across two

biological units, omitting the gene index j for clarity, is given by

Lð�jy, vÞ ¼
Y
k

�nkk ð1� �kÞ
I�nk

Y
i2Sk

gðyikj�k, �
2Þ ð4Þ

Fig. 1. Histogram and theoretical (normal) distribution of ðetijjvij ¼ 1Þ

for single-cell (left, light gray) and 100-cell experiments (right, dark gray).

Genes FASLG, IFN- �, BIRC3 and CD69 are depicted. The frequency

expression of each gene in the single-cell experiments �ð1Þ is printed above

each histogram. The mean of the 100-cell and single-cell experiments

is indicated by a thick black line along the x-axis
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where y and v are the vectors of observations for the gene across the

two groups, � ¼ f�k, �
2,�k; k ¼ 0, 1g is the vector of unknown para-

meters, Sk is the set of cells expressing the gene in group k (i.e.

Sk ¼ fi : vik ¼ 1}), nk ¼
P

ivik is the number of cells expressing the

gene in group k and g is the density function of the log-normal distribu-

tion with parameters �k and �
2. The LRT statistic �ðy, vÞ is then defined

as the ratio of the null and alternative likelihoods obtained by replacing

the unknown parameters with their null and alternative maximum like-

lihood estimates. Detailed derivations of the likelihood function and the

LRT statistics are described in Supplementary Material.

An interesting observation is that the likelihood function given by (4) is

the product of the Bernoulli likelihood for all cells and the log-normal

likelihood for the expressed cells. It follows that the log-LRT statistic

decomposes as a sum of a Bernoulli log-LRT test statistic and a log-

normal log-LRT test statistic, as each component can be maximized

independently. It thus combines the two sources of information in a

natural way, and this decomposition allows post-hoc assessment of

which of the component(s) drive the detected difference by simply com-

paring the magnitude of the two log-LRTs. In Section 3, we will show

that our combined LRT test is more powerful than the Bernoulli or log-

normal tests alone.

Applying classical asymptotic results about LRTs (Wilks, 1938),

�2 log�ðy, vÞ converges to a 	2 distribution with two degrees of freedom

under H0. Some care is warranted in invoking this asymptotic result,

as even for large I, the sample size for the log-normal LRT will be �I.

We show in Supplementary Figs S2 and S3 that the 	2 convergence is

adequate for �I48 even under departures from normality. Below this

value, it is possible to derive the null distribution of this statistic through

permutation procedures as is commonly done for microarray data (Ge et

al., 2003). This proviso applies similarly for purpose of power calcula-

tions; hence, one may wish to conduct these through simulation.

3 RESULTS

3.1 Distributional assumptions

In Figure 1, we observe good agreement between the empirical

distributions of positive et values and their postulated normal

distribution for four genes in dataset A. This confirms that a

log-normal model for the positive expression level, yijjvij ¼ 1, is

appropriate. Even cells in the lowest quantiles of et (and lowest

quantiles of expression) still have expression far away from the

bound at 0, suggesting that undetected genes represent cells with

null or negligible RNA abundance. It is also noteworthy that the

difference between the means (shown as a heavy, vertical line) of

the 100-cell replicates and single-cell replicates is approximately

log2ð100 � �
ð1Þ
j Þ cycles, where �

ð1Þ
j is the expression frequency of

gene j in the single-cell experiments. As such, in genes with

�ð1Þj �1, such as FASLG, this difference between means is smal-

ler than genes with �ð1Þj 	1. As we will see the next section,

inclusion of the unexpressed cells (vij¼0) is important to accu-

rately relate the expression level of the single-cell experiments to

the 100-cell experiments.

3.2 Concordance between 100-cell and single-cell

experiments

The 100-cell aggregates (see Section 2.1) allows us to assess the

accuracy and reliability of our single-cell experiments by compar-

ing this in vitro 100-cell expression to an in silico estimate

obtained by averaging the expression of 100 single-cell measure-

ments. The in silico average of signal in a gene j and unit k from

100 single-cell wells is y
ð1Þ
jk ¼

P100
i¼1 yijk=100 where yijk is the

expression measurement of gene j in cell i and unit k. We com-

pare this with the in vitro ‘average’ of signal from a 100-cell
aggregate. In this case, we just use the expression of a gene

unit and divide by the number of cells (100).
The concordance here is assessed both visually by plotting

log2ðy
ð1Þ
jk þ 1Þ versus log2ðy

ð100Þ
jk þ 1Þ (Fig. 2) and by calculating

the concordance correlation coefficient (rc) between the two vari-

ables, which is often used to quantify reproducibility (Lin, 1989).

