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1  | INTRODUC TION

Recombination is a process during meiosis, which starts with the 
formation of DNA double‐strand breaks (DSBs) and results in an 
exchange of genetic material between homologous chromosomes 
(Baudat, Imai, & de Massy, 2013). The process leads to the forma‐
tion of new haplotypes and increases the genetic variability in pop‐
ulations. In most species, recombination is concentrated in narrow 
regions known as hotspots, 1–2 kb in length, flanked by large zones 
with low recombination or cold regions. Meiotic recombination is 
a tightly regulated process and is controlled in most mammals by 
a methyltransferase protein called PR domain zinc finger protein 9 
(PRDM9) (reviewed in Baudat et al., 2013; Tiemann‐Boege, Schwarz, 
Striedner, & Heissl, 2017). PRDM9 binds specific sequence motifs 
(e.g., the Myers motif) with its zinc finger array and recruits the DSB 
machinery (SPO11) to the hotspot (reviewed in Tiemann‐Boege 

et al., 2017). Hotspots vary between species (human vs. chimpan‐
zee [Auton et al., 2012], or mice [Smagulova et al., 2011]), popula‐
tions within species (human populations like Africans and Europeans 
[Berg et al., 2010; Pratto et al., 2014; The 1000 Genomes Project 
Consortium, 2015]), individuals within species (humans [Pratto et al., 
2014]), individuals of different sexes (Kong et al., 2010), as well as 
between viruses (reviewed in Pérez‐Losada, Arenas, Galán, Palero, & 
González‐Candelas, 2015). Molecular and evolutionary mechanisms 
of the process of recombination can be better understood with ac‐
curate local estimates of the recombination rate (Chan, Jenkins, & 
Song, 2012; McVean et al., 2004). Moreover, knowledge of the re‐
combination rate variation along DNA sequences improves inference 
from polymorphism data about e.g., positive selection (Sabeti et al., 
2006), or linkage disequilibrium (Hill & Robertson, 1968), and facili‐
tates an efficient design and analysis of disease association studies 
(McVean et al., 2004). For this purpose, we designed LDJump, an 
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algorithm that provides a fast and reliable new estimate of variable 
genome‐wide population recombination rates by partitioning the 
DNA sequence into regions with similar recombination. LDJump also 
permits demography to be taken into account.

Methods differing in their genome‐wide coverage and resolution 
to estimate either active or historical recombination have been de‐
veloped to estimate recombination rates in humans. Experimental 
approaches include whole genome sequencing, or SNP typing of 
pedigrees of at least two to three generations (Coop, Wen, Ober, 
Pritchard, & Przeworski, 2008; Halldorsson et al., 2016; Kong et al., 
2010; Williams et al., 2015), leading to a resolution in the order of tens 
of kilobases, or less in the more recent studies that included more 
individuals. Direct measurements in sperm provide high resolution 
events at the level of a few hundred base pairs, but lack genome‐wide 
coverage (Arbeithuber, Betancourt, Ebner, & Tiemann‐Boege, 2015; 
Arnheim, Calabrese, & Tiemann‐Boege, 2007; Kauppi, Jeffreys, & 
Keeney, 2004). Finally, recombination hotspots have been inferred 
by the analysis of patterns of linkage disequilibrium (McVean et al., 
2004; Myers, Bottolo, Freeman, McVean, & Donnelly, 2005; Myers, 
Freeman, Auton, Donnelly, & McVean, 2008). The latter approach 
provides genome‐wide historical recombination events that occurred 
over thousands of generations in both males and females inferred from 
polymorphisms characterized in many individuals within a population.

One of the first approaches to infer the population recombination 
rate ρ from patterns of linkage disequilibrium was to compute a lower 
bound on the number of recombination events (Hudson & Kaplan, 
1985; Myers & Griffiths, 2003; Wiuf, 2002). In population genetics, ρ 
is defined as ρ = 4Ner, where Ne is the effective population size and r 
the recombination rate per base pair (bp) and generation. Other meth‐
ods estimate ρ via maximum likelihood (Fearnhead & Donnelly, 2001; 
Kuhner, Yamato, & Felsenstein, 2000) or approximations to the like‐
lihood (Fearnhead & Donnelly, 2002; Hudson, 2001; Li & Stephens, 
2003; McVean, Awadalla, & Fearnhead, 2002; Wall, 2004). The former 
methods rely on simulations using importance sampling (Fearnhead 
& Donnelly, 2001) or Markov chain Monte Carlo (MCMC) methods 
(Kuhner et al., 2000) to become computationally feasible. The latter 
approaches use a composite likelihood (Hudson, 2001), or a modified 
composite likelihood (McVean et al., 2002). Software implementa‐
tions such as LDhat (Auton & McVean, 2007; McVean et al., 2004) and 
LDhelmet (Chan et al., 2012) are also available. Kamm, Spence, Chan, and 
Song (2016) extend this approach to account for demographic effects 
in their software package LDpop. Generally, computing approximate 
likelihoods requires a somewhat smaller computational effort than full 
likelihoods at the price of a slight loss in accuracy. An improvement of 
composite likelihood estimators via optimizing the trade‐off between 
bias and variance has been proposed by Gärtner and Futschik (2016). 
For a more technical discussion on composite likelihood in general see 
Varin, Reid, and Firth (2011) and Reid (2013). Other approaches rely on 
moment estimates or more generally on summary statistics (Batorsky 
et al., 2011; Hudson, 1987). In Wall (2000, 2004), suitably chosen sum‐
mary statistics such as the number of haplotypes (haps) are used.

Further well established frameworks to estimate recombina‐
tion rates include Lamarc (Kuhner, 2006), OmegaMap (Wilson & 

McVean, 2006), RDP (Martin, Murrell, Golden, Khoosal, & Muhire, 
2015), and CodABC (Arenas, Lopes, Beaumont, & Posada, 2015). The 
latter method (Arenas et al., 2015) applies approximate Bayesian 
computation (ABC) using 26 summary statistics to estimate constant 
recombination rates for simulated regions of size up to 300 codons 
for 100 alignments. With the GUI of RDP (Martin et al., 2015) overall 
patterns of recombination and testing for hot and cold spots is per‐
formed with help from LDhat (McVean et al., 2004). Recently, alter‐
native fast estimates of ρ that rely on regression on sliding windows 
have been proposed by Lin, Futschik, and Li (2013) and Gao, Ming, 
Hu, and Li (2016). Their software implementation is called FastEPRR 
and is recommended by the authors for larger samples consisting of 
50 sequences or more.

