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Abstract: Radar technology is constantly evolving, and new applications are arising, particularly
for the millimeter wave bands. A novel application for radar is gait monitoring for fall prevention,
which may play a key role in maintaining the quality of life of people as they age. Alarming statistics
indicate that one in three adults aged 65 years or older will experience a fall every year. A review
of the sensors used for gait analysis and their applications to technology-based fall prevention
interventions was conducted, focusing on wearable devices and radar technology. Knowledge gaps
were identified, such as wearable radar development, application specific signal processing and the
use of machine learning algorithms for classification and risk assessment. Fall prevention through
gait monitoring in the natural environment presents significant opportunities for further research.
Wearable radar could be useful for measuring gait parameters and performing fall risk-assessment
using statistical methods, and could also be used to monitor obstacles in real-time.

Keywords: wearables; radar; wireless; smart shoes; sensor network; gait analysis; fall prevention

1. Introduction

The concept of successful ageing has been gaining increasing attention in recent years,
and is key to achieving long-lasting quality of life. This concept can be understood as a
combination of avoiding disease and disability, maintaining high cognitive and physical
function and engagement with life [1,2]. However, one in three adults aged 65 or more will
experience a fall every year [3,4]. This represents a major threat to successful ageing and
independent living due to acute or chronic pain, fear of falling and serious injuries [5].

According to the World Health Organization, falls are the second largest cause of
unintentional injury resulting in death [6]. Each year, more than 600,000 people worldwide
die of fall-related injuries [6]. Associated costs are also a significant issue and, as average
age is rising [7], the cost of falls is projected to increase to US $240 billion by 2040 [3].

Wearable devices have been revolutionizing the biomedical field in the last three
decades and have led to concurrent advances in gait analysis [8–10]. Inertia measurement
units (accelerometers, gyroscopes and magnetometers), ultrasonic sensors and force and
pressure sensors are among the most widely used and thoroughly researched biomedical
devices. The use of radar sensors as wearables, however, remains largely uncharted, though
references to their potential have been emerging in the literature in the past five years.

Fall detection has been thoroughly researched in the past decades and focuses on
detecting a fall that has already occurred, enabling first responders to respond quickly, and
improving the chances of patient recovery. On the other hand, fall prevention aims to avert
the fall from occurring in the first place, and has received less attention in the literature.
This paper will focus primarily on reviewing gait monitoring and fall prevention, and the
sensors that can be used for such an end.
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Fall prevention research focuses on identifying and controlling risk factors for falls [11,12].
These risk factors can be broadly grouped into extrinsic and intrinsic factors, and both
groups feature both controllable and uncontrollable factors [13]. Extrinsic factors are
related to the individual’s surroundings, and some of these are controllable, for example
footwear and features of the home-environment, including secure floor coverings and
non-slip surfaces. Other factors are, however, uncontrollable, such as features of the
outdoor environment, including uneven footpaths, obstacles, surface–height negotiation
and slippery surfaces [14]. Intrinsic factors include age, gender, medical conditions and falls
history. Controllable intrinsic factors can be medications, visual abilities, cardiovascular
status, gait and balance.

Analysis of risk factors identifies gait and balance as key opportunities for fall preven-
tion [15]. While external and uncontrollable risk factors are beyond the scope of patients
and clinicians to exhaustively anticipate and manage, intrinsic and controllable factors
represent a strategic target for interventions that can optimize patient awareness and avoid-
ance of risks. Significant progress has been made in controlling some of the intrinsic risk
factors mentioned above, with physicians routinely addressing medication [16], visual
ability [17], exercise and muscular and cardiovascular status [18]. However, gait and
balance have traditionally been considerably more difficult to monitor and manage outside
laboratory settings [19,20]; thus, there is a significant gap in fall prevention that can be
addressed using interventions enabled by advances in wearable sensor technologies [21].
Approximately 30% of falls occur during locomotion [22], and a survey study found that
53% of fall patients reported the cause of their fall to be tripping [23]; therefore, targeting
the gait pattern of patients has the potential to address a large percentage of fall-related
incidents and will have a significant impact on reducing falls [24].

This paper is structured as follows: firstly, gait analysis and fall prevention are in-
troduced. Then, state-of-the art wearable devices are presented, continued by a specific
review of shoe-mounted wearable devices. Later, the use of radar in gait analysis and falls
is described, starting with the classical approach of non-wearable radar as a replacement
of motion capture systems and moving on to the more novel wearable radar, including
their limitations and challenges, identifying a gap in the research. Next, a proof of concept
of wearable radar for obstacle detection is presented, which could be used to achieve fall
prevention to fulfill this gap. Finally, emerging applications, conclusions and recommenda-
tions for future work are outlined.

2. Gait Analysis and Fall Prevention

Gait analysis is the systematic study of human movement during locomotion [25].
For more than a century, it focused on studying the gait cycle and its parameters. The
gait cycle is defined as the interval on which one limb goes from a first heel contact to the
next heel contact [26]. This cycle can be divided in two major stages: stance and swing.
Stance is the period in which the limb is in contact with the ground, and it takes ~60% of
the gait cycle time. Swing is the phase where the limb is moving without having contact
with the walking surface, and it takes ~40% of the time. The most common gait cycle
parameters that were traditionally considered include spatial and temporal parameters
such as stance/swing times and step/stride lengths, toe-angle and swing foot trajectory
parameters such as minimum foot clearance [26,27].

More recently, gait analysis has been extended to include a broader classification of
locomotor and postural activities, e.g., walking, running and sitting [28–30]. Systems for
gait analysis can be divided into three major groups: Non-Wearable Systems or context-
aware systems (NWS), Wearable Systems (WS) and Combined Systems or fusion systems
(CS) [11]. These three categories can be sub-divided by the methods used to obtain the
data, e.g., 3D motion capture, digital video recording, accelerometers and radar.

