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Seagrasses are globally distributed marine plants that represent an extremely valuable
component of coastal ecosystems. Like terrestrial plants, seagrass productivity
and health are likely to be strongly governed by the structure and function of
the seagrass microbiome, which will be distributed across a number of discrete
microenvironments within the plant, including the phyllosphere, the endosphere and
the rhizosphere, all different in physical and chemical conditions. Here we examined
patterns in the composition of the microbiome of the seagrass Zostera muelleri,
within six plant-associated microenvironments sampled across four different coastal
locations in New South Wales, Australia. Amplicon sequencing approaches were
used to characterize the diversity and composition of bacterial, microalgal, and fungal
microbiomes and ultimately identify “core microbiome” members that were conserved
across sampling microenvironments. Discrete populations of bacteria, microalgae
and fungi were observed within specific seagrass microenvironments, including the
leaves and roots and rhizomes, with “core” taxa found to persist within these
microenvironments across geographically disparate sampling sites. Bacterial, microalgal
and fungal community profiles were most strongly governed by intrinsic features of the
different seagrass microenvironments, whereby microscale differences in community
composition were greater than the differences observed between sampling regions.
However, our results showed differing strengths of microbial preferences at the plant
scale, since this microenvironmental variability was more pronounced for bacteria than
it was for microalgae and fungi, suggesting more specific interactions between the
bacterial consortia and the seagrass host, and potentially implying a highly specialized
coupling between seagrass and bacterial metabolism and ecology. Due to their
persistence within a given seagrass microenvironment, across geographically discrete
sampling locations, we propose that the identified “core” microbiome members likely
play key roles in seagrass physiology as well as the ecology and biogeochemistry of
seagrass habitats.
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INTRODUCTION

Seagrasses are the only group of flowering plants that have fully
adapted to an underwater lifestyle (Hemminga and Duarte, 2000;
Larkum et al., 2018). These marine plants are an extremely
valuable component of coastal ecosystems (Costanza et al., 1997;
Beck et al., 2001; Orth et al., 2006), where they represent key
habitat forming species (Dayton, 1972) and ecosystem engineers
(Wright and Jones, 2006). Furthermore, seagrass meadows are
a globally significant carbon sink, accounting for about 10%
(equivalent to 27.4 Tg C year−1) of marine organic carbon burial
(Fourqurean et al., 2012). However, the health and survival of
these organisms, which are ecologically important for the value
of coastal ecosystems (Costanza et al., 2014), is likely to be
reliant on, or fundamentally regulated by, their association with
microorganisms (Brakel et al., 2014; Brodersen et al., 2015).

It is widely recognized that plant-microbe associations are
essential for the function and health of terrestrial plants
(Vandenkoornhuyse et al., 2002; Berendsen et al., 2012;
Hirsch and Mauchline, 2012; Schlaeppi and Bulgarelli, 2015;
Vandenkoornhuyse et al., 2015), with many examples of both
mutualistic and antagonistic plant–microbe interactions (Bourke,
1964; Vincent, 1980; Mylona et al., 1995; Baker et al., 1997).
In the marine environment, similar close ecological associations
exist between microbes and a wide range of marine benthic
organisms, including corals (Rohwer et al., 2002; Bourne et al.,
2009), sponges (Taylor et al., 2007; Morrow et al., 2015), and
seaweeds (Egan et al., 2013; Marzinelli et al., 2015). Although
less studied than terrestrial plants and other benthic eukaryotes,
seagrasses also maintain intimate ecological interactions with
microbial consortia living in association with the plant and
within the surrounding seawater and sediments (Walters and
Moriarty, 1993; Brodersen et al., 2018). For instance, microbes
inhabiting seagrass leaves, roots, and rhizomes can mediate
several metabolic exchanges and biogeochemical transformations
that are essential for seagrass resource provision and plant growth
(Hemminga et al., 1991; Hansen et al., 2000; Welsh, 2000;
Cifuentes et al., 2003; Lehnen et al., 2016; Crump et al., 2018).
These include sulfide oxidation (Crump et al., 2018), sulfate
reduction (Hansen et al., 2000; Cifuentes et al., 2003; Lehnen
et al., 2016), nitrogen fixation and nitrification (Hemminga
et al., 1991; Hansen et al., 2000; Welsh, 2000; Lehnen et al.,
2016), urea turnover and ammonium production (Hansen et al.,
2000), sedimentation and nutrient uptake by the leaves (Harlin,
1973; Hemminga et al., 1991), and microbial consumption of
plant-derived organic exudates (Harlin, 1973; Crump et al.,
2018). Collectively, the microorganisms comprising the seagrass
microbiome have been increasingly recognized as pivotal players
in seagrass ecology (Ugarelli et al., 2017; Brodersen et al., 2018).