The shifted log transformation allows visualization of both the
discrete and continuous components while being on the et scale.

We first use this concordance experiment to test whether wells
that do not cross the fluorescence threshold after cmax should be

treated as exact zeroes or missing values. If we suppose that
vij ¼ 0 implies an assay failure and the measurement should

be discarded, we would simply compute the single-cell average
over expressed cells, i.e. yð1Þj ¼

P
i yijvij=

P
i vij. Figure 2 demon-

strates good concordance between the 100-cell and single-cell

experiments when the undetected genes are treated as zeros.
However, this is not the case when the zeros are treated as

missing values.

3.3 Filtering outlying cells

In addition to the concordance measure rc, we use another
goodness-of-fit measure to optimize our filtering parameters tz,

t� defined by,

WSS ¼
X
j, k

njk log2ðy
ð1Þ
jk þ 1Þ � log2ðy

ð100Þ
jk þ 1Þ

� �2
=JK ð5Þ

where njk ¼
P

i vijk is the number of positive wells for gene j in
unit k in the single-cell experiments. For a particular gene and

unit, the WSS decreases as we lower the filtering threshold and
extreme values are filtered. Eventually, so many cells are

removed that there is zero expression (and a large deviance)

for the in silico estimate. Thus, we wish to find a set of values
for the filtering parameters that would lead to the lowest WSS

measure across the three datasets used here. The addition of the
scaling factor njk gives higher weight to combinations with more

ex ante positive observations so that the contribution to the sum

of squares would be smaller in gene � unit combinations that
have fewer expressed cells. The factor njk can also be interpreted

as the scaling factor for the variance of the mean over positive
observations. Finally, the WSS is computed on the log2ðyþ 1Þ

scale to reduce the effect of extreme outliers.
When 100-cell aggregates are available, one can optimize

the filter parameters tz, t� by minimizing the WSS over possible
combinations. In our case, we found that setting tz ¼ 9, t� ¼ 9

achieves the best reduction in WSS across the three datasets

explored here (Supplementary Figs S4–S6 and Supplementary
Table S1). Using these values, our filtering criteria moderately

improve the concordance between the single-cell and 100-cell
experiments in two of the datasets but dramatically improve

(decrease) the weighted sum of squares. This improvement is

evident graphically, as the per unit averages of et of multiple
genes move toward the diagonal.
Beside improving WSS and generally improving rc, we explore

the effect of filtering on detection of control genes in the

Supplementary Material (Supplementary Table S2).
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3.4 Normalization and housekeeping genes

Other authors have noted that ‘the gene transcript number is

ideally standardized to the number of cells’ (Vandesompele

et al., 2002), which is the case with gene expression from

sorted cells. Therefore, it is not entirely a surprise that we find

little evidence for housekeeping genes providing useful normal-

ization here. For a housekeeper to have good validity, it should
have high cross-correlation with other housekeeping genes.

This is not the case for housekeepers GAPDH and POLR2A,

which in dataset A, in linear regression, have an R2 ¼ 0:027.

Fig. 2. Concordance between 100 cell yð100Þ=100 and yð1Þ, the in silico average of single-cell wells for datasets A, B and C. In the top row, wells with vij ¼ 0

are included and treated as exact zeroes. In the middle row, they are excluded, resulting in a clear lack of concordance. In the final row, wells are filtered

as per Section 2.3. Dark, thin lines show the initial location of a gene before filtering and connect to the location of the gene after filtering. In each panel,

rc, the concordance correlation coefficient and WSS, the average weighted squared deviation of expression measurements is printed. The dotted black

line shows a loess fit through the data. In all cases, the expression values are transformed using a shifted log-transformation [log2ðyþ 1Þ]. As such, a

graphed value of zero corresponds to a zero expression value (i.e. y ¼ 0)

Statistical methods for single-cell gene expression
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In Supplementary Figure S7, we observe in scatter plots of

housekeepers’ et that the correlation drops even further (to an

R2 ¼ 0:017) after filtering outlying cells (see previous section). As

the correlation between housekeepers is present primarily in cells

we suspect suffered from technical error, we find little utility in

normalization schemes. In fact, the use of housekeeping genes for

normalization could even result in masking cellular artifacts that

should be filtered.

3.5 An efficient test of differential expression for single

cells

In dataset A, �90 cells in each of 16 subjects were measured in

unstimulated and stimulated states (see Section 2.1). This permits

conducting a test for each gene in each subject for differences in

� and �, as described in Section 2.4. We plot the number of

discoveries at various false discovery rates (FDR) in Figure 3.