There are three main categories of non-wearable systems, which are based on Image
Processing, Floor Sensors [31] or quantitative clinical testing (Figure 1). These systems are
laboratory-based and are currently the gold standards for gait analysis. Motion Capture
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Systems (MCSs) use an array of high-speed cameras to determine the position of reflective
markers attached to the subject’s body through image processing (Figure 2).

Figure 1. Classification of gait analysis systems. Gait analysis can be achieved using non-wearable
and/or wearable systems. Both systems can achieve similar types of results but with significant
differences in price, usability, resolution and accuracy.

Figure 2. Gold-standard gait lab setup. The participant is walking on a force plate integrated into
an AMTI treadmill. Vicon motion capture cameras fixed on a truss (1, arrows) track the location of
reflective markers (2) mounted on participant’s foot and shank. This complex system can calculate
body segments’ movements with sub-millimeter accuracy and synthesize force vector through the
recorded triaxial ground contact forces. Photo courtesy of Victoria University Gait Laboratory.

Later, by tracking the position of these markers, it is possible to obtain gait parameters
with submillimeter accuracy [32]. MCSs are often combined with force platforms to obtain
the ground reaction forces in three axes [33], allowing for a more complete picture of the
subject’s gait characteristics. Clinical testing methods combine observational gait analysis
with the measurement of a variable such as walking speed using a stopwatch. The main
advantages of these methods are that they are very low-cost and can be performed in
hospital rooms and caregiving facilities without specialized equipment. Some examples
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include the Timed Up and Go test [34] and the Four Square test [35]. Wearable sensors,
which were first introduced in 1989 by Péruchon et al. [36], will be discussed in detail
in Section 3.

Fall prevention has become one of the most important applications of gait analysis
due to the high frequency and cost of falls, particularly among the elderly [37]. Stiffness,
lack of coordination, impaired reflexes, reduced muscle strength and tone, shorter step
length and height and reduced ability to take corrective action after an unforeseen trip or
slip are among the causes of gait-related falls [4,14,37]. To address these causes, studies
have developed methods to quantify and classify an individual’s risk of falling. For
example, Begg et al. [22] focused on minimum foot-ground clearance during the swing
phase to predict the risk of falling. Di et al. [38] developed a motorized robot cane to
provide guidance and obstacle avoidance using a laser range finder, and fall detection and
prevention by means of an algorithm that combines the estimation of the user’s center of
gravity with the position of the cane. Majumder et al. [39] predicted falls using smartphone
accelerometers and smart shoe insole pressure sensors. The combination of data from these
two sensors triggered an alarm when gait abnormalities were detected. Several studies
have investigated the subjects’ functional ability and behavior with different technologies,
such as RFID and nonlinear classification, to prevent falls in constrained environments
such as acute care facilities [40–42].

Ongoing challenges in fall prevention research include the large number of uncon-
trollable risk factors, such as slippery or unstable surfaces, neurological function, chronic
medical problems and previous fall history [13,14], achieving user acceptance for preven-
tive devices [43] and, in some cases, the lack of reliable sensors and methods [44]. With
further work to address these challenges, wearable sensor devices offer significant opportu-
nities for gait analysis in fall prevention by providing quantitative data for reliable patient
monitoring and the accurate prediction of falls.

It is clear that the role of gait analysis in fall prevention is appreciable [45], and has
gained importance through the application of wearable sensors in real-world environments
such as homes, offices, sports fields and public spaces, and this will be the subject of the
next section.

3. Wearable Devices

Wearable electronic devices for gait analysis have been studied extensively over
the past three decades [19,31,44,46,47] and a broad overview is provided in order to
contextualize the discussion. Wearables can be used in two different contexts, in-lab
and free-living (see Figure 3). In the laboratory, wearables are used when performing
predetermined tasks, such as walking on a treadmill, often combined with non-wearable
methods such as motion capture, force plates and video recording. The second and most
interesting use of wearables is in uncontrolled free-living gait analysis [21]. Although such
analysis can provide information that would not be possible in a laboratory, the continuous
data provided by sensors necessitates differentiation of activities in order to be able to
extract and interpret gait parameters [44]. Extensive work has addressed this issue. For a
detailed list of methods see Table 1 of [44].
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Figure 3. Classification of Wearable Devices. This classification shows how the different types of
sensors can be used in different contexts depending on the communication method. TOF stands for
time-of-flight, EMG for electromyography and IMUs for inertia measurement units.

Numerous studies have focused on sensors to characterize foot motion for the deter-
mination of gait parameters (summarized in Figure 4). Although each sensor type has its
strength, significant weaknesses affect each sensor’s utility (Table 1). Among these studies,
several have utilized data from shoes to predict the risk of falling and prevent falls by
providing feedback alerts to the user and notifying caregivers or clinicians. These studies
have explored a range of sensor types, the most common of which are outlined below.

Figure 4. Popularity of types of sensors used in shoes in the literature reviewed. Solid bars show
the number of times that the sensor type was used on its own. Diagonal-pattern bars show the
number of times that the sensor type was used in combination with other types of sensors. Inertial
measurement units (IMUs) are the most popular sensor and have been extensively explored due to
their miniature size and negligible cost. Displacement and velocities can be calculated by integrative
methods, although the results have limited accuracy and suffer from drift.
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Table 1. Feet Wearable Gait Analysis Sensors.