Spatially and temporally stable associations between a host
organism and specific members of its microbial consortia are
characteristic of a “core microbiome” (Astudillo-Garcia et al.,
2017), comprised of a conserved assemblage of microorganisms
that likely impart critical ecological functions to the host (Shade
and Handelsman, 2012). The concept of the core microbiome
was initially developed to understand the dynamics of bacterial
communities associated with humans (Turnbaugh et al., 2009),

and has since been applied to a range of host organisms and
ecosystems (Hernandez-Agreda et al., 2017). The composition
of a host organism’s core microbiome can be governed by both
the intrinsic physiology of the host and external environmental
factors (Marzinelli et al., 2015). In benthic marine organisms like
sponges, core microbiomes can be both highly species-specific
(Schmitt et al., 2012) and conserved across large biogeographical
scales (Schmitt et al., 2012; Thomas et al., 2016). In many
host organisms, discrete core microbiomes occur in association
with different organs, tissues or other morphological features
of the host (Huttenhower et al., 2012; Keenan et al., 2013).
For example, in corals, discrete core microbiomes are associated
with the coral branches, the surface mucus layer, intracellular
spaces within tissues and the skeletal matrix (Rohwer et al.,
2002; Hernandez-Agreda et al., 2016). Similarly, in terrestrial
plants discrete core microbiomes are associated with different
plant features, including the phyllosphere (i.e., above-ground
aerial surfaces of plants), endosphere (i.e., root interior), and
rhizosphere (i.e., zone around the root that is influenced by the
plant) (Lindow and Brandl, 2003; Knief et al., 2012; Lundberg
et al., 2012; Coleman-Derr et al., 2016).

Microbial assemblages associated with seagrasses inhabit
a number of discrete microenvironments within the plant,
including the phyllosphere, the endosphere and the rhizosphere
(Ugarelli et al., 2017). Levels of photosynthesis, oxygen and
the diffusive exchange of organic substrates vary across the
seagrass phyllosphere, from the upper leaf to the leaf sheath
(Larkum et al., 2007; Hogarth, 2015; Rubio et al., 2017), creating
marked small-scale spatial heterogeneity in microenvironmental
conditions for leaf associated microorganisms. Below the
sediment surface, the roots and rhizomes anchor the plant into
the sediment and mediate nutrient uptake, while also mediating
chemical exchanges with microorganisms through the exudation
of dissolved organic material into the rhizosphere (Hemminga
and Duarte, 2000; Badri and Vivanco, 2009; Hogarth, 2015; Koren
et al., 2015; Kuzhiumparambil et al., 2017). Levels of oxygen and
organic substrates within the rhizosphere are generally highly
dissimilar to the surrounding sediments (Koren et al., 2015),
promoting microscale heterogeneity in microbial abundance,
activity and community composition (Brodersen et al., 2018).
Hence, while often closely located, the different physical and
chemical conditions within discrete seagrass microenvironments
are likely to favor the growth of disparate microbial assemblages
and underpin small-scale partitioning in the composition and
function of seagrass-associated microbial communities.