The combined likelihood test produces the greatest number of

discoveries over a wide range of FDR. For example, at an FDR

of 1%, our combined test could detect more than 20 additional

gene � unit changes across the four stimulations.

Another feature of the combined LRT is its robustness to

background gene frequency �j. Of course, if �j 	 0 on average,

then any test will be underpowered to detect group differences.

But using only the continuous components amounts to

‘‘throwing away’’ data for genes with intermediate �j. And simi-

larly, using only the dichotomous component results in a test

insensitive to differences in �j in frequently expressed genes.

This robustness to the �j spectrum is shown in Figure 4 in

which � log10 P-values are shown for the Bernoulli, normal

and combined LRTs versus frequency of �j.

A total of 65 genes were detected at an FDR of 1% in at least

one individual. We define P? ¼ �signð�1 � �0Þ � log10 P as the

negative log10 P-value times an indicator variable, which is

positive when stimulated groups have greater expression, and

negative otherwise. Figure 5 plots a heatmap of signed log10
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Fig. 3. Number of discoveries (genes � units) versus FDR, by treatment,

dataset A. The combined LRT is compared with a Bernoulli or normal-

theory only LRT, as well as a t-test of the raw expression values

(2et scale), including zero measurements

Fig. 4. � log10 P of tests (genes � units) versus frequencies of expression

� of the genes. The Bernoulli, normal-theory and combined LRTs are

plotted. Asterisk indicates test is different from the combined test at 5%

significance in a Wilcoxon signed-rank test

Fig. 5. Heatmap of signed log10 P for selected genes (rows, see main text)

and all 16 individuals (columns). The color above each column indicates

the antigen stimulation applied to the cells; thus, individuals are ran-

domly arranged in each antigen block. Red and purple are two different

CMV antigen pools; yellow and orange are two different HIV antigen

pools
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P-values. The selected genes are in clustered rows; the 16 indivi-

duals are arranged in columns by stimulation. The color above

each column indicates which of the four antigen stimulations

the individual received. From this, it is clear that genes cluster

into upregulated and downregulated modules, and that there is

much individual variability in response. Some genes appear to

have stronger responses to particular antigens, such as the

response to CMV (red and purple columns) in FASLG and

CLEC2B.

4 CONCLUSIONS

Current approaches for analysis of single-cell assays have

incompletely used the salient features of the experiment, and

the resulting inference can be suboptimal. In this article, we

have presented a framework for data exploration, quality control

and testing for differential expression using single-cell data.

Our comparison of 100-cell and single-cell measurements

shows that undetected genes in an assay should be treated as

effective ‘zeroes’. Both the discrete, zero-inflated portion and

continuous portion of single-cell expression data are meaningful

for detecting outliers. Moreover, differences in either could be

of biological interest; therefore, it is desirable to combine evi-

dence from both to detect changes in expression. Our LRT

allows just that.
Although we have suggested default parameters for the

filtering of outliers, informed from several datasets, our defaults

are likely conservative. They are 3–4 times larger than the most

substantial difference in expression between experimental groups

we observed. Acquiring forms of ground-truth besides ‘bulk’

experiments (in our case, 100-cell aggregates) could allow form-

ing tighter bounds. As in any outlier-based filtering procedure, it

is desirable to tune for the problem at hand. The thresholds tz
and t� should be different when eliminating potential technical

error is of greatest concern than when one is most interested in

searching for biological heterogeneity.
In this article, we have used the 	2 asymptotic distribution of

the LRT to compute P-values and assess significance. This

approximation is relatively accurate and robust to the distribu-

tional form of Y when the expected number of expressed cells is

greater than 8 (see Supplementary Material). Otherwise, approx-

imating the null distribution using permutations as in Ge et al.,

2003 is more appropriate.
Further work, incorporating a mixed-effects model to our

LRT, could extend its applicability. The test outlined in this

article may not be appropriate in cases where traits of interest

are not blocked within individuals (e.g. comparing between phe-

notypes like HIVþ versus HIV�). In this case, one wishes to

identify gene expression changes across groups, despite high indi-

vidual-to-individual heterogeneity. By modeling the mean and

proportion of expression as common across groups and adding

specific random effects for between-individual variability, our

model could be extended to address such experimental questions

as well.

Single-cell gene expressions assays have already been shown

to be useful in multiple studies and will become even more rou-

tine once sequencing at the single-cell level becomes practical

(Ramskold et al., 2012; Varadarajan et al., 2011). As a conse-

quence, the development of effective statistical methods to ana-

lyse such data is becoming increasingly important. This article

offers a coherent framework for researchers using this nascent

technology.
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