
molecules

Article

Phase Transformations and Photocatalytic Activity of
Nanostructured Y2O3/TiO2-Y2TiO5 Ceramic Such as
Doped with Carbon Nanotubes

Artem L. Kozlovskiy 1,2,3,* , Inesh Z. Zhumatayeva 1, Dina Mustahieva 1

and Maxim V. Zdorovets 1,2,4

1 Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Nur-Sultan 010008, Kazakhstan;
inesh.zhumatayeva@gmail.com (I.Z.Z.); mustakhievadi@mail.ru (D.M.); mzdorovets@inp.kz (M.V.Z.)

2 Laboratory of Solid State Physics, The Institute of Nuclear Physics, Almaty 050032, Kazakhstan
3 Laboratory of Additive Technologies, Kazakh-Russian International University, Aktobe 030006, Kazakhstan
4 Department of Intelligent Information Technologies, Ural Federal University, 620075 Yekaterinburg, Russia
* Correspondence: kozlovskiy.a@inp.kz; Tel.:+77024413368; Fax: +77024413368

Academic Editors: Mihaela Baibarac, Monica Baia and Christos Riziotis
Received: 4 April 2020; Accepted: 22 April 2020; Published: 22 April 2020

����������
�������

Abstract: This work is devoted to the study of phase transition processes in nanostructured ceramics
of the Y2O3/TiO2-Y2TiO5 type doped with carbon nanotubes as a result of thermal annealing, as well
as to the assessment of the prospects of the effect of phase composition on photocatalytic activity.
By the method of X-ray phase analysis, it was found that an increase in the annealing temperature
leads to the formation of the orthorhombic phase Y2TiO5, as well as structural ordering. Based on
the obtained UV spectra, the band gap was calculated, which varies from 2.9 eV (initial sample)
to 2.1 eV (annealed at a temperature of 1000 ◦C). During photocatalytic tests, it was established
that the synthesized nanostructured ceramics Y2O3/TiO2-Y2TiO5 doped CNTs show a fairly good
photocatalytic activity in the range of 60–90% decomposition of methyl orange.
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1. Introduction

Oxide nanostructured materials and various ceramics based on them have huge practical applications
in various industries such as CО2 conversion, as catalysts, photocatalysts, and solar cells [1–5]. Among the
huge variety of oxide materials or ceramics, titanium dioxide based structures possessing a wide
forbidden band of 3.0–3.3 eV, several phase states, high exciton binding energy, good photocatalytic
activity, inertness, and biological compatibility have the most promising applications [6–9]. For example,
titanium oxide-based nanostructures have found their application as photocatalysts for the decomposition
and subsequent removal of harmful substances by ultraviolet radiation. It should be noted that the
photocatalytic activity of titanium oxide is limited by the high recombination rate of electron–positron
pairs under the influence of visible light, which leads to a decrease in the efficiency of photocatalysts and
their limited use [10–13]. To eliminate this drawback, as a rule, various methods are used for doping or
synthesis of more complex structures with a high density of vacancy positions capable of substantially
changing the properties of oxides [14–17]. Also, in most cases, the use of oxide nanostructured ceramics
is associated with external influences, which leads to a decrease in their operational properties due to
degradation, lower thermal conductivity, embrittlement, and amorphization [18–22]. In this regard,
alloying with rare-earth elements or their oxides is increasingly being used to increase the physicochemical
and operational characteristics, to increase the stability of properties and reduce the degradation of
materials. One of the ways to increase the stability and efficiency of oxide nanostructured ceramics is to
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dope them with carbon nanostructures, such as nanotubes, fullerenes, graphene, etc. [23–25]. Doping with
carbon nanostructures leads to the formation of interfacial heterostructural transitions, an increase in
interphase boundaries, as well as conductivity, which has a significant effect on the photocatalytic
properties of ceramics [26–30].

Based on the foregoing, the main purpose of this work is to study the processes of phase
transformations in nanostructured ceramics of the Y2O3/TiO2-Y2TiO5 type doped with carbon nanotubes
as a result of thermal annealing, as well as to evaluate the prospects of the effect of the phase composition
on photocatalytic activity.

2. Results and Discussion

Figure 1 shows the dynamics of the surface morphology of the nanostructured ceramics
Y2O3/TiO2-Y2TiO5 doped with carbon nanotubes before and after thermal annealing. Figure 1a
presents SEM images of the initial nanostructures, which are a mixture of carbon nanotubes coated with
spherical dendrites of titanium oxide and yttrium, as evidenced by the results of elemental analysis,
presented in Table 1.
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Table 1. Elemental analysis of nanostructures Y2O3/TiO2-Y2TiO5 doped CNTs.