Seagrass microbiomes have previously been shown to differ
above and below the sediment surface (Crump and Koch, 2008;
Mejia et al., 2016; Ettinger et al., 2017), as well as between
the seagrass and the adjacent seawater and sediment (Jensen
et al., 2007; Gordon-Bradley et al., 2014; Cucio et al., 2016;
Fahimipour et al., 2017; Martin et al., 2018). In addition to
this small-scale heterogeneity, seagrass microbiomes have also
been shown to vary across larger, regional scales, whereby
microbiological properties are driven by local environmental
conditions (Uku et al., 2007; Jiang et al., 2015; Bengtsson
et al., 2017; Ettinger et al., 2017; Fahimipour et al., 2017;
Crump et al., 2018). For instance, the microbial assemblages
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FIGURE 1 | Study sites and sampling strategy. Samples were collected
between October and November 2015 across a region spanning 86 km of
coastline in NSW, Australia (A). Study sites included coastal (blue) and
estuarine (orange) habitats, which were selected in accordance to habitat
feature data (e.g., proximity to contamination sources and human activities)
that was subsequently coupled with environmental parameters (e.g., water
temperature and salinity) and genetic markers of anthropogenic pollution (i.e.,
intI1) to rank sites according to their specific conditions and level of impact.
For details of the study sites selection criteria and categorization, see
Supplementary Figure 1 and Supplementary Table 1. At each site,
samples from six different microenvironments within the plant (black fonts) and
its surroundings (white fonts) were collected, based on the variety of
conditions offered by these different niches (B). UpL, upper leaf; LoL, lower
leaf; Sh, sheath; RR, roots and rhizomes; Sed, sediment; SW, seawater; PB,
Palm Beach; RB, Rose Bay; N, Narrabeen Lagoon; LM, Lake Macquarie.

associated with Zostera marina, Zostera noltii, and Cymodocea
nodosa have been shown to vary over continental scales (Cucio
et al., 2016; Fahimipour et al., 2017). Observations to date
indicate that the seagrass microbiome is a product of both
localized intrinsic features of specific plant microenvironments
and larger scale environmental drivers. However, a unified
understanding of the factors determining the structure of the

seagrass microbiome and the spatial and temporal scales over
which these communities are governed by specific features of the
seagrass environment is lacking.

Here, we aim to elucidate the significance of
microenvironmental and regional forces in shaping the
microbiome of the seagrass species Zostera muelleri (Z. muelleri).
We compared bacterial, microalgal, and fungal communities
associated with six different plant microenvironments, including
the upper and lower leaf, the sheath, the roots and rhizomes,
surficial sediment, and adjacent seawater across four spatially
discrete habitats, with the goal of understanding the nature and
dynamics of the Z. muelleri microbiome.

MATERIALS AND METHODS

Field Survey
Samples associated with the seagrass species Z. muelleri were
collected from two coastal and two estuarine habitats, across a
region spanning 86 km of coastline in New South Wales (NSW),
Australia (Figure 1A). These included, Palm Beach (33◦35′15.8′′S
151◦19′25.0′′E), Rose Bay (33◦52′20.1′′S 151◦15′43.7′′E), Lake
Macquarie (33◦09′29.4′′S 151◦31′54.9′′E) and Narrabeen Lagoon
(33◦43′11.0′′S 151◦17′40.4′′E). Our four sampling locations were
chosen as distinct, yet representative habitats colonized by
seagrass meadows in NSW (Green and Short, 2003), a region
characterized by significant seagrass cover in both coastal and
estuarine environments. Narrabeen Lagoon is a semi-enclosed
lagoon and Lake Macquarie is an estuary, and both differed
from our two open coastal habitats (i.e., Palm Beach and Rose
Bay) with respect to depth distribution, salinity, and seawater
nutrient concentrations. Other differences among all sites
include different extent of water inflows from the open-ocean,
terrestrial runoff, and levels of anthropogenic impact due to
human activities.

Sample collection took place between October and November
2015, with all sites surveyed during low-tide conditions (<2 m
depth). Water physicochemical properties (i.e., temperature and
conductivity as indicative of salinity) were measured in situ using
a multi-probe meter (WTW Multi 3430, Germany). At each site,
samples were collected from six microenvironments associated
with different features of the plant (Figure 1B). These included:
(i) the upper and (ii) lower parts of the leaf, (iii) the sheath, (iv)
roots and rhizomes, (v) surrounding sediment, and (vi) seawater.
We considered these six microenvironments best represented
seagrass morphology and anatomy, despite the wide phenotypic
plasticity found between populations and species.