So far all these previous methods have at least some limitations 
such as being computationally demanding, not designed for small 
sample sizes or leading to too many change points in the recombi‐
nation map. With LDJump, we provide a computationally fast and 
reliable method that provides parsimonious recombination maps. In 
our approach, we divide the DNA sequence into short segments and 
estimate the recombination rate per segment via a regression based 
on the following carefully selected summary statistics: a normalized 
measure for the number of haplotypes, Watterson's θ, normalized 
measures on pairwise differences, haplotype heterozygosity, neigh‐
bour similarity score (NSS; Jakobsen & Easteal, 1996), and the maxi‐
mal chi‐squared (MaxChi; Smith, 1992). A frequentist segmentation 
algorithm (Frick, Munk, & Sieling, 2014) is then applied to the esti‐
mated rates to obtain change‐points in recombination. The algorithm 
controls a type I error and provides confidence bands for the estima‐
tor. Futschik, Hotz, Munk, and Sieling (2014) use a similar approach to 
partition DNA sequences into homogeneous segments with respect 
to GC content. In contrast to Gao et al. (2016), our approach also 
works well with small sample sizes down to 10 sequences.

Section 2 contains a detailed description of our proposed 
method. In section 3, we investigate the performance of LDJump and 
compare it with the software packages LDhat and FastEPRR. Results 
for the estimation of ρ in the presence of demographic effects to‐
gether with a short comparison to LDpop is also provided. Section 
2 in the Supporting Information Appendix S1 considers additionally 
LDhelmet, a further well known software package. As a practical il‐
lustration, we apply our approach to a well characterized region of 
the human genome for some human populations. We furthermore 
estimate population specific recombination maps for the complete 
human chromosome 16, showing a good overlap between our and 
experimental estimates of hotspot positions. Finally, we summarize 
our findings in section 4. Further details on the regression model, 
bias correction, and more detailed simulation results are provided in 
Supporting Information Appendix S1.

2  | MATERIAL S AND METHODS

Our approach consists of two steps. First, we fit a regression model 
from simulated data to estimate constant recombination rates on 
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short segments. Subsequently, we apply a segmentation algorithm 
to estimate change points in the recombination rate. The algorithm 
provides a type I error control against over‐estimating the number of 
identified breakpoints.

2.1 | Regression model for constant 
recombination rates

In our model, we used a Box‐Cox (Box & Cox, 1964) transformation 
t(ρ) of the population recombination rate ρ as our response. This 
was motivated since the direct use of ρ as response would lead to 
variance heterogeneity. For further details see section 1.2 of the 
Supporting Information Appendix S1. In order to regress t(ρ) on sum‐
mary statistics computed on simulated short DNA segments, we use 
generalized additive models (GAM) (Wood, 2011) and estimate cubic 

spline functions fj(zj) for the covariates zj, j = 1, …, q. The structure of 
our GAM is 

 for i = 1,…, n.
We considered several summary statistics proposed in 

the literature. We removed those predictors that required a 
substantial computational burden or led frequently to miss‐
ing values. Since all remaining summary statistics contributed 
significantly to the prediction, we chose them as our explan‐
atory variables zj, j = 1,…, q. Table 1 contains all considered 
summary statistics, providing marks for those selected in our 
model. Spline functions were used, as modeling the summary 
statistics as linear and quadratic effects led to less satisfac‐
tory results.

(1)t(�i)= f1(zi1)+⋯+ fq(ziq)

Variable Description Computation

z

 haps The number of haplotypes per base pair 
and per sequence

Haplotype of pegas (Paradis, 
2010)

 vapw Variance of the average pairwise differ‐
ences per base pair

Convert of LDhat (McVean 
et al., 2004) or self 
implementation

 apwd Average number of pairwise differences 
per base pair

Convert of LDhat (McVean 
et al., 2004) or self 
implementation

 wath Wattersons's � per base pair theta.s of pegas (Paradis, 
2010)

 hahe Mean of haplotype heterozygosity for each 
pair of sites

Hs of adegenet (Jombart, 
2008)

 MaxChi Maximal chi‐squared PhiPack (Bruen, Philippe, & 
Bryant, 2006)

 NSS Neighbour similarity score PhiPack of (Bruen et al., 2006)

n

 rsqu Mean of r2 for each pair of sites Diseq of genetics (Warnes, 
Gorjanc, Leisch, & Man,2013)

 ldpr Mean of D’ for each pair of sites Diseq of genetics (Warnes 
et al.,2013)

 hats Constant recombination rate estimator of a 
segment

Pairwise of LDhat (McVean 
et al., 2004)

 fgts The number of pairs of sites for which the 
four gametes test indicates a recombina‐
tion event per base pair

Self implementation

 mean(phi) Mean value of the pairwise homoplasy 
index (PHI) statistic

PhiPack of Bruen et al. (2006)

 var(phi) Variance of the PHI‐test statistics PhiPack of Bruen et al. (2006)

 gcco GC content: ratio of guanine and cytosine 
in the DNA sequence

gc.content of ape (Paradis 
et al., 2004)

Notes. The section tagged with z contains variables that are included in the model using spline func‐
tions. The section tagged with n contains variables that we did not use due to run time (rsqu, ldpr, 
fgts), software dependence (hats), a high share of missing values compared to other summary statis‐
tics (mean[phi], var[phi]), or no signicant effect (gcco). All selected variables were statistically 
significant.

TA B L E  1   Summary statistics 
considered for our additive regression 
model
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For a more detailed description of the regression model, as well 
as, the selection of explanatory variables see section 1.1 in the 
Supporting Information Appendix S1.

Since low recombination rates were overestimated on average 
(and high rates underestimated), we added a bias correction that 
uses quantile regression of the true vs. the estimated recombination 
rate on simulated data. For further details on the bias correction, 
see section 1.3 and Figures S4 and S5 in the Supporting Information 
Appendix S1.