Annealing Temperature
Elemental Content, at %

Oxygen (O) Titanium (Ti) Yttrium (Y) Carbon (C)

Initial sample 52 ± 6 * 15 ± 2 14 ± 1 19± 2
600 ◦C 52 ± 5 17 ± 1 14 ± 2 17 ± 2
800 ◦C 66 ± 6 18 ± 1 6 ± 1 10± 1

1000 ◦C 60 ± 7 23 ± 1 5 ± 1 12 ± 2

* Measurement errors were determined by evaluating 10 spectra from different sections of the test sample and then
determining the average value and standard deviation.

In the case of annealing at a temperature of 600 ◦C, the carbon nanotubes are mixed and partially
melted, followed by recrystallization of particles. An increase in the annealing temperature to 800 ◦C
leads to the formation of sphere-like nanoparticles whose average size is from 100–200 nanometers
coated with porous inclusions. In this case, a further increase in the annealing temperature to 1000 ◦C
leads to sintering of particles into a porous matrix containing spherical growths, the formation of which
is due to the processes of melting of yttrium oxide and the subsequent formation of large particles.

According to X-ray phase analysis, after grinding in the initial state, nanostructured ceramics
are a mixture of two phases of the monoclinic phase of yttrium oxide Y2O3 and the tetragonal phase
TiO2 characteristic of anatase (see Figure 2). In this case, the presence of amorphous broadening in the
range 2θ = 18–22◦ is characteristic of carbon nanostructures, which do not give crystalline reflections.
The shape and width of the diffraction peaks indicate a high degree of crystallinity of nanostructured
ceramics. An increase in the annealing temperature leads to a change not only in the shape and intensity
of diffraction lines, which is caused by thermal annealing of defects and partial recrystallization as
a result of an increase in thermal vibrations of atoms, but also in the appearance of new diffraction
reflections characteristic of the orthorhombic phase Y2TiO5, the presence of which and its subsequent
increase in contribution with an increase in the annealing temperature and complete dominance in
the structure at an annealing temperature of 1000 ◦C, indicates the processes of phase transformations.
The dynamics of phase transformations is shown in Figure 3, the phase contributions were estimated
using the Rietveld method, which includes a full-profile analysis of diffraction patterns. Table 2 presents
the results of changes in the structural parameters of the studied structures during thermal annealing.
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Figure 3. Dynamics of phase transformations of nanostructured ceramics Y2O3/TiO2-Y2TiO5 doped 

CNTs. 
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Table 2. Data of structural parameters.

Sample Phase, Space Group Lattice Parameter, Å Crystalline Size, nm

Initial
Y2O3—Monoclinic C2/m(12)

a = 14.150 ± 0.012, b = 3.521 ± 0.009 *,
c = 8.721 ± 0.005, beta = 99.91◦

V = 428.01 Å3
45 ± 2 **

TiO2—Tetragonal I41/amd(141) a = 3.750 ± 0.014, c = 9.421 ± 0.009
V = 132.45 Å3 41 ± 4

600 ◦C
Y2TiO5—Orthorhombic Pnam(62) a = 10.311 ± 0.009, b = 11.144 ± 0.005,

c = 3.681 ± 0.011, V = 422.95 Å3 10 ± 2

TiO2—Tetragonal I41/amd(141) a = 3.712 ± 0.013, c = 9.515 ± 0.013
V = 131.11 Å3 32 ± 2

800 ◦C
Y2TiO5—Orthorhombic Pnam(62) a = 10.252 ± 0.011, b = 11.080 ± 0.009,

c = 3.656 ± 0.006, V = 415.29 Å3 20 ± 3

TiO2—Tetragonal I41/amd(141) a = 3.701 ± 0.009, c = 9.487 ± 0.004
V = 129.96 Å3 30 ± 2

1000 ◦C Y2TiO5—Orthorhombic Pnam(62) a = 10.150 ± 0.011, b = 11.057 ± 0.009,
c = 3.632 ± 0.007, V = 407.59 Å3 40 ± 3

* The crystal lattice parameter was determined by comparative analysis of the positions of the diffraction peaks and
comparing them with the positions of the reference card values from the PDF-2 database. The measurement error
was also determined by calculating standard deviations using this program code. The parameters were refined by
the main diffraction peaks characteristic of each phase; ** The crystallite size was determined using the Scherrer
formula, by analyzing all diffraction peaks, determining the average value and standard deviation.