Sampling Protocols
A highly standardized sampling protocol was used to collect
samples from the seagrass (i.e., leaves and roots and rhizomes)
and the surrounding microenvironments (i.e., surficial sediment
and adjacent seawater). Individual specimens of Z. muelleri (i.e.,
total biomass) were collected with sterile-gloved hands from
at least two physically separated meadows (i.e., well-defined
area of a dense group of plants) per site, to account for
potential differences between meadows. Sampled plants were
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homogeneously distributed across the meadows chosen and
collected with a minimum distance of 20 cm between plants.
Each shoot was pulled out from the substrate, ensuring all
plant sections were intact and then placed onto a clean tray to
separate surficial sediment (i.e., sediment adjacent to the roots
and rhizomes). For each plant, 1 g of sediment was taken adjacent
to the roots and rhizomes from 1 to 3 cm under the surface
using a syringe, subsequently homogenized in a clean tray to
ensure the detachment of plant material and other contaminants,
and immediately placed into 1.8 mL Nunc R© CryoTubes. Once
sediment was collected, each plant was rinsed with seawater
collected on site, and placed into a Ziploc R© plastic bag filled to
2/3 of its total volume with the same water. In addition, 10 L of
seawater was collected from the surface waters of the sampling
site using Nalgene bottles; all replicate seawater samples were
obtained from within ∼30 cm of the seagrass. After collection,
seagrass (n = 5), sediment (n = 5), and seawater samples (n = 3)
were transported to the laboratory on ice and immediately
processed upon arrival.

In the laboratory, each plant was gently rinsed free of adhering
sediment with Milli-Q water (Millipore Corporation, Billerica,
MS, United States) to avoid excess accumulated debris on the
periphyton layer (i.e., mixture of microbes and detritus attached
to submerged surfaces). Plant material was successively divided
into four microenvironments (upper leaf, lower leaf, sheath, and
roots and rhizomes) with sterile scissors and scalpels. For each
tissue type, 5 biological replicates were collected, comprising a
surface area of 2.5 cm2 for leaves, 0.5 cm2 for sheaths, and a
volume of 2 mL for entire branched roots and rhizomes, in order
to keep enough distance between leaf fractions and to collect the
required 0.25 g of sample for DNA extractions. Once processed
and placed into 2 mL Nunc R© CryoTubes, seagrass and sediment
samples were immediately snap frozen in liquid nitrogen and
stored at−80◦C prior to analysis. Water samples were kept on ice
until triplicate 2 L samples were immediately filtered onto 0.2 µm
polycarbonate membrane filters (Millipore) using a peristaltic
pump upon return to the laboratory. Filters were snap frozen and
stored at−80◦C.

DNA Extraction
For the leaf, sheath, roots and rhizomes, and sediment samples,
genomic DNA was extracted from 0.25 g of plant tissue
or sediment, using a bead beating and chemical lysis-based
DNA extraction kit (PowerSoil R© DNA Isolation Kit, MoBio
Laboratories, Carlsbad, CA, United States). Microbial DNA
from water samples was extracted from filters using the
PowerWater R© DNA isolation Kit (MoBio Laboratories, Carlsbad,
CA, United States). Both kits were used in accordance with
the manufacturer’s standard protocol. DNA quantity and purity
were evaluated using a Nanodrop-1000 spectrophotometer
(Thermo Fisher Scientific, NanoDrop Products, Wilmington,
DE, United States).

Bacterial Community Characterization
To examine bacterial community composition within all
samples, the 16S rRNA gene was amplified with the universal
forward primer 27F (5′-AGAGTTTGATCMTGGCTCAG-3′)

and the universal reverse primer 519R (5′-
CGGTTACCTTGTTACGACTT-3′) (Weisburg et al., 1991).
PCR reactions were performed in 25 µL volumes containing
12.5 µL GoTaq Green Master Mix, 0.4 µL of each primer
(10 µM), and 2 µL of template DNA. PCR cycling conditions
involved an initial activation step at 95◦C for 120 s, followed by
30 cycles of: denaturation at 95◦C for 30 s, annealing at 50◦C for
30 s and extension at 72◦C for 90 s, followed by a holding stage
at 72◦C for 10 min. The resultant amplicons were visualized
on 1% agarose gel with GelRed (1:10000). Genomic DNA
was used to prepare DNA libraries with the Illumina TruSeq
DNA library preparation protocol. Sequencing was performed
on the Illumina MiSeq platform (at Molecular Research LP,
Shallowater, TX, United States) following the manufacturer’s
guidelines. Subsequently generated raw data files were deposited
in the Sequence Read Archive (SRA) under BioProject
number PRJNA342246 (Hurtado-McCormick, 2018a).