2.2 | Segmentation algorithm estimating variable 
recombination rates

Frick et al. (2014) introduced a method called SMUCE for de‐
tecting change points in a function for observations distributed 
according to an exponential family. This method starts with a con‐
stant function and introduces successively additional jumps, as 
long as they lead to a significant increase in the likelihood. Using 
likelihood ratio tests, the probability of overestimating the num‐
ber of change‐points is controlled subject to a user specified type 
I error probability α. For a given number of jumps, the best fitting 
locally constant function is chosen by maximizing the likelihood. 
We use this method with local estimates 𝜌̂ as input. For a general 
overview on multiple change‐point detection see Niu, Hao, and 
Zhang (2016).

In the first step LDJump divides the DNA sequence into k short 
segments. Summary statistics are computed separately for each 
segment and inserted into our regression model to estimate a 
local transformed recombination rate. The back‐transformed rates 

follow an approximate normal distribution (natural scale of ρ, see 
Supporting Information Appendix S1, section 1.2) and are used as 
input for the change point estimator. In our simulations, the use of 
the back‐transformed rates led to a better detection of hotspots 
compared to the transformed rates.

3  | RESULTS

We used the software package scrm of Staab, Zhu, Metzler, and 
Lunter (2014) to simulate samples of populations with variable re‐
combination rates and converted its output to fasta‐files with the 
software package ms2dna of Haubold and Pfaffelhuber (2013). In 
this section we compare LDJump with LDhat, LDhelmet, FastEPRR, 
and LDpop. We consider both constant and variable recombination 
rates and look at the performance and the run time. The run time 
comparison is based on one core of an Intel Xeon E5‐2630v3 2.4 
1866, with 64 GB DDR4‐2133 RAM. Our analysis was performed in 
R (R Development Core Team, 2018). Note that all mentioned soft‐
ware packages can also be applied on several cores in parallel.

3.1 | Constant recombination rate estimation

We first focus on a constant recombination rate on a DNA segment. 
In our simulations, LDJump is compared with the functions pair-
wise of LDhat and max _ lk of LDhelmet following the default 
guidelines. The chosen sample sizes (number of sequences) were 
(10, 16, 20), and the sequence lengths (1,000, 2,000, 3,000) base 
pairs. For each of these nine setups, we simulated under 111 differ‐
ent values of ρ ∈ [0,0.1] yielding a total of 999 simulated scenarios. 
The population mutation rate was chosen as θ = 0.01.

Using the root mean squared error (RMSE=

�
1

n

∑n

i=1
(�̂i−�i)

2) 
and the coefficient of determination R2, we compare the accuracy 
of the mentioned methods. We visualize the estimators and the true 
values in Figure 1 along with a diagonal black line indicating a per‐
fect fit. Both prediction measures show a slightly better fit of the 
generalized additive model (purple plus signs: higher R2 of 0.5661; 
smaller RMSE of 0.0241) compared with the software packages 
LDhat (red dots: 0.4447; 0.0290) and LDhelmet (green triangles: 
0.2095; 0.0360).

3.2 | Variable recombination rate estimation

For humans, large fractions of recombination events are concen‐
trated on short segments which are called hotspots (reviewed in 
Arnheim et al., 2007; Tiemann‐Boege et al., 2017). Following the lit‐
erature, we define recombination hotspots as genomic regions that 
exceed the background rate by more than a threshold factor of five 
for a length of up to 2 kb (McVean et al., 2004).

We investigate how well hotspots are detected by our method 
and simulated two types of setup for variable recombination rate es‐
timation: simple setups (sequences of length 10 and 20 kb with one 
hotspot) and natural setups (sequences of length 1 Mb containing 15 

F I G U R E  1   Constant recombination rates: true recombination 
rates vs. predicted values from LDhat (red dots), LDhelmet 
(green triangles), and LDJump (purple plus signs). The black line 
indicates a perfect prediction [Colour figure can be viewed at 
wileyonlinelibrary.com]
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hotspots) both using a mutation rate θ of 0.01. These scenarios were 
investigated with different background rates, sample sizes, hotspot 
intensities, and hotspot lengths. When comparing our approach with 
LDhat (using the function rhomap) and LDhelmet, we followed rec‐
ommendations for both programs and used 106 iterations for the 
reversible‐jump MCMC procedure, sampled every 4,000 iterations, 
chose a burn‐in of 105, and different block penalties of 0, 5, and 50. 
For the computations with LDhelmet, we also used a window size of 
50 SNPs, and 11 Padè coefficients. The results for FastEPRR were 
obtained using winLength = stepLength (segment lengths) of 500, 
1,000, 1,500, and 2,000 base pairs. In our analysis, we applied the 
function smuceR available in the R‐package stepR (Hotz & Sieling, 
2016) to estimate the change‐points for our method. We took 
α = 0.05 as error probability but also considered α = 0.1 and 0.01 to 
see how sensitive the results are with respect to the specified α.

3.2.1 | Simple setups

We simulated samples of sizes (10, 16, 20) with sequence lengths of 
10 kb and 20 kb. Our 15 considered background recombination 

rates were chosen equidistantly within 0.001, 0.03. We considered 
hotspot intensities of 5‐, 10‐, 15‐, 20‐, 40‐fold the background re‐
combination rate. The length of the hotspots varied among {
1

5
,
1

10
,
1

20
,
1

35
,
1

50

}
‐times the sequence length. Due to the large num‐

ber of resulting setups and the computation times of LDhelmet and 
LDhat, we restricted this analysis to two replicates per sample yield‐
ing in total 4,500 simulated recombination maps. We approximated 
the RMSE (root mean squared error) as our quality measure, and 
computed the estimation errors on an equidistant grid of 1,000 posi‐
tions along the sequences.