Sensors Details Strengths Weaknesses References

Inertia measurement
unit (IMU)

3-axis accelerometry and
gyroscopic data can be

obtained and processed to
estimate spatiotemporal

parameters.
Foot clearance can be

estimated with
integrational methods

although is very inaccurate.
They are used on 18 of 35
of the studies surveyed

Inexpensive
Signals are easy

to measure

Drift
Non-direct parameter

estimation
Placement dependent

[8,20,39,48–63]

Force sensitive resistors
(FSR)

Vertical ground reaction
forces can be measured and

used to estimate
spatiotemporal parameters.
They are used on 6 of 35 of

the studies surveyed

Inexpensive
Signals are easy

to measure

Sometimes temperature
dependent

Vertical force sensing
only

[8,9,48,63–67]

Pressure sensors

They measure vertical
ground reaction forces and

plantar pressure
distribution.

Can be used to perform
gait classification
depending on the
distribution and to
estimate temporal

parameters.
They are used on 5 of 35 of

the studies surveyed

Overcome temperature
drift problems of FSRs

Normally several
sensors are needed.

Vertical force sensing
only

Multiple channel
processing is needed

Bulkier than FSRs

[39,51,56,59,68–70]

Optical Time of Flight
(OToF)

Foot clearance
measurement

They are used on 2 of 35 of
the studies surveyed

Good accuracy
Fails to measure when
the walking surface is
black or transparent

[61,62]

Ultra-sonic

Foot clearance
measurement

They are used on 2 of 35 of
the studies surveyed

Inexpensive
Easy data extraction

Bulky
High energy
consumption

[49,50]

Radar and RF

Foot clearance
measurement and obstacle

detection
They are used on 2 of 35 of

the studies surveyed

Good position change
measurement accuracy.

Obstacle
detection capability

Heavy signal
processing

High energy
consumption

[71–73]

Piezo-electric Bend

Temporal event detection
(Toe-off/Heel strike) They
are used on 1 of 35 of the

studies surveyed

Inexpensive
Not accurate

Limited mechanical
lifespan

[74]

Inertia Measurement Units (IMUs) are the most popular sensor, given that they are
easy to work with and inexpensive. They are comprised of accelerometers and gyroscopes
packaged into small chips (3 mm × 3 mm × 1 mm), making them an excellent device
for embedding into shoes. Three-axis accelerometry and gyroscopic data can be obtained
to estimate spatiotemporal parameters, and can be further processed using integrational
methods to estimate specific biomechanical variables such as foot clearance, although
these methods have limited accuracy. Inertia measurement units are often combined with
other sensors to improve accuracy or estimate parameters that cannot be obtained from
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accelerometry. In the fall prevention field, IMUs have been used to predict abnormal gait
patterns by using different classification techniques such as K-nearest neighbor and support
vector machines. A further drawback of IMUs is drift, which can present a major problem
when extracting data over long periods of time.

The second most common sensor type comprises Force Sensitive Resistors (FSRs),
which are used to measure ground reaction forces by installing them inside or below the
soles of footwear. FSRs are inexpensive and provide good estimates of temporal parameters
such as step time, stride time and stance time [8,9,48,63–67]. Pressure sensors are often
used in place of FSRs for similar purposes and they also provide heatmaps of the user’s
footprint. Studies have investigated using pressure sensor data to estimate spatiotemporal
gait parameters, study foot problems such as diabetic foot and deformity and to estimate
fall risk [39,51,56,59,68–70].

Minimum foot clearance is a gait parameter of particular interest in fall prevention
because of its correlation with tripping risk [22,75]. Various sensors have been explored
to measure the parameter directly, namely ultrasonic, Optical Time-Of-Flight (OTOF)
and radar. Ultrasonic sensors act as sonars and they can be used for estimating the
distance between the floor and the subject’s foot [49,50]. They have good accuracy and are
inexpensive but are oversized for the application (40 mm × 20 mm × 20 mm) and must be
externally mounted on the shoe. Another disadvantage of ultrasonic sensors is that they
usually consume more DC power than RF sensors, since they have to physically push–pull,
or vibrate a structure to generate the ultrasonic waves [76]. OTOF sensors [61,62] are
accurate, lightweight and very small (5 mm × 3 mm × 2 mm), making them highly suitable
for embedding in shoes. They operate well under most conditions, including black surfaces,
which cause only a loss of precision due to their low reflectivity of light for this sensor type.

Radar sensors have also been explored [71–73] and provide a good method for mea-
suring foot clearance. These sensors have the additional capability of scanning the envi-
ronment, which will allow significant advances in fall prevention by enabling obstacle
detection. Millimeter-wave technology has evolved to off-the-shelf full system-on-chip
(SoC) radars, which have the potential to enable the development of a new generation of
environment scanning devices for fall prevention. In this regard, a system such as smart
shoes [70] would be instrumental in facilitating gait monitoring for fall prevention by
providing data on parameters such as foot–ground clearance [45], stride time, gait speed
and left–right symmetry [77]. The patient can then be provided with crucial information
about their gait, and this could lead to intervention by caregivers or clinicians as neces-
sary [78]. Wearable radar can be a significant addition to the collection of wearable sensors
commonly used in monitoring and recording devices in this field, adding the capability of
detecting obstacles in the environment. Despite the great potential advantages that this
technology can bring, there is still a gap in research and development to achieve the needed
technology readiness.