Fungal Community Characterization
In order to characterize fungal community composition,
we used Illumina Miseq profiling of internal transcriber
spacer (ITS) markers. Specifically, the ITS2 region was
amplified by targeting a site in the 5.8S encoding gene with
the fITS7 (5′-GTGARTCATCGAATCTTTG-3′)/ITS4 (5′-
TCCTCCGCTTATTGATATGC-3′) primer set (Ihrmark et al.,
2012). PCR reactions were performed as follows: initial activation
step of 94◦C for 5 min, followed by 35 cycles of: denaturation
at 94◦C for 30 s, annealing at 50◦C for 30 s, and extension at
72◦C for 30 s, followed by a holding stage at 72◦C for 7 min.
Sequencing was performed on the Illumina MiSeq platform (at
the Next Generation Genome Sequencing Facility of Western
Sydney University). Raw data files in FASTQ format were
deposited in the Sequence Read Archive (SRA) under BioProject
number PRJNA493529 (Hurtado-McCormick, 2018b).

Sequence Data Analysis
Bacterial 16S rRNA gene sequences were analyzed using
a customized pipeline (Kahlke, 2018). Briefly, paired-end
DNA sequences were de-multiplexed using MOTHUR, v1.39.0
(Schloss et al., 2009), then joined using FLASH, v1.2.11 (Magoc
and Salzberg, 2011), quality-filtered using MOTHUR, and finally
de-replicated using VSEARCH, v2.3.2 (Rognes et al., 2016).
Quality filtering involved both, trimming of ambiguous bases
in each of the sequences, as well as removal of short fragments
with low quality scores from the data set. Operational Taxonomic
Units (OTUs) were defined at 97% sequence identity and
subsequently clustered using VSEARCH. The same tool was
also used to detect and remove chimera sequences based on
curated sequences from the Greengenes database, released on
13/08/2013 (DeSantis et al., 2006), and to build the OTU table.
Taxonomy assignments were performed using BLAST, vBLAST+
(Altschul et al., 1990), in QIIME, v1.9.1 (Caporaso et al., 2010)
to generate a representative set of OTUs that was aligned against
the Greengenes database. Sequences were rarefied to the same
depth (2380 sequences per sample) to remove the effect of
sampling effort upon analysis (Supplementary Table 9). Given
the nature of this study’s experimental design and the importance
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of replication in complex data-sets, the rarefaction cut-off was
chosen to include at least triplicates per sample type.

Microalgal communities were identified from a secondary
taxonomic assignment performed on sequences classified as
“chloroplast” by the Greengenes classification obtained from
the 16S rRNA analysis of bacterial communities (Needham and
Fuhrman, 2016). A separate OTU table was generated by BLASTn
search of the PhytoREF database, downloaded July 01, 2015
(Decelle et al., 2015), which was used to provide a phylogenetic
characterization of chloroplast sequences. This OTU table was
subsequently screened to exclude sequences classified as plants or
macroalgae, and finally relative abundances of microalgae were
re-calculated for each OTU from previously rarefied data.

Initial sequence processing for fungal ITS genes was
conducted using QIIME, v1.9.1 (Caporaso et al., 2010). Briefly,
low-quality regions were trimmed from the 5′ end of sequences,
and paired ends were joined with fastq-join (Aronesty, 2011,
2013) and de-multiplexed. Sequences containing ambiguous
bases were removed from the dataset along with low-quality reads
and chimeric sequences. Referenced-based chimera detection
(Nilsson et al., 2015) was performed using the UCHIME
algorithm from the USEARCH package (Edgar, 2010; Edgar
et al., 2011) implemented within VSEARCH, v2.3.2 (Rognes et al.,
2016). OTUs were defined as clusters of 97% sequence similarity
using UCLUST (Edgar, 2010). The resultant OTU table was
filtered to remove singletons and seagrass-affiliated sequences.
OTU sequences were screened for non-fungal sequences using
BLAST (Altschul et al., 1990), against the nucleotide database
from the National Center for Biotechnology Information (NCBI).
Non-fungal sequences were identified using BASTA (Kahlke and
Ralph, 2019) and the following parameters: -l 250 (sequence
length), -m 0 (mismatches), and -i 97 (identity). These sequences
were subsequently removed from the dataset. Final taxonomies
were assigned to the filtered OTU set (i.e., sequences of unknown
origin) using the UNITE database v6.9.7 (Koljalg et al., 2013),
BLAST, and vBLASTC (Altschul et al., 1990). Finally, the
resultant filtered OTU table was rarefied to an even number of
sequences per samples to ensure equal sampling depth (i.e., lower
number of sequences per sample = 1456). Given the nature of this
study’s experimental design and the importance of replication in
complex datasets, the rarefaction cut-off was chosen to include
at least triplicates per sample type (Supplementary Table 9).
Due to the low number of fungal sequencing reads from the leaf
that remained after removal of putative seagrass sequences, only
the mycobiomes associated with seagrass roots and rhizomes,
sediments and seawater were used for further post-sequencing
analyses, while the seagrass leaf samples were omitted from cross-
sample comparisons. A separate re-analysis of these samples
with unrarefied data supported all of the scientific conclusions
of our original manuscript, except for the predominance of
the Rhytismataceae family in the upper leaf mycobiome, which
instead represented rare taxa (relative abundance < 1% in all
samples) within seagrass-associated fungal communities.