Table S2 in Supporting Information Appendix S1 summarizes 
the performance of the aforementioned methods LDhat (Auton & 
McVean, 2007), LDhelmet (Chan et al., 2012), FastEPRR (Gao et al., 
2016), the first published version of LDhat(v1) (McVean et al., 2004), 
and LDJump. As shown in the Supporting Information Appendix S1 
(section 1.4), segment lengths of at least 400 bp are needed for a 
good performance of LDJump. Following this recommendation, our 
method performs equivalently or slightly better than LDhat, and out‐
performs also LDhelmet. The choice of α did not have a large effect 
under the considered scenarios. Similarly, the block penalty does not 

F I G U R E  2   Comparison of the methods (LDhat (blue), LDJump (purple), and FastEPRR (orange) for different true recombination rates (top), 
sample sizes (middle‐left), sequence lengths (middle‐right), hotspot intensities (bottom‐left), and hotspot lengths (bottom‐right). Mean values 
are shown as black dots [Colour figure can be viewed at wileyonlinelibrary.com]
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affect considerably the performance of LDhat. With LDhelmet on the 
other hand, the choice of the block penalty strongly influences the 
performance. Compared to LDhelmet, the performance of LDJump 
and LDhat turned out to be more constant across simulations. 
Indeed, the standard deviation of the RMSE is more than 50% lower 
with LDJump than that of LDhelmet. With FastEPRR, approximately 
57%, 5%, 4%, and 2% of the computations terminated due to errors 
using segment lengths of 500, 1,000, 1,500, 2,000, respectively. 
When FastEPRR provided estimates, the performance was compa‐
rable with LDJump. A more detailed graphical display of the perfor‐
mance of FastEPRR with respect to segment lengths can be found in 
Figure S9 in section 2 of the Supporting Information Appendix S1.

Figure 2 contains separate results for different sample sizes, 
recombination rates, hotspot intensities and lengths, as well as, se‐
quence lengths. We applied LDJump with 10 segments and a type I 
error probability of 5%. Hence, the considered segments had a length 
of 1,000 and 2,000 (for 10 kb and 20 kb, respectively) nucleotides. 

We used FastEPRR with a window length of 2 kb in order to achieve 
a small number (32) of runs terminating due to errors. We obtained 
similar values for the RMSE with LDJump, LDhat, and FastEPRR for 
all considered hotspot intensities, and sequence lengths. LDhelmet 
reaches a similar level of accuracy only for samples of size 20, 
hotspot lengths of 1/5 and high background recombination rates 
(not shown).

3.2.2 | Natural setups

We simulated samples with 16 sequences and sequence lengths of 
1 Mb. The setups varied in the background rate which was chosen 
among 13 equidistant values between 0.001 and 0.01. The 15 hot‐
spots were evenly distributed along the sequence and had different 
intensities between 8‐ to 40‐fold the background rate. Every setup 
was replicated 20 times. The same mutation rate θ = 0.01 was cho‐
sen for all setups. In our simulations, we focused on the methods 

F I G U R E  3   Natural setups: quality assessment is performed for LDhat and LDJump based on the proportion of correctly identified 
hotspots (PCH, top‐left), the proportion of correctly identified background rates (PCB, top‐right), the average performance 
(AP = (PCH+PCB)/2, bottom‐left), the estimated number of blocks (bottom‐middle), and the weighted RMSE (bottom‐right). Based on 13 
setups with 20 replicates these measures are computed for LDJump using different numbers of initial segments k (500, 1,000, 1,500, 2,000) 
and compared with the results from rhomap of LDhat using a block penalty of 50 [Colour figure can be viewed at wileyonlinelibrary.com]
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that performed best for the simple scenarios. When using FastEPRR 
the segment lengths of 1 kb were terminated without producing es‐
timates for 88% of our simulated complex data sets. For this reason, 
we focused on comparing LDJump and LDhat. With LDhat we used 
a block penalty of 50 which led to smallest RMSE under the sim‐
ple setups. Additional information on the performance of FastEPRR 
based on the nonterminating runs can be found in section 3 of the 
Supporting Information Appendix S1. However, it should be noted 
that a high proportion of missing outputs may lead to a biased qual‐
ity assessment, especially if the missing probability depends on fea‐
tures of the data set that affect the performance of the estimate.

3.3 | Quality assessment

We took the weighted RMSE as measure of quality. It is defined as 

 with wi denoting the length of the estimated segment i divided by 
the total sequence length. Furthermore, we considered the propor‐
tion of correctly identified hotspots (PCH), also known as positive 

predictive value. A hotspot is counted as “correctly identified” if it 
has a nonempty intersection with a detected hotspot (i.e., a region 
with at least 5‐fold background recombination rate). The propor‐
tion of correctly identified background rates (PCB) has been defined 
analogously and is often named negative predictive value. Finally, we 
compare the average performance in terms of the mean of the latter 
two performance measures by AP = (PCH + PCB)/2.

To identify the best choices for the bias correction and seg‐
ment lengths, we applied LDJump with k = 500, 1,000, 1,500, and 
2,000 segments and estimated the recombination maps using 
the 0.25, 0.35, 0.45, and 0.5 quantiles in the bias correction (see 
Supporting Information Appendix S1 section 1.3). Notice that seg‐
ment lengths resulting from the chosen values of k are 2 kb, 1 kb, 
666 and 500 bp. As hotspot lengths are either 1 or 2 kb, the sce‐
nario with k = 1,500 is most challenging as the hotspot boundaries 
will systematically differ from the segment boundaries. A direct 
comparison with LDhat using a block penalty of 50 (based on the 
results from the simple setups) is provided.

The different choices of k are displayed by the first four groups of 
boxplots in Figure 3. For each of these four groups, quantiles of 0.25, 
0.35, 0.4, and 0.5 are used in the bias correction and are presented 

WRMSE=

√√√√ n∑
i=1

wi

(
𝜌̂i−𝜌i

)2
,

F I G U R E  4   Simple setups: accuracy of estimates for different levels of genetic diversity introduced by different mutation rates θ. LDJump 
(first panel) is compared with LDhat. Misspecified values of θ are also considered: Indeed, LDJump was trained only under the mutation rate 
θ = 0.01. For LDhat, we compare the performance under different mutation rates (second panel) and under misspecification assuming that 
the true mutation rate is equal to 0.01 (third panel, misspecified for θ ≠ 0.01) [Colour figure can be viewed at wileyonlinelibrary.com]
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in different colours. The rightmost bar in each panel (in blue) sum‐
marizes the result of LDhat. From top‐left to bottom‐right, we show 
PCH, PCB, AP, the estimated number of blocks, and the weighted 
RMSE. We can see that our method has very high hotspot detection 
rates irrespective of k with even less variability in performance than 
LDhat. On the other hand, LDhat has very high PCB proportions. In 
comparison, the best PCB values for LDJump are obtained for the 
smallest quantile.