4. Radar in Gait Analysis and Fall Prevention

The term RADAR was coined in the early 1940s as an acronym for RAdio Detection
And Ranging. Radar detects objects by emitting radiofrequency waves and analyzing the
reflected signals. It can also determine the position and velocity of objects depending on
the type of signal emitted, e.g., pulsed or continuous-wave, and on the processing applied
to the return, e.g., moving-target indicator, constant false-alarm rate and/or Doppler.
Applications of radar are numerous, including air-traffic control, surveillance, weapons
fire control, weather prediction and vehicle speed detection. In the last decade, gait
monitoring has emerged as a new application of radar, because it presents an affordable
alternative to motion capture systems and overcomes privacy issues while providing
accurate enough measurements.

This section reviews this work, classifying radars, outlining their benefits and sug-
gesting future gait monitoring possibilities. Table 2 lists the works reviewed in this section
and provides a summary of their results. In Section 4.1, we provide a brief review of the
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classic use of radar as a non-wearable system and as an alternative to cameras or other
fixed position sensors. In Section 4.2, we present a novel use of radar as wearable devices,
enabled by the miniaturization of mm-wave systems.

Table 2. Radars in Gait Analysis and Fall Detection/Prevention.

Radar Type Freq. Functionality/
Parameters Measured Signal Processing Type Wearable References

Continuous wave 10.5 GHz

Identified features in the doppler
radar signature from foot, leg,

and thorax using SFTF and model
extraction.

Parameter extraction
not reported.

Short-time Fourier
transform,

chirplet transform

No,
Tripod-mounted [79,80]

Pulse-Doppler
range

control radars
Not reported

Fall detection. Reported
classification rate between 0.91

and 0.97.

SVM and kNN to detect
falls based on the extracted

Mel frequency cepstral
coefficients

(MFCC) features

No,
2x Placed
on floor

[81]

Pulse-Doppler
range control radar

5.8
GHz

Fall detection. Reported
accuracies vary between 77.0% to
93.0% depending on wavelet type

and classifier type.

Wavelet transform.
Two-stage processing:

prescreening and
classifying (MFCC and TS)

No,
Ceiling-mounted [82]

Pulse-Doppler 5.8 GHz

Gait parameters extraction from
doppler signature: Gait velocity
and Stride rate. No numerical

results reported. Figures indicate
good matching between motion
capture system (gold standard)

and radar, when subject has
normal gait, and regular

performance when the subject has
a condition such as a stroke

or Parkinson’s.

Short-time Fourier
transform, spectrogram

filtering and peak detection

No,
2x Placed on

floor
[83]

Wideband FMCW 3–10 GHz
Gait speed. Average error

reported to be 7.3% for slow
speed and 12% for normal speed.

Short-time
Fourier transform

No,
Tripod-mounted

[84]

Narrowband
FMCW 24 GHz

Gait speed. Average error
reported to be 10.33% for slow

speed and 5.80% for normal
speed. Very short detection

range reported.

Short-time
Fourier transform

FMCW 24 GHz

Gait speed. Maximum accuracies
reported are 86% for high speed,

81% for normal speed and 74% for
low speed.

Not reported. Commercial
radar solution with human

tracking software used.

No,
Tripod-mounted [85]

Stepped
frequency

continuous wave
(SFCW)

5.8–7.0 GHz
Fall detection. Reported accuracy

of 94.3% for fall and
fall-like events.

Inverse Fast Fourier
Transformer (IFFT) for

range profiling. Movement
classification using machine

learning Least Squares
Support Vector Machines

(LS-SVM)

No,
Tripod-mounted [86,87]

Micro-Doppler Ka-band

Long Range Front-View Gait
Recognition of People.

Classification accuracy 40 to 80%,
angle-of-arrival dependent.

Short-time Fourier
transform, Stride rate is

extracted and used through
a proprietary algorithm to

classify between
different individuals.

No [88]

Pulse-Doppler +
Kinect Cameras Not reported

Real-time monitoring for fall
detection with sensor fusion. 98%
detection rate. Most of the success

reported is due to the Kinect
cameras, radar correlations with

gold standard reported to be poor.

Not reported. No
Ceiling mounted [89]
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Table 2. Cont.

Radar Type Freq. Functionality/
Parameters Measured Signal Processing Type Wearable References

Continuous wave
(NI-USRP 2922) 4 GHz Gait classification, fall detection.

Reported success rate 83.35%

Linear predictive coding
coefficients (LPC),

discrete-cosine coefficients
(DCT) and support vector
machines for classification.

No [90]

Dual
pulse-Doppler

range control radar
(commercial

RCR-50)

5.8 GHz
Quantitative gait measurement,
Reported step time ICC of 0.97.

Gait speed ICC of 0.99

Short-time Fourier
transform plus

tailored algorithms

No,
Mounted a torso

level and at
foot level

[91]

Continuous wave 10.525 GHz

Human gait recognition
(classification) vs. animals.

Reported successful classification
rate of 88%

Short-time Fourier
transform plus

tailored algorithms

No,
Tripod mounted [92]

2 x FMCW Doppler
(IVS-162 DRS) 24.25 GHz

Gait velocity measurement during
rehabilitation of patients.

Numeric results were presented
but not compared to any

gold standards.

Short-time
Fourier transform

No,
Mounted
on walker

[93]

Dual-frequency
continuous wave 7.9 GHz

Terrain relative velocity
measurement. Maximum distance

error in lab (not foot mounted)
was 1.3 mm and minimum

detectable velocity 0.19 mm/s.

I-Q demodulation and
phase changes for

distance calculation.

Yes,
under shoe heel [71,72]

FMCW
Commercial

InnoSenT
IPS-154

24.125 GHz

Qualitative analysis of Doppler
spectrum of different gait phases

including walking and going
upstairs. No quantitative

measurements were reported.