Post-sequencing Analyses
Alpha diversity was estimated by calculating the Chao1
and Shannon’s diversity indices in QIIME, v1.9.1

(Caporaso et al., 2010). The exponential function was applied
to the Shannon’s diversity index to calculate the true Shannon’s
diversity (i.e., effective number of species) in accordance to
the approaches used by Lundberg et al. (2012) to estimate
alpha diversity of bacterial communities associated with
the rhizosphere (including surrounding sediments) and the
endophytic compartment of the model, terrestrial plant
Arabidopsis thaliana (A. thaliana). Permutational Multivariate
Analysis of Variance (PERMANOVA) was used to test the
statistical significance of the differences between and within
microenvironments and sites, separately, in a nested design.
These statistical analyses were performed in PRIMER-E, v7
(Clarke, 1993; Clarke et al., 2014; Clarke and Gorley, 2015).

Differences in community composition (i.e., beta diversity)
were characterized using non-parametric multi-dimensional
scaling (nMDS). PERMANOVA was used to test for
statistical significance of the differences between and
within microenvironments and sites. In order to further
characterize the significant differences observed between sites
within each microenvironment, we performed hierarchical
CLUSTER analyses (Timm, 2002). Each of these analyses were
performed in PRIMER-E, v7 (Clarke, 1993; Clarke et al., 2014;
Clarke and Gorley, 2015).

To identify “discriminatory OTUs” between
microenvironments, we coupled pair-wise analyses of Similarity
Percentages (SIMPER) (Clarke, 1993) performed in PRIMER-E,
v7 (Clarke, 1993; Clarke et al., 2014; Clarke and Gorley, 2015),
with extensive hypothesis testing of taxonomic profiles using
Kruskal–Wallis-H and Tukey–Kramer statistical tests performed
in Statistical Analysis of Metagenomic Profiles (STAMP, v2.1.3)
(Parks et al., 2014). Significantly over-represented OTUs
with the highest contributions to the differences between
microenvironments were defined as “discriminatory OTUs,” with
exceptions including non-significantly over-represented OTUs
with consistent high contributions.

A custom script was used for the selection of core
microbiomes (Kahlke, 2017). Core microbiomes were defined
for each microenvironment and for the entire leaf (i.e., pooling
the three phyllosphere microenvironments) in accordance with
the approaches used by Lundberg et al. (2012) to define
the core microbiome of the endophitic compartment within
the bacterial communities in the rhizosphere of A. thaliana.
In order to account for possible outliers in the data, any
OTU present (relative abundance > 0%) in two out of three
biological replicates within a given site (occurrence ≥ 67%),
across all four sites, was classified as a core OTU. Abundant
(greater than 1%) pelagic microbes were removed from the
phyllosphere core microbiomes to eliminate the influence of
possible sampling artifacts.