As an overall measure, we display the mean of PCH and PCB 
as AP in the bottom‐left panel. It turns out that AP is larger for 
LDJump regardless of the tuning parameters. In the bottom‐middle 
panel we can see that the number of estimated blocks of LDJump 
depends on k. When using 500 segments, the estimated number 
of blocks is below 31, which is the true number of blocks in the 
recombination map (of 15 hotspots). For 1,000 segments the es‐
timated number of blocks is very similar to the true number of 
blocks, but as k gets larger the number of blocks is slightly overesti‐
mated. LDhat estimated many more blocks using the block penalty 
with smallest RMSE under simple setups (50). In fact, the number 
of change points in recombination tended to be larger by a factor 

of more than 3,000. Although a choice between zero and fifty is 
recommended in the software manual, we guess that the number 
of change points with LDhat could be decreased by increasing the 
block penalty.

The bottom‐right plot shows the weighted RMSE as an overall 
quality measure showing a similar level of accuracy across k and 
compared with LDhat. A more detailed investigation reveals that our 
method estimates hotspot rates more precisely, but provides less ac‐
curate estimators of the background recombination rate.

Our results also show that our method is fairly robust with re‐
spect to tuning choices. This is also true for k = 1,500, where the 
hotspots have an unfavourable location compared to the design seg‐
ment boundaries. To obtain a reasonable tradeoff between sensitiv‐
ity (PCH) and specificity (PCB), we chose segment lengths of 1 kb 
(based on 1,000 segments of sequence length 1 Mb) and a quantile 
of 0.35 in the bias correction, which seemed to a good choice with 
LDJump. We obtained an error proportion of more than 88% using 
FastEPRR for the natural setups. We provide a comparison of the 
error‐free results in Figure S11 in Supporting Information Appendix 
S1 section 4. Based on this smaller number of results for FastEPRR, 

F I G U R E  5   Performance of LDJump under the demographic model (2) (grey boxes) compared with the results under misspecified 
demography (white boxes), where a neutral model was incorrectly assumed. We set the segment lengths to 1 kb for these comparisons and 
use the quantile of 0.35 in the bias correction. We provide box plots for the quality measures PCH (left), PCB (centre), and WMRSE (right)
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LDJump performs favourable in terms of the WRMSE and PCH, but 
has lower PCB compared to FastEPRR.

3.4 | Populations under different levels of 
genetic diversity

Since natural populations differ in the level of genetic diversity, we 
simulated samples under different mutation rates θ ∈ {0.0025, 0.005, 
0.01, 0.02}. For each mutation rate we simulate the same setup as for 
the comparisons under simple setups, see section 3.2. In Figure 4 
we compare the performance based on the RMSE of LDJump (first 
panel) with LDhat. For both methods, the influence of a misspecified 
θ has also been investigated. We used LDJump with segment lengths 
of 1 kb, and the regression model calibrated under the mutation rate 
θ = 0.01. Thus the model is misspecified when the true θ ≠ 0.01. For 
LDhat, results obtained using the true value of θ are displayed in the 

second panel, and results under misspecification in the third panel 
of Figure 4.

The estimation accuracy of LDJump improves with increasing 
mutation rates (or higher genetic diversity) due to the higher infor‐
mation available per segment. Interestingly, LDhat benefits less from 
increased levels of genetic diversity. A misspecified θ had little effect 
on the performance of LDhat.

Based on these simulations we also evaluate the influence of 
the SNP density on the performance of LDJump. Figure S8 of the 
Supporting Information Appendix S1 provides box plots illustrating 
the performance in terms of the RMSE depending on the estimated 
mean number of SNPs per base pair within a simulated segment. Our 
results suggest that a higher SNP density results in more accurate 
estimates. If a segment contains only one or zero SNPs, then our 
software implementation imputes estimates based on the neigh‐
bouring segments.

3.5 | Populations under demography

It has been observed by McVean et al. (2002), Chan et al. (2012) and 
Smith (2005) that ignoring population demography by wrongly as‐
suming a constant population size leads to biased estimates of re‐
combination. As a remedy, Kamm et al. (2016) computed two locus 
likelihoods under a known variable population size. LDJump permits 
the natural inclusion of any type of demography or even range of 
demographic scenarios by simply fitting our regression model under 
suitable scenarios.

We illustrate this approach and consider a scenario that involves 
a bottleneck followed by a rapid population growth. This scenario 
has also been used by Kamm et al. (2016). More precisely, we chose 
time‐dependent population sizes as follows: 

 Time is scaled in coalescent units and the simulations were 
again performed with scrm (Staab et al., 2014). Johnston and Cutler 
(2012) analyzed a similar demographic scenario and showed in their 
paper (we did not replicate these results) that LDhat infers spurious 
recombination hotspots when falsely assuming a constant popula‐
tion size.

(2)𝜂(t)=

⎧
⎪⎨⎪⎩

100, −0.5< t≤0

0.1, −0.58< t≤−0.5

1, t≤−0.58

TA B L E  2   Demographic scenario: Mean, median, and SD of the 
RMSE are listed for LDJump (with segment lengths of 1 kb, type I 
error of 0.05 and the 0.35 quantile) and LDpop using samples 
simulated under demography