Short-time
Fourier transform

Yes,
Foot and/or

ankle mounted
[94]

1 × FMCW
radar + 16

Ultrasonic sensors
Not reported

Visually impaired aid for
navigation. No information about

performance was disclosed.
Not reported Yes,

Chest band [95]

FMCW 23.79–24.35 GHz

Fall prevention through obstacle
detection. Feasibility of obstacle
detection demonstrated with tin

can. Numerical results for
distance measurement report 1.76

cm average error and 4.5 cm
worst case scenario between 40

and 240 cm.

FFT and normalization Yes,
Shoe mounted [73,96]

4.1. Non-Wearable Radar Systems

Many researchers have studied non-wearable radars to provide alternatives to Motion
Capture Systems (MCSs), given that they are simpler, less expensive and protect patient
privacy by not capturing video [97]. Simplicity comes from being comprised usually of
just one device with two or more antennas, whereas motion capture systems require a
fixed array of specialized cameras plus considerable processing power in the computer
receiving the images from the cameras. In addition, the subject is required to wear reflective
markers (passive or active) for motion capture systems (see Figure 2). A further advantage
of non-wearable system (NWS) radar over MCSs is price; a complete system-on-chip or
system-on-board radar can be purchased for under US $700 [98]. Continuous-Wave (CW)
Doppler radar has been used to extract gait parameters using short-time Fourier transforms
(STFT) and chirplet transforms, which have been shown to operate well without concerns
due to illumination, clothing, occlusion or and weather [79]. Radars can also track objects
from long to short range and estimate some gait parameters from 120 m [79].

Some research explored the possibility of automatically detecting falls indoors by
analyzing the Doppler signature of the radar return offline and achieved a good classi-



Sensors 2021, 21, 6836 10 of 23

fication rate (between 0.91 and 0.97) [81,82]. Commercial applications are offered using
radar as the primary fall detection sensor [99]. Other works studied the feasibility of
pulse-Doppler radar for estimating gait parameters that could be input into a fall risk
assessment and concluded that radar was a viable candidate for the task. The parameters
measured included stride variability, although accuracy was low [83], and gait speed [84],
which was also identified as needing further work [84,85]. Other works combining radar,
wireless communications and data-processing techniques reported up to a 94.3% success
rate in detecting fall-like events [87].

Standard CW Doppler radar systems are potentially useful for gait analysis appli-
cations but present some problems. The first is that the Doppler return is dependent
on the relative direction of motion of the target with respect to the radar’s antenna, and
standard CW radar is unable to detect direction of arrival, making the estimation of gait
parameters complex [97]. Second, accuracy is low due to factors such as reference stability
and environmental clutter. One study found that they could only achieve a maximum
accuracy of 80% even when the subject was walking straight towards the radar [88]. This
could be overcome by implementing a correction factor calculated as a function of the
angle between the trajectory of the walk and the radar’s radial direction, which might be
achieved using techniques such as Frequency-Modulated Continuous-Wave (FMCW) [100]
and Multiple-Input Multiple-Output (MIMO) [101] to obtain range, elevation and azimuth
measurements [98].

Most studies of non-wearable radar with gait analysis/monitoring as the principal
aim have been based on Doppler, CW and pulse radar, and most of these focused on fall
detection. An extensive review of fall detection can be found in [102]; the present work
was designed to review the use of radar for fall prevention. Only one paper where non-
wearable radar was advertised as being used directly for fall prevention was found [97];
however, this paper only estimated gait velocity and there was no fall prevention or fall
risk assessment algorithms. There have been some reports of using radar for gait parameter
estimation such as gait speed and step length, which can be used as indicators of falls
risk that can then be used by clinicians to prescribe fall preventative measures in the
home such as special footwear, exercising, furniture rearrangement and installing non-slip
surfaces, among others. All of these reports emphasized the potential of non-wearable
radar for fall prevention through risk assessment, but identified drawbacks, such as being
limited to confined spaces (bedrooms, living rooms or hallways in homes or caregiving
facilities) and being unable to distinguish specific individuals, which makes it difficult in
a multi-occupant home situation [89], without extra sensors such as cameras, to provide
identification of patients. A further challenge for radar-based systems is clutter [90,91],
given that in a daily living environment many other objects are present. Even though most
clutter will provide stationary signal returns and be easily removed by low-pass filtering
zero Doppler-speed, moving objects (pets, other people and machinery) will produce
competing signal returns that will be difficult to filter out [92]. This is an important area
requiring further research.

4.2. Wearable Radar Systems

Radar systems can be adapted to a wearable form using System-on-Chip (SoC) de-
vices [98], particularly ones operating in millimeter wave domains due to their small size.
A small number of studies have been conducted on wearable radar technology for fall
prevention, and their results are promising. They have shown that this technology could
be used for many applications, such as calculating foot clearance, either by measuring
the return time of flight of the radar signal [71], using DFCW (dual frequency continuous
wave) techniques or measuring the distance from shoe-to-shoe to estimate stride length [72].
Radar could also offer new possibilities in fall prevention by enabling the detection of
obstacles in the walking path as shown in [73,94,96], and, at the same time, measuring gait
parameters to reveal the lower limb control strategies required to safely negotiate obstacles
in the everyday environment.
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Even though wearable radar and wearable devices in general have advantages over
non-wearable systems, user acceptance can be a barrier when the device is to be worn
long-term [43]. In the case of wearables for fall prevention, the mode by which information
is presented to the user is key to the device’s effectiveness [103]. There is an exciting
opportunity in wearable radar for fall prevention to develop embedded antenna systems,
smaller form-factor radar systems and information extraction algorithms to inform the user
in real time via an engaging user interface.