Study Site Characterization Using IntI1
To characterize the putative level of anthropogenic influence
experienced by seagrasses in each of the four study environments,
quantitative PCR (qPCR) was used to quantify the relative
abundance of the clinical class 1 integron-integrase gene (intI1),
which has previously been demonstrated to be a good proxy for
anthropogenic pollution (Gillings et al., 2015). Serial dilutions

Frontiers in Microbiology | www.frontiersin.org 5 May 2019 | Volume 10 | Article 1011

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01011 March 5, 2021 Time: 19:43 # 6

Hurtado-McCormick et al. The Z. muelleri Seagrass Microbiome

of a plasmid harboring the intI1 gene amplified from an
environmental sample (seawater collected at Botany Bay, NSW,
Australia) were used as a template to generate a standard curve.
All samples and the standard curve were run in the same
plate, which was prepared by an epMotion R© 5075l Automated
Liquid Handling System and conducted on a BIO-RAD
CFX384 TouchTM Real-Time PCR Detection SystemTM (Bio-Rad
Laboratories, Inc., Hercules, CA, United States). We used the
BIO-RAD CFX Manager software to estimate intI1 gene copies
for triplicate reactions per sample (n = 12). Each 5 µL reaction
consisted of 2.5 µL of iTaq UniverSYBR Green SMX 2500 R©

(Bio-Rad Laboratories, Inc., Hercules, CA, United States), 0.1 µL
of nuclease free water, 0.2 µM of the forward primer int1.F
(5′-GGGTCAAGGATCTGGATTTCG-3′), 0.2 µM of the reverse
primer int1.R (5′-ACATGCGTGTAAATCATCGTCG-3′) (Mazel
et al., 2000) and 2 µL of diluted (1:5) DNA template. The
qPCR was subsequently run under the following thermal cycling
conditions: initial denaturation for 3 min at 95◦C, followed by
39 cycles of denaturation for 15 s at 95◦C and annealing and
extension for 1 min at 60◦C. Coupling the results of this analysis
with the measured environmental parameters and habitat feature
data, allowed us to categorize our sampling locations into four
levels of anthropogenic impact.

RESULTS AND DISCUSSION

Characterization of Sampling Sites
We coupled measurements of physicochemical parameters
(Supplementary Table 1) and quantification of a genetic marker
for anthropogenic pollution (intI1, Supplementary Figure 1)
(Gillings et al., 2015) to categorize our four study sites based
on an anthropogenic impact ranking (Supplementary Table 1),
highlighting the disparate conditions of the sampled seagrass
habitats. Based on our categorization, Narrabeen Lagoon was
the most impacted site (i.e., highest level of influence from
human activities), followed by Rose Bay and Lake Macquarie,
whereas Palm Beach was the most pristine site. However, given
the highly dynamic nature of coastal/estuarine environments,
where conditions can change markedly on short time periods,
our sampling events represent discrete snap-shots in time that
lack historical information about the prior conditions of the
environment, and therefore we suggest caution regarding the use
of this information to infer the drivers of microbiome structure.

The Seagrass Bacterial Microbiome
We investigated bacterial community composition and diversity
in six discrete seagrass microenvironments associated with
Z. muelleri across the four different sampling locations
(Figure 1), in order to: (i) characterize the seagrass microbiome,
(ii) determine the variability and/or level of conservation
of the seagrass microbiome across different spatial scales
(i.e., plant microenvironments and the region), and (iii)
identify persistent, or “core” microorganisms within the seagrass
microbiome. Using 16S rRNA gene sequencing, we contrasted
patterns in alpha- and beta- diversity of bacterial assemblages
among seagrass microenvironments and sites differing in

physicochemical properties of the seawater (i.e., temperature
and salinity), exposure to the open ocean (coastal vs. estuarine
habitats) and anthropogenic impact (Supplementary Figure 1
and Supplementary Table 1).

Alpha diversity, as measured by Chao1 and Shannon’s
diversity index, varied significantly both between sampling
locations (pChao1 = 0.0017, pShannon ′ s = 0.0001) and seagrass
microenvironments (p = 0.0001). However, post hoc analyses for
both diversity indices (Supplementary Table 2) indicated that
the between site differences were solely driven by differences
between Rose Bay and all other sites (p < 0.05), with the exception
of Lake Macquarie (pChao1 = 0.1495). Alpha diversity levels
within the three microenvironments within the phyllosphere
(i.e., upper leaf, lower leaf, and the sheath) did not differ
statistically from one another or between sites (p > 0.05),
with the exception of the upper leaf and the sheath at
Narrabeen Lagoon (pChao1 = 0.0465). The bacterial assemblages
inhabiting the roots and rhizomes and the sediments were
the most diverse microenvironments (Figure 2), which might
be a consequence of higher levels of microscale heterogeneity
and persistence of biogeochemical gradients within this zone