Figure 4 shows the results of measuring the optical absorption spectra and determining the band
gap of the synthesized nanostructured ceramics Y2O3/TiO2-Y2TiO5 doped CNTs depending on the
annealing temperature.Molecules 2020, 25, x 5 of 11 
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The UV spectra of the synthesized samples are characterized by a wide absorption region with
peaks in the region from 300 to 400 nm. The presence of peaks at 300–350 nm is due to the sorption and
absorbing properties of nanostructured ceramics, it is worth noting that an increase in the annealing
temperature, as well as a change in the phase composition with a further predominance of the Y2TiO5

phase, leads to an increase in the intensity and shift of spectral maxima, which indicates a change in the
absorption maxima properties of ceramics. Based on the obtained spectra, the band gap was calculated,
which varies from 2.9 eV (initial sample) to 2.1 eV (annealed at a temperature of 1000 ◦C) depending
on the phase composition of ceramics, which is caused by a change in the phase composition and the
dominance of the orthorhombic phase Y2TiO5. In this case, the deviation of the band gap for the initial
sample from the values characteristic of titanium oxide is due to deformation processes, as well as
substitution processes in the crystal structure due to mechanical grinding processes. A further decrease
in the value is due to the processes of phase transformations in the structure of ceramics and a change
in structural properties and morphology.

Figure 5 shows the results of changes in the current–voltage characteristics of the studied ceramics
depending on the annealing temperature, as well as the dynamics of the change in the value of resistivity.
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(b) The dynamics of changes in the resistance of the studied nanostructured ceramics.

It can be seen from the presented data that an increase in the annealing temperature leads to
a change in the slope of the current–voltage curve, which indicates an increase in current strength and
a decrease in the resistance of ceramics. It can be seen that in the case of heat treatment, an increase
in the annealing temperature does not lead to a strong decrease in resistance compared with this
change for annealed nanostructures at 600 ◦C in comparison with the initial structures. The decrease
in resistance for annealed nanostructured ceramics is due to structural ordering and reduction of
defects, as well as phase transformations that occur during annealing of ceramics. The addition of
carbon nanotubes with metallic conductivity leads to a decrease in the resistance of structures—which,
compared to the initial structures, for which according to scanning electron microscopy the effect
of fusion with oxide structures was not observed—decreased by more than 5 times, compared with
the fact that the temperature increase. Annealing leads to a decrease in resistance by no more than
1.3–1.5 times.

The photocatalytic ability of the synthesized nanostructured ceramics as a function of annealing
temperature was studied by evaluating the decomposition of methyl orange in an aqueous solution
with a given initial concentration of 25 mg/L, as a result of exposure to UV radiation with a lamp power
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of 4.5 mW/cm2. Assessment of the degree of degradation was carried out by measuring the UV–vis
spectra at different time intervals. Figure 6 shows graphs of changes in photocatalytic degradation.
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Figure 6. Dynamics of changes in the photocatalytic degradation of methyl orange on nanostructures,
where C0 is the concentration of methyl orange in an aqueous solution of 25 mg/L, C is the concentration
of methyl orange after irradiation with UV radiation.

According to the presented data, it can be seen that the synthesized nanostructured ceramics
Y2O3/TiO2-Y2TiO5 doped CNTs show a fairly good photocatalytic activity. In the case of the initial
structures and those annealed at a temperature of 600 ◦C, the degree of decomposition is much
lower, which may be due to the presence of two phases in the structure, as well as a large number
of dislocation defects. In the case of single-phase Y2TiO5 nanostructured ceramics obtained at
an annealing temperature of 1000 ◦C, the degree of decomposition of methyl orange is maximal.
Moreover, after 40 min of testing, the degree of decomposition is constant. In the case of repeated tests,
the synthesized nanostructured ceramics showed a similar degree of decomposition.

Table 3 presents the results of a comparative analysis of the photocatalytic activity of the synthesized
nanostructured ceramics with similar nanostructures based on titanium oxide doped with rare earth elements.

Table 3. Comparative analysis data.