Most of the studies surveyed presented solutions with large bandwidths (>4 GHz),
with range resolutions of 7 to 100 mm. However, several studies presented a single-input
single-output approach that is only able to detect one dimension or do Inverse Synthetic
Aperture radar (ISAR) through acquiring several frames by moving the target to obtain a
2D image. Others presented a small MIMO approach with only a few Transmit–Receive
elements that achieved 2D location of targets. However, most studies did not report their
cross-range resolution other than [104], who reported 15 cm in 1 m. Of particular interest
is a study that introduced a scalable RF radar frontend in 79 GHz that would enable the
development of massive MIMO [105] that is yet to be explored for this application. This
SoC requires external antennas and a Local Oscillator (LO) and can be cascaded or stacked
to significantly simplify the design of the LO distribution network.

A number of research challenges remain for achieving reliable obstacle detection and
measurement of gait parameters. One of these challenges is the detectability of everyday
objects that are likely to act as obstacles. The detectability of an object is proportional to its
radar cross-section (RCS), which depends on its shape, size and material composition [106].
Conductive objects are the easiest to detect; however, everyday objects are usually made
of plastics, wood and other non-conductive materials presenting lower RCSs, making
detection more difficult. RCSs also depend on the operating frequencies used: the higher
the frequency the more sensitive the radar can be to non-conductive materials, as well
as the higher the BW that can be used. Other challenges include achieving good range
resolution depending on the radar technique used (i.e., directly proportional to BW in
FMCW), and the azimuth and elevation resolutions and accuracies, which depend on the
number of elements and shape of the array in MIMO approaches.

5. Wearable Radar for Fall Prevention: Proof of Concept

As indicated earlier, tripping over obstacles is a major cause of falls [17,107]; thus, a
system that can perform early detection of objects in the predicted walking path could
prove highly effective in preventing falls. Advancements in mm-wave technology have
allowed the miniaturization of radar systems to enable wearable devices that can be fully
contained within a shoe.

To our knowledge, only a few works presented research in this field. Tang et al.
focused on detecting a metallic can with a shoe-mounted 24 GHz radar, showing that
detection and location in 2D of the can was possible, but did not provide numerical results
on its performance [73]. Later on, they expanded on this system, presenting some distance
measurements to a target in [94,96].

Shoureshi et al. presented a multi-sensor system that included a FMCW radar on a
belt; however, they provide very little information about it, focusing more on showcasing
their vibratory feedback system integrated into a vest for visually impaired users [95].

Preliminary laboratory trials were conducted in an anechoic chamber by Argañarás et al.
in order to test the feasibility of non-conductive obstacle detection using mm-wave 60 to
64 GHz radar, presenting promising results [108,109].

In this section, we will expand on those findings by detecting non-conductive objects
in a real-world setting. This represents significant progress in this field, given that most
everyday obstacles are made of non-conductive materials. Three trials were conducted,
one mounted on a stand and two mounted on a subject’s leg. The radar was a Texas In-
struments IWR6843ISK [110] + MMWAVEICBOOST [111], connected to a laptop computer
through USB.
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5.1. Hardware

A prototype was built based on evaluation boards from Texas Instruments, the
IWR6843ISK and the MWAVEICBOOST (block diagram in Figure 5); this radar system
was selected due to its operating frequency in 60 GHz, which falls into the unlicensed
part of the spectrum, making it ideal for new applications. Moreover, the 60 GHz band
has high gaseous absorption in oxygen [112], which attenuates interference from other
distant sources, making the system more robust. A final advantage of this band is that the
bandwidth can be as high as 7 GHz. The IWR6843 has a bandwidth of 4 GHz, achieving a
range resolution of 3.4 cm, and has three transmitters (Tx) and four receivers (Rx), enabling
MIMO through multiplexing transmitters in time. The Tx antenna array is a sparse array,
having one odd antenna in the line to enable elevation angle estimation, and the Rx array
is a full array in line, enabling azimuth angle estimation. This MIMO configuration enables
not only obstacle detection but 3D location with respect to the shoe. 3D obstacle detection
would not be possible in this application with other methods such as conventional analog
phased array, since they require more channels to achieve the same result, translating into
more power consumption.

Figure 5. Hardware block diagram of smart-shoe prototype. The Raspberry Pi acts as the main
command and control device, as well as a datalogger. The main sensor is the TI mm-wave radar, and
the secondary sensors are a nine degree of freedom IMU and Optical Time-of-Flight range finder.

A Raspberry Pi Zero W+ was selected as the control and data logging unit due to its
reduced size and its Wi-Fi capability. Two additional sensors were included, an Inertia
Measurement Unit with nine degrees of freedom (three accelerometers, three gyroscopes
and three magnetometers) and an Optical Time-of-flight distance measurement sensor.
The power supply unit consisted of a 4000 mA, 3.7 V Li-Po battery and a commercial USB
battery managing circuit. All electronics were attached to a 3D-printed foot-mount shown
in Figure 6.

5.2. Software

The IWR6843 runs a custom firmware [113] that performs time domain multiplexed
multiple-input multiple-output FMCW radar signal processing. The three transmitters
are cycled to obtain three radar cubes with four receiving channels, allowing the signal
processing chain to first perform a range FFT and a Doppler FFT. Later, angle estimation is
calculated via elevation and azimuth FFTs [114] and targets are detected using Cell Averag-
ing Constant-False-Alarm-Rate (CFAR-CA) processing. This CFAR-CA produces a/one(?)
point cloud per frame, and it is delivered through a serial output to the Raspberry PI.
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Figure 6. Smart-shoe instrumented foot-mount assembly. (1) IWR6843ASK Antennas and board,
(2) MMWAVEICBOOST board, (3) Raspberry Pi Zero W+, (4) Power management board, (5) LiPo
Battery and (6) USB Data cable. The mount was 3D printed and all the PCB boards and battery were
fixed to it. The setup was mounted to the shoe using elastic bands.