� Program Mean Median SD

0.0010 LDJump 0.0080 0.0074 0.0014

LDpop 0.0066 0.0067 0.0005

0.0013 LDJump 0.0108 0.0096 0.0032

LDpop 0.0090 0.0091 0.0005

0.0022 LDJump 0.0170 0.0160 0.0027

LDpop 0.0154 0.0154 0.0006

0.0027 LDJump 0.0194 0.0190 0.0014

LDpop 0.0190 0.0190 0.0006

0.0039 LDJump 0.0273 0.0272 0.0004

LDpop 0.0275 0.0277 0.0009

0.0045 LDJump 0.0316 0.0314 0.0005

LDpop 0.0318 0.0320 0.0008

0.0054 LDJump 0.0383 0.0378 0.0013

LDpop 0.0388 0.0390 0.0008

0.0062 LDJump 0.0439 0.0434 0.0012

LDpop 0.0441 0.0441 0.0005

0.0071 LDJump 0.0495 0.0494 0.0007

LDpop 0.0512 0.0512 0.0003

0.0080 LDJump 0.0561 0.0560 0.0007

LDpop 0.0579 0.0583 0.0008

0.0085 LDJump 0.0604 0.0600 0.0017

LDpop 0.0614 0.0614 0.0007

0.0091 LDJump 0.0645 0.0637 0.0023

LDpop 0.0653 0.0654 0.0006

0.0100 LDJump 0.0699 0.0694 0.0012

LDpop 0.0723 0.0720 0.0008

Notes. The results are obtained based on 10 replicates of different back‐
ground rates. 16 sequences of length 30 kb containing two hotspots 
both of length 1 kb with intensities of 20 and 35 are simulated.

TA B L E  3   Mean (x̄) median (x0.5), and SD of the run times (in 
seconds) for LDhat2 and LDJump under our natural setups

  LDhat2

LDJump k

500 1,000 1,500 2,000

x̄ 77,237 55 111 168 226

x0.5 122,396 55 111 168 225

SD 2,434 3 3 5 11

Note. For LDJump we provide values depending on the number of prede‐
fined segments k.
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With LDJump, we fitted our regression model using samples 
simulated under the demographic model (2). We used the same ex‐
planatory variables as under neutrality, but added Tajima's D (Tajima, 
1989) as an additional explanatory factor to the regression model. 
This additional variable had significant effect on the model fit in our 
ANOVA, suggesting that choosing summary statistics dependent on 
demography can help to improve the accuracy of our estimates. We 
did not change the parameters in the Box‐Cox transformation com‐
pared to the constant population size model.

To see what can be gained by explicitly considering an underlying 
demography, we simulated samples under the demographic model 
(2). For these samples, we estimated recombination maps using the 
regression models trained either under neutrality (misspecified “old” 
model) or under demography (correctly specified “new” model). More 
specifically LDJump has been applied with segment lengths of 1 kb 

and a quantile of 0.35. The accuracy of these models was then com‐
pared in terms of the indicators PCH, PCB, and WRMSE. The results 
are shown in Figure 5. When using the correct demographic model, 
the hotspot detection rate and the proportion of correctly identified 
regions with background recombination rate increase and show less 
variability. We also found the WRMSE to be equal or slightly smaller 
when using the correct demographic model again with less variability.

3.5.1 | Comparison with LDpop

This section contains a comparison with the recently introduced 
software package LDpop (Kamm et al., 2016). This package enables 
demographic effects to be considered when computing lookup ta‐
bles which can then be used within LDhat or LDhelmet. Hence, we 
calculated lookup tables for 16 sequences under the demography 

F I G U R E  6   (a) Estimated recombination map of five different European populations (Italy, Finland, Spain, United Kingdom, Northern 
Europeans from Utah‐CEU) on chromosome 21:41187000–41290679 (GRCH37). (b) The estimated LDhat maps (Auton & McVean, 2007) for 
the same populations are retrieved from the 1000G (http://www.internationalgenome.org/data-portal/search?q=recombination). (c) Relative 
recombination based on measured double strand break (DSB) intensities for five different individuals representing active recombination 
from Pratto et al. (2014). Moreover, we plot in grey (solid line) the estimated crossover frequency of the same 103 kb region on chromosome 
21 based on sperm typing 13 intervals ∼5 kb in size, taken from Tiemann‐Boege et al. (2006). The y‐axis was scaled to the maximum of the 
DSB intensity or crossover frequency within that region, respectively. (d) Accumulation of recombination with increasing sequence for each 
method and population estimated with LDJump (solid lines), LDhat maps from the 1000G (dashed lines), DSB intensities for three individuals 
(dotted lines) (Pratto et al., 2014) and sperm‐typing (dash‐dotted line)(Tiemann‐Boege et al., 2006). The colour coding remains the same for 
the five European populations [Colour figure can be viewed at wileyonlinelibrary.com]
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model (2). We evaluated LDJump and LDpop based on simulated sam‐
ples under the demography model (2) with populations of sample 
size 16 and sequence length of 30 kb. This setup contains two hot‐
spots, both of length 1 kb with intensities 20‐ and 30‐fold higher 
than the background recombination rates. This setup was simulated 
10 times under the same 13 different background rates as in the 
natural setup, see section 3.2.2. In Table 2 we compare the mean, 
median, and standard deviation per background recombination 
rate between the two methods. We can see that under very small 

background rates LDpop, has a lower average RMSE; however, for 
background rates of at least 0.0039 we obtained smaller mean and 
median RMSE with LDJump.

3.6 | Run time

Obtaining estimates of recombination can be computationally de‐
manding, especially for a larger number of sequences, and sepa‐
rate analyses for several populations. Hence, we also provide a 