FIGURE 2 | Microbial mean alpha diversity across seagrass
microenvironments. Multiple comparisons between Chao1 diversity (A) and
Shannon’s diversity index (B), calculated for each taxa and microenvironment
separately, were tested for statistical significance with Permutational
Multivariate Analysis of Variance (PERMANOVA, Minkowski metric distance
matrix and nested design). Mean values for each microenvironment are
shown, and error bars reflect the standard error of the mean.
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FIGURE 3 | Bacterial community composition across seagrass microenvironments. Beta diversity of bacterial microbiomes across the six microenvironments within
the plant and its surroundings. Triplicate samples per microenvironment within each of the four sampling sites (n = 72) are colored by the highest assigned taxonomic
level. Unique OTUs were summarized at the species level, and the representation of taxonomic groups within each sample are plotted. Only representative species
with a relative abundance >1% in all samples are shown to help remove visual clutter. UpL, upper leaf; LoL, lower leaf; Sh, sheath; RR, roots and rhizomes; Sed,
sediment; SW, seawater; PB, Palm Beach; RB, Rose Bay; N, Narrabeen Lagoon; LM, Lake Macquarie.

(Stapel and Hemminga, 1997; Evrard et al., 2005; Jensen et al.,
2007; Brodersen et al., 2018; Fraser et al., 2018).

Significant variability (p = 0.0001) in bacterial assemblage
structure occurred between seagrass microenvironments
(Figure 3), which was apparent in both multi-dimensional
scaling plots (nMDS, Figure 4) and dendograms
(Supplementary Figure 2), whereby clear clustering of
bacterial community composition between specific seagrass
microenvironments was evident within each sampling site,
except for the three microenvironments within the leaf. Similar
to the patterns in alpha diversity, significant differences in
bacterial assemblage structure were also observed between
study sites (p = 0.0001), supporting the influence of local
environmental forces on the seagrass microbiome. However,
the differences in bacterial assemblage structure between
microenvironments were greater than those between the
sampling regions. Despite the spatial separation of just a
few centimeters across an individual plant, the microbial
communities from the different microenvironments showed
the greatest variability, with only 42% shared bacterial taxa,
whereas at the regional scale, where plants were separated
by up to 52 km (i.e., largest distance between sites) and
subject to differing local environmental conditions, sampling
locations shared a higher proportion of 58% of bacterial taxa
(ECV, Supplementary Table 3).

To further explore the key drivers of the variability within
bacterial structures across different seagrass microenvironments
and geographical locations, we coupled similarity percentages
community analysis (SIMPER) (Clarke, 1993; Clarke et al., 2014;
Clarke and Gorley, 2015) with extensive hypothesis testing of
taxonomic profiles using Kruskal-Wallis-H and Tukey-Kramer
statistical tests (Parks et al., 2014). Using this combined approach,
we found 8 discriminatory OTUs that were (i) significantly
over-represented in a given microenvironment (p < 0.03), and/or
(ii) among the top five contributors to the observed dissimilarities
between microenvironments as determined by SIMPER. These
OTUs spanned three bacterial phyla, including four classes of the
Proteobacteria (Figure 5).

The clear clustering of seawater samples on nMDS (Figure 4)
was principally driven by the dominant bacteria within these
samples, corresponding to the families Pelagibacteraceae (12
unique OTUs), Rhodobacteraceae (139 unique OTUs), and
Cryomorphaceae (20 unique OTUs), which made up 26,
17, and 11% of these communities, respectively (Figure 3).
These families, along with a member of the Halomonadaceae
(Candidatus Portiera sp., 7 unique OTUs), discriminated
seawater samples from the other microenvironments (Figure 5).
This is consistent with Pelagibacter, and other members of
the SAR11 clade, being the dominant bacteria in seawater
communities (Morris et al., 2002; Bowman et al., 2012;
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FIGURE 4 | Microenvironmental and regional partitioning of the seagrass bacterial microbiome. Non-parametric multidimensional scaling (nMDS) of bacterial
microbiomes (n = 72), based on a lower triangular resemblance calculated with the S17 Bray-Curtis similarity measure from relative abundances of OTUs (high
values down-weighted with