Structure Type Reaction Type Summary of the Results References

Yttrium-doped TiO2
nanosheet-array films

Photocatalytic degradation of
MO aqueous solution under the
simulated solar light irradiation

It was established that Y–TiO2 films
with a dopant content of 2.5 and 5 wt
% showed the highest photocatalytic

activity with a decrease in the dye
concentration of more than 80% after

6 h of the reaction.

[31]

HPW-Y-TiO2 composites Degradation kinetics of methyl
orange under UV ligh

Dependences between the
concentration of dopant and various

conditions for conducting
photocatalytic reactions are

established. It is also shown that
doping leads to a sharp increase in the

rate of photocatalytic degradation.

[32]

Y3+-doped TiO2
nanoparticles

Degradation kinetics of methyl
orange under UV light

It was found that doping with yttrium
(1.5 mol %) And subsequent thermal
annealing lead to an increase in the

photodegradation rate and degree of
decomposition to 99.8% under the
influence of UV radiation for very

short time periods.

[33]



Molecules 2020, 25, 1943 7 of 11

Table 3. Cont.

Structure Type Reaction Type Summary of the Results References

TiO2 and TiO2/Y2O3
nanoparticles were
prepared by sol-gel

method

Degradation of methylene blue
under UV and visible light

illumination

Structures in which the concentration
of doped Y2O3 was 0.8–1.0 wt %, as
well as a mixture of titanium oxide
phases: rutile and anatase, have the

highest photocatalytic activity. It was
shown that the presence of

multiphase in the structure plays a
double role in the photocatalytic

activity of structures.

[34]

Yttrium-doped TiO2
microspheres

Photocatalytic activity was
evaluated by measuring the
degradation rate of methyl

orange (MO) solution under
visible irradiation

It has been shown that structures in
which the doping concentration of

yttrium is not more than 1–1.5%, the
photodegradation value is 0.3–0.4,
and the photodegradation time is

more than 300 min have the highest
photoactivity.

[35]

Rare earth doped TiO2
nanoparticles

Photocatalytic activity was
evaluated by the photocatalytic
decomposition of Orange II dye

in an aqueous solution

It was established that doping with
rare-earth elements (0.5–1 wt %) leads

to a significant increase in
photoactivity, which is associated

with the separation of charge carriers.
In this case, the structures doped with
Nd showed the highest photoactivity.

[36]

La doped TiO2
Photocatalytic phenol

decomposition

It was shown that for annealed
structures above 500–600 ◦C, a
decrease in the photocatalytic

degradation of phenol is observed,
which is 0.8–0.83 for structures

obtained by annealing at 500–600◦C
and 0.85–0.87 for structures obtained

at 800 ◦C.

[37]

Nanostructured ceramics
Y2O3/TiO2-Y2TiO5

doped CNTs

Decomposition of methyl
orange in an aqueous solution

with a given initial
concentration of 25 mg/L

It was found that for annealed
structures, the degree of

decomposition of methyl orange is
much higher than for the initial
structures. The decrease in C/C0

concentration for annealed structures
is in the range of 0.1–0.4.

This work

As can be seen from the data presented in Table 3, the doping of titanium oxide-based
nanostructures leads not only to stabilization of its structural features, but also to a significant increase in
photocatalytic activity. However, in most cases, this process is time-consuming and energy-consuming,
since it is associated with large test time intervals. In our case, obtaining single-phase structures of the
Y2TiO5 doped CNTs type leads not only to a significant acceleration of the reaction rate, but also to the
achievement of high photocatalytic degradation rates. It is worth noting that there was no work with
a similar phase composition doped with carbon nanostructures. At the same time, there are a large
number of studies in which doping with titanium-containing nanostructures by carbon nanostructures
leads to a significant increase in photocatalytic activity [38–41].

3. Experimental Part

The preparation of nanostructured ceramics was carried out using the solid-phase synthesis method
by mixing salts of yttrium nitrite (YN3O9·6H2O) and titanium oxide (TiO2) in an equal stoichiometric ratio
of 50:50. The chemical purity of the salts was 99.999%, manufactured by Sigma Aldrich. After intensively
mixing the suspended salts in an agate mortar to obtain an isotropic composition, carbon nanotubes
(CNT) were added to it at a concentration of 10% of the total mass of the sample. The resulting
mixture, after mixing and adding carbon nanotubes, was annealed in an oxygen-containing medium
in a muffle furnace at a temperature of 600–1000 ◦C for 5 h, followed by cooling together with the
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furnace to reduce the risk of a sharp temperature difference. The choice of temperatures is based on
phase transformations due to thermal heating. It should be noted that, as a rule, the processes of phase
transformations begin to manifest themselves most vividly at temperatures of 0.2–0.5 Tmelting (for TiO2

Tmelting = 1843 ◦C, for Y2O3 Tmelting = 2425 ◦C). Doping with carbon nanotubes leads to an acceleration
of phase transformations, which is due to the low melting temperature Tmelting = 1180 ◦C. Also, in the
case of an increase in the annealing temperature, partial annealing of defects occurring during the
synthesis, as well as phase transformations, is observed, as evidenced by changes in the symmetry of
the diffraction peaks for the annealed samples.