F I G U R E  7   (a) Estimated recombination map for chromosome 16 of four European populations with 50 randomly sampled sequences 
of the 1000 Genomes Project using LDJump under the demography model and segment lengths of 1 kb. The results of the Italian sample 
are plotted in black, the Finnish sample in dashed red, the Spanish population in dotted green and the British one in dash‐dotted blue. (b) 
Double‐strand break maps taken from Pratto et al. (2014) of chromosome 16 for five individuals with different PRDM9‐types. Here, the 
different colours and line types represent different individuals (AA1, solid‐black; AA2, dashed‐red; AB1, dotted‐green; AB2, dash‐dotted‐
blue; AC, long‐dashed‐cyan). (c) Overlap between detected DSB hotspots and the hotspots identified by LDJump. With LDJump, we define 
hotspots as regions with more than five times the estimated background rate. The DSB hotspots were taken from Pratto et al. (2014). We 
looked at overlaps between LDJump and the DSB hotspots that occurred with at least one European population (white areas). To assess the 
level of accuracy, we added segments of length 0.5 (grey), 1 (cyan), 2 (red), and 3 (yellow) kb left and right to the DSB region boundaries. 
The comparison is performed for all PRDM9‐types considered in Pratto et al. (2014). The total number of DSB hotspots of all PRDM9‐types 
is 2889 of which 866 were not within 3 kb of a LDJump hotspot. (d) Accumulation of recombination within chromosome 16 with increasing 
sequence for each method and population estimated with LDJump (solid lines), LDhat maps from the 1000G (dashed lines), DSB intensities 
for three individuals (dotted lines) (Pratto et al., 2014). The colour coding remains the same for the five European populations. The shift in 
cumulative recombination of the CEU compared to the other populations results from a lack of information up to position 10 MB [Colour 
figure can be viewed at wileyonlinelibrary.com]
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comparison with respect to run time (in seconds) between LDhat(v1), 
LDhat, LDhelmet, FastEPRR, and LDJump. We first considered simple 
setups using our simulated sequences of length 20 kb. Again, we 
looked at different block penalty choices and at different numbers of 
atomic segments k for LDJump in Supporting Information Appendix 
S1: Table S3. We computed as summaries the mean (top), median 
(middle), and SD (bottom) of our measured run times. We can see 
that especially LDhat and LDhelmet run 10 to 50 times longer than 
FastEPRR and even up to 100 times longer than LDJump. In terms of 
speed, the LDhat(v1) is only slightly slower; however, LDhat (v1) es‐
timates are considerably less accurate (see Supporting Information 
Appendix S1: Table S1) LDJump also turns out to be faster than 
FastEPRR for all considered number of segments k.

In Table 3 we show the mean, median, and SD of run times in 
seconds based on natural setups. On average LDJump turns out to 
be between 340 and 1,400 times faster than LDhat. Choosing larger 
values of k increases the run time for LDJump. The increase of the 
run time is approximately linear with the number of segments cho‐
sen. In contrast to our approach, the run times strongly depend on 
the underlying recombination rates with LDhat, leading to a con‐
siderable difference between the median and mean of times. In 
Supporting Information Appendix S1 (section 4), we compare the 
run times for various background rates and different values of k. The 
computations for estimating recombination under demography took 
70 times longer (without considering the computation time of the 
lookup table) using LDpop (on average 1,357 s) compared to LDJump 
(on average 19 s). Overall, LDJump provides a particularly attractive 
combination of performance and run time.

3.7 | Validation of LDJump computed hotspots with 
active recombination hotspots

We first tested our algorithm on a 103 kb region on human chromo‐
some 21. Therefore, we sampled the region between SNPs rs10622653 
and rs2299784, a region in the human genome in which recombination 
was characterized at high resolution by sperm typing (Tiemann‐Boege, 
Calabrese, Cochran, Sokol, & Arnheim, 2006). Taking data from The 
1000 Genomes Project Consortium (2015), we randomly chose 25 in‐
dividuals for each of five subpopulations from five European regions 
(TSI, FIN, IBS, GBR, CEU). We reformatted files from vcf‐ to fasta‐
format with the R packages (Knaus & Grünwald, 2017; Paradis, Claude, 
& Strimmer, 2004) using two sequences per (diploid) sample and the 
reference sequence 80.37 (GRCH37) from The 1000 Genomes Project 
Consortium (2015). We applied LDJump with a segment length of 1 kb, 
chose the 35% quantile for the bias‐correction, and used the demogra‐
phy model. When we ignored demography and applied LDJump under 
a neutral scenario, we obtained a higher amount of false positive can‐
didates (see Figure S12 in the Supporting Information Appendix S1). 
Our considered demography model (2) is rather simple, and we stress 
that LDJump can also be applied under any demographic scenario by 
training the regression model with a suitable setup.

We observed that in the region from 70–90 kb within the inves‐
tigated 103 kb, the LDJump recombination maps across populations 

overlap to the map obtained experimentally using sperm typing in 
Tiemann‐Boege et al. (2006) (see panel a of Figure 6) and with the 
double strand break (DSB) map (see panel b of Figure 6, Pratto 
et al., 2014). Note that the latter two maps represent active male 
recombination hotspots); whereas, the LD‐based estimated maps 
using LDJump and LDhat capture historical recombination averaged 
between males and females. However, in region 50 to 60 kb we ob‐
serve only historical hotspots detected by LDJump and LDhat, see 
panel b of Figure 6. We do not observe these hotspots in active re‐
combination measures of sperm typing (Tiemann‐Boege et al., 2006) 
or DSB (Pratto et al., 2014). Moreover, we also find hotspots unique 
to LDJump, which are either found in all considered subpopulations 
(e.g., at 5 kb for all five populations) or in specific populations (e.g., at 
30 kb only for GBR). Additionally, we estimated the cumulative re‐
combination frequency in the region (accumulation of recombination 
with increasing sequence for each method and population) in panel d 
of Figure 6. For most of these recombination measures the majority 
of the recombination (>65%) takes place in 25% of the sequence.

We further tested the performance of LDJump within a larger 
genomic region to validate our method. For this purpose, we applied 
LDJump to the entire chromosome 16, and consider separate sam‐
ples of 50 sequences from five populations (GBR, TSI, IBS, FIN, CEU) 
taken from The 1000 Genomes Project Consortium (2015). For the 
data preparation we used the software package vcftools (Danecek 
et al., 2011) and then ran a parallel version of LDJump with segment 
lengths of 1 kb for each population recombination map. We obtained 
these results in about 16 hr using in total 15 cores of an Intel Xeon 
E5‐2630v3 2.4 1866, with 64 GB DDR4‐2133 RAM.

In panel a of Figure 7 we show the estimated recombination maps 
under the demography model (2) for chromosome 16 with the Italian 
population (TSI) in black, the Finnish sample in dashed red (FIN), the 
Spanish sample (IBS) in dotted green, the British population (GBR) in 
dash‐dotted blue, and the Central European population (CEU) in long‐
dashed purple. Overall, we observe population specific hotspots, but 
also hotspots present in more than one population as is also observed 
in genome‐wide DSB maps (Figure 7, panel b) (Pratto et al., 2014).