The Raspberry Pi runs a suite of software developed in Python and PHP specifically
for this application. The main python program is run upon power-up and is responsible for
configuring and controlling the radar and receiving the data for storage in the file system
within the SD card. This python program can spawn a series of independent python scripts
that interact with the secondary sensors and store their data in a separate file in the same
file system (Figure 7).

Figure 7. Software and digital signal processing chain block diagram. The four receivers’ intermediate
frequency (IF) output is digitized by four analog to digital converters (ADCs) and then filtered to
reduce interference. The signals are then processed by a chain of FFTs to find range, elevation and
azimuth angles and, finally, they are converted to a point cloud by a CFAR-CA block. These data are
then serially passed on to the datalogger and then parsed, post-processed and displayed in MATLAB.

The Raspberry Pi also runs an Apache Server with PHP for command and data control
through HTTP. The smart-shoe can be controlled by accessing a simple PHP-developed
interface on a web browser by typing the IP address of the system. The PHP interface
interacts with the main Python program allowing the user to start and stop the sensors and
initiate data logging by the click of a button. The data can then be extracted from the data
directory via the web browser onto a PC that runs an offline MATLAB parsing script for
data visualization.
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5.3. Single Stationary Obstacle Distance Measurement Experiment

An experiment was conducted to explore the distance measurement capability of the
radar with a single, stationary, real-life obstacle: a piece of wood.

The smart shoe prototype was placed on a carpeted floor with a graded scale (cm;
Figure 8). The target was a semi-cylindrical log, approximately 10 cm in diameter and
30 cm in length.

Figure 8. Experimental setup. A wooden obstacle was placed at different distances from the smart
shoe prototype to characterize the radar sensor accuracy and detection capacity.

The log was placed on the 70 cm mark and then the smart shoe data-logger was started.
After the initialization was finished, the log was moved towards the shoe from 70 cm to
0 cm in 10 cm steps, modifying its position every 10 s approximately.

Results were downloaded from the datalogger GUI to a PC and then parsed into
MATLAB. A range limiting filter was applied to remove unwanted clutter, all detected
objects beyond 1 m were discarded.

The range of the detected object within the interest area was plotted in comparison
to the ground truth position (Figure 9). Results indicate that the object was only detected
within a range of 10 to 50 cm and that the error increases when the distance to the radar
decreases. Causes of this error need to be investigated further, however, some hypotheses
are that: (1) the target is significantly bigger than the wavelength (10 cm >> 5 mm) and
bigger than the range resolution, therefore the grouping of the detected blips can introduce
error into the distance measurement; (2) measurements are affected by near-field effects.
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Figure 9. Experimental results. The radar was able to detect the obstacle at a distance between 10 cm
and 70 cm. The accuracy improves as the obstacle is moved away from the radar. This effect could be
caused by the near-field effects, where the incident reflections can no longer be considered parallel.
A possible solution is to repeat this experiment several times to obtain a correction factor to affect the
measurements, since the error seems to follow a linear trend.

5.4. Detection of Staircase Steps Experiment

In order to investigate the possibility of detecting steps on a staircase and then de-
termining if the person is successfully clearing them, an experiment was designed that
involved wearing the smart shoe and going up and down the stairs several times.

Five trials involving going up and down one step of the staircase at different paces
were recorded. In addition, two trials involving repeatedly colliding with the step were
recorded. Results were filtered by range to eliminate unwanted returns from objects further
ahead of the area of interest. The range of the object was calculated from coordinates with
the following equation:

r =
√

x2 + y2 + z2 (1)

In Figure 10, each dot represents a detected object with range in the y-axis and Doppler
speed direction displayed as colors and time on the horizontal axis. The reference system of
coordinates can be seen as shown in the photo in the top left corner of the figure. Analyzing
the figure, we can observe that the detected obstacles distance seems to match the trajectory
of the foot going up and down the step, and the difference between the non-colliding and
colliding trajectories is noticeable as shown by the gray curves adjusted to the point clouds.

Subsequently, a preliminary training of machine learning algorithms was conducted
in MATLAB classification learner to preview the possibility of identifying different foot–
obstacle trajectories. The data collected from the each of the experiments consisted of
20 steps up and down; that is to say, a total of 100 steps clearing and 40 steps colliding. The
data were then sliced manually into single steps and classified in “clearing” and “colliding”
arrays. Later, 80% of the organized data were fed to the classification learner as training.
The remaining 20% were used as testing data. The MATLAB toolbox trained and tested
10 different classification models, including linear and quadratic support vector machines,
discriminant analysis and nearest neighbour. The best results were obtained with a KNN
Combination algorithm, reaching 97% classification accuracy.
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Figure 10. Experimental results. The radar was able to detect the staircase steps at a distance between
10 cm and 40 cm with the foot in movement towards and away from it. The points represent radar
detections, and the colours represent direction of the Doppler speed estimation. Gray curves have
been superimposed on the detection to highlight the difference in trajectories when the foot clears or
collides with the step.

5.5. Comparison of Wearable Radar in This Work with Previous Related Research

The radar system presented in this work explores the usage of a frequency band that
had not been used for fall prevention before either in wearable or non-wearable form. A
comparison of the specifications and capabilities of our sensor versus previous work is
presented in Table 3.
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Table 3. Comparison of wearable radar in this work with previous related research.