Doping with carbon nanotubes induces an increase in the photoactivity of titanium-containing
structures, for example, in [38] it was shown that doping of thin TiO2 films with CNT leads to a decrease
in the band gap and also to an increase in photocatalytic degradation. In this case, for annealed
structures at a temperature of 450 ◦C, an increase in photocatalytic activity is due to the appearance
of additional charge transfers through carbon bonds in the structure [38]. A similar picture of the
increase in photoactivity upon doping CNT of titanium-containing nanostructures was demonstrated
in [39–41].

The study of the effect of thermal annealing on morphological changes was carried out using the
scanning electron microscopy method performed using a Hitachi TM3030 scanning electron microscope
(Hitachi Ltd., Chiyoda, Tokyo, Japan). Shooting mode—LEI; current—20 µA; accelerate voltage—2 kV;
WD—8 mm. The study of the elemental composition, as well as the mapping of the structures under
study in order to determine the equiprobable distribution of elements in the structure, was carried
out using the energy dispersive analysis method performed using the EDA Bruker Flash MAN SVE
installation (Bruker, Karlsruhe, Germany), at an accelerating voltage of 15 kV.

The study of structural changes, as well as phase transformations as a result of thermal annealing,
was carried out using the method of X-ray phase analysis performed on a D8 Advance Eco powder
diffractometer (Bruker, Karlsruhe, Germany). Conditions for recording diffractograms: 2θ = 15–95◦,
step 0.01◦, Bragg-Brentano geometry, spectrum acquisition time 5 s, X-ray radiation Cu-Kα, λ = 1.54 Å.
Structural parameters were determined using the DiffracEva 4.2 program code; the phase composition
was determined using the Topas v.4 program code based on the Rietveld method. The volume fraction
of the phase contribution was determined using Equation (1)

Vadmixture =
RIphase

Iadmixture + RIphase
(1)

Iphase is the average integral intensity of the main phase of the diffraction line, Iadmixture is the average
integral intensity of the additional phase, R is the structural coefficient equal to 1.45.

The size of crystallites, which was calculated according to the Scherrer equation, Equation (2),

τ =
kλ
β cosθ

(2)

where k = 0.9 is the dimensionless particle shape coefficient (Scherrer constant), λ = 1.54 Å is the X-ray
wavelength, β is the half-width of the reflection at half maximum (FWHM), and θ is the diffraction
angle (Bragg angle).

The study of the absorption spectra of the studied nanostructured ceramics was obtained using
the UV spectroscopy method using a Jena Specord-250 BU analytical spectrophotometer equipped
with an integrating sphere. BaSO4 was used as the standard. The resolution is 1 nm, and the scanning
speed was 20 nm/s. The spectral range is 190–1100 nm.

4. Conclusions

The work is devoted to the study of phase transition processes in nanostructured ceramics of
the Y2O3/TiO2-Y2TiO5 type doped with carbon nanotubes as a result of thermal annealing, as well
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as to the assessment of the promising effect of the phase composition on photocatalytic activity.
The preparation of nanostructured ceramics was carried out using the solid-phase synthesis method
by mixing the salts of the starting components, followed by the addition of carbon nanotubes and
thermal annealing in the temperature range 600–1000 ◦C. Based on the obtained UV spectra, the band
gap was calculated, which varies from 2.9 eV (initial sample) to 2.1 eV (annealed at a temperature
of 1000 ◦C). It has been established that doping with carbon nanotubes with metallic conductivity,
as well as subsequent thermal annealing initiating phase transition processes, leads to a decrease
in the resistance of structures. During photocatalytic tests, it was established that the synthesized
nanostructured ceramics Y2O3/TiO2-Y2TiO5 doped CNTs show fairly good photocatalytic activity in
the range of 60–90% decomposition of methyl orange.
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