Furthermore, we evaluated the agreement of the estimated 
recombination hotspot locations using LDJump with the DSB map 
hotspots. For identifying LDJump hotspots we use a simple heuristic 
to define the average background rate. More specifically, we chose 
the mean of all estimates 𝜌̂ that fall below the median. This should 
give a downward biased estimate. With LDJump, we again defined 
regions as hotspots as those with a 5‐fold higher estimated back‐
ground rate. The DSB hotspots were selected by making use of the 
indicator variables provided by (Pratto et al., 2014). Given that DSB‐
hotspots are very narrow, yet the resolution of DSB into a crossover 
can occur with 3–5 kb, we added segments of different length (0, 0.5, 
1, 2, 3 kb) left and right to the DSB‐hotspot regions and calculated 
the respective number of detected hotspots per PRDM9‐type. The 
total number of DSB hotspots for AA1, AA2, AB1, AB2, and AC is 
2889 (Pratto et al., 2014). We counted a hotspot as jointly detected, 
if an overlap between DSB‐hotspot and a LDJump hotspot occurred 
in at least one of the five populations (FIN, IBS, GBR, TSI, CEU). We 

info:ddbj-embl-genbank/rs10622653
info:ddbj-embl-genbank/rs2299784
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display the number of jointly detected hotspots (augmented by seg‐
ments of different lengths) via a Venn diagram in panel c of Figure 7. 
Notice that the number of hotspots estimated by LDJump for all con‐
sidered populations is in total 8,237, and therefore approximately 
3‐fold higher than the number of DSB‐hotspots. Our analysis shows 
that on average about 44% of the DSB hotspots (when adding 3 kb 
segments to these regions) overlapped with at least one of the es‐
timated LDJump population hotspots. These proportions are in ac‐
cordance with the comparison of LD‐based recombination maps and 
DSB‐hotspots (Pratto et al., 2014) with an overlap of 56%. For chro‐
mosome 16, we calculate on average about 49% overlap between 
LDhat and DSB‐hotspots (adding 3 kb segments).

4  | DISCUSSION

We introduced a new method called LDJump to estimate heteroge‐
neous recombination rates along chromosomes from population ge‐
netic data. Our approach splits a given DNA sequence into segments 
of proper length in a first step. Subsequently, we use a generalized 
additive regression model to estimate the constant recombina‐
tion rates per segment. Then, we apply a simultaneous multiscale 
change‐point estimator (SMUCE) to estimate the breakpoints in 
the recombination rates across the sequence. We provide detailed 
comparisons of our method with the recent reversible jump MCMC 
methods LDhat and LDhelmet, as well as, the regression‐based 
method FastEPRR. Our estimates are very fast, perform favourably 
in the detection of hotspots, and show similar accuracy levels as the 
best available competitor for simple and natural setups, respectively. 
These comparisons show that LDJump is a powerful tool to explore 
recombination rates in organisms with narrow recombination hot‐
spots; for example, PRDM9 defined hotspots in most mammals.

We validated our method by computing hotspots in several 
human populations and compared the estimated hotspots with 
recombination intensities measured by sperm‐typing and double‐
strand break maps. Within the region of 70–100 kb LDJump com‐
puted hotspots that mainly agree with hotspots detected at high 
resolution with sperm typing and Chip immuno‐precipitation (DSB 
map), as well as, with LDhat maps.

LDJump also revealed population specific hotspots not present in 
the active recombination maps (~30 and 50 kb), but partially present 
in historical maps inferred by LDhat. Given the lack of active recom‐
bination at position ~50 kb (absence of this hotspot in sperm typing 
and in the DSB maps for the 2 European donors carrying the PRDM9 
allele A, as well as the donor with African descent [carrying the 
PRDM9 allele C]), we hypothesize that this estimated hotspot might 
represent a historical hotspot that became extinct. Alternatively, it 
could be a population‐specific hotspot given that its intensity varies 
among different European populations. In order to test this latter 
hypothesis, active recombination maps from different populations 
are required.

Not all population specific hotspots inferred by LDJump overlap 
with population specific LDhat hotspots. The reason could be related 

to the different sample sizes used (LDJump included only a subset of 
individuals) or the difficulties of LDhat screening small sample sizes. 
The latter might explain the presence of hotspots at position 100 kb 
but absent in LDJump (except FIN) and DSB maps (except PRDM9‐
type AC). Finally, we also observed a region with little congruence at 
position ~10 kb not detected by LDhat.

Differences between hotspot rates estimated from LD patterns 
compared to estimates based on sperm typing have also been ob‐
served by Jeffreys and Neumann (2009). This might be caused by 
the short life‐span of hotspots and their rapid evolution in inten‐
sity and genomic position among populations and species (Coop 
& Myers, 2007; Jeffreys, Cotton, Neumann, & Lam, 2013; Myers 
et al., 2010). In fact, only ~56% of historical hotspots determined 
by LD agree with genome‐wide DSB maps (Pratto et al., 2014). Our 
large‐scale validation on chromosome 16 shows that about 44% of 
the DSB‐hotspots (in total 2,889) were also found by LDJump (in 
total 8,237) using five European populations. Fine‐scale population 
specific differences with respect to recombination events have 
also been highlighted in studies by Kong et al. (2010), Berg et al. 
(2011), Fledel‐Alon et al. (2011), and Pratto et al. (2014). Given all 
this, our observed differences are likely due to underlying biological 
features.

We have implemented our approach as an R‐package called 
LDJump, which can be freely downloaded from https://github.
com/PhHermann/LDJump. In our simulations, we obtained par‐
ticularly good results when applying our method with segment 
lengths of 1 kb and a bias correction using the default quantile 
of 0.35.

In conclusion, LDJump is a fast algorithm which is able to detect 
narrow hotspots at high accuracy using segments of approximately 
1 kb length. Moreover, we also show that LDJump can be applied 
on populations under demography. We validated our method on a 
103 kb region of human chromosome 21, as well as, the whole chro‐
mosome 16 and found a good congruence by comparing LDJump 
hotspots with recombination hotspots measured with sperm typing 
or Chip immuno‐precipitation (DSB map).
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