References Radar Type Freq.
and BW

#
TxRx

Standalone
System

Batt.
Life Obstacle Detection Signal Processing Type

[71,72]
DFCW
under

shoe heel

7.9 GHz
N/A

1
1

No
Signal acquisition

and processing
are external

N/A
Wired

No,
terrain velocity
was measured.

Phase calculation.
Performed on

external computer

[94]

FMCW
InnoSenT
IPS-154

foot and/or
ankle mounted

24.13
GHz

Not rep.

1
1

No
Signal acquisition

and processing
are external

N/A
Wired

No,
Qualitative analysis of
Doppler spectrum of
different gait phases.

Short-time Fourier
transform. Performed on

external computer

[95]
1 x FMCW
radar on

chest band

Not rep.
Not rep.

1
1

No
Signal acquisition

and processing
are external

N/A
Wired

Yes,
Visually impaired aid for

navigation. No information
about performance was

disclosed.

Not reported.

[73,96] FMCW
shoe mounted

24 GHz
560 MHz

1
1

No
Signal acquisition

and processing
are external

N/A
Wired

Yes, metallic (conductive)
only.

Numerical results for
distance measurement
report 1.76 cm average

error and 4.5 cm worst case
scenario between 40 cm

and 240 cm.

FFT and normalization.
Performed on

external computer

This work
+

previous
[108,109]

MIMO FMCW
TI.

IWR6843
shoe mounted

62 GHz
4 GHz

3
4

Yes, for data
collection

including obstacle
detection.

Classification using
MATLAB

postprocessing
requires

external computer

4 h

Yes, conductive, and
non-conductive.

Numerical results for
conductive were not
analyzed. Results for
non-conductive show

detectability between 5 cm
and 60 cm away from target.

Data without correction
show worst case scenario
error to be 8 cm, but this
could be reduced with

linear regression.

Range-FFT, Doppler-FFT,
CFAR-CA and

Angle-FFT. All performed
onboard.

Classification requires
external computer.

6. Future Research and Emerging Applications

The successful detection and location of obstacles could allow for fall prevention to be
carried out by feeding predicted foot trajectories calculated from the secondary sensors,
such as the IMUs, and the location of objects detected by the radar to a machine learning
algorithm that can classify the high-risk obstacles, then this output can be used to give
timely feedback to the user to avoid tripping, for example by means of haptic feedback
(vibrating device in the shoe) or a beeping sound. In order to achieve good prediction, the
range and cross-range resolution of the radar system needs to be improved. This can be
achieved by increasing the bandwidth of the signal and the number of transmit/receive
elements. Also, the improvement of the gain and radiation pattern of the antenna system
will allow for better obstacle detection, increasing the RCS of the obstacles to detect.

Moreover, processing speed and data delivery speed are key to inform the user in
a timely manner. Swing time in older adults is under 0.5 s [115] and feedback would
need to be provided during or before this phase to account for reaction time. Current
technology, such as the one used in our proof-of-concept, can output an array of detected
obstacles at a rate of 30 Hz maximum, which is fast enough, however, the signal must
still be captured and post processed by the MCU to predict the tripping risk. Significant
research is needed in these post processing algorithms, feedback mechanisms and user
reaction times to achieve this goal.

Figure 11 shows a concept design of the full system of a smart shoe, including the radar
electronics and conformal antenna array, a processing unit, a power supply and secondary
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sensors. Further miniaturization and optimization of the electronics and antennas need to
be achieved in order to embed all of the parts in the shoe. Another challenge is to develop
the machine learning algorithms and software that can be fully run onboard.

Figure 11. Proposed Smart-Shoe Implementation Concept. (1) MCU + IMU + wireless communica-
tions; (2) inductive charging; (3) LiPo battery; (4) antenna array; (5) pressure sensing insole; (6) radar
electronics. Wiring is not shown in the schematic for the sake of clarity.

Even though the most common applications of gait analysis are clinical, such as
fall prevention or treatment evolution tracking, several other markets have emerged in
recent years. Sports and defence related applications, for example, present research and
development opportunities, and a radar-based smart-shoe system for gait analysis could
be easily adapted to these requirements. In defence applications, they could provide a
useful insight into a front-line combatant’s health and assist in the evolution of skills in
training and combat situations, providing extra data about the environment that would
not be possible to obtain with inertia measurement units or pressure sensors. In the field
of sports, radar-enabled smart shoes could provide an affordable cutting-edge tool for
assessing performance and analyzing skills, for example tracking the interaction between a
football and the sportsman’s foot.

7. Conclusions

A review of wearable and radar sensors for gait analysis and fall prevention reveals
that, even though the utility of wearable sensor-based gait analysis is becoming widely
recognized, we are only beginning to realize its potential. Fall prevention in everyday
living conditions is still a largely unexplored area, and the development of new tools would
be highly beneficial for researchers, clinicians and patients.

Radar could be useful for measuring gait parameters and performing fall risk-assessment
using statistical methods and could also be used to monitor obstacles in real time.

A preliminary prototype for a smart shoe for trip hazard detection based on com-
mercial components was designed, built and experimentally tested. Experimental results
suggest that fall prevention and gait analysis can be achieved; nevertheless, further research
is necessary to advance the technology for commercial application. Future work should
focus on improving the range and angle resolutions by adding more channels and increas-
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ing the bandwidth and designing and assembling a more integrated and outdoor-proof
prototype. This means embedding all the hardware in the sole and sides of the shoe and
upgrading the software for standalone operation. Tailored antenna elements and array
shapes should be designed to be conformal to the shape of the shoe and to maximize the
detection capabilities of the radar. This will enable easier and more comfortable use by the
wearer, ensuring that it will not force the subject to modify his/her gait while wearing it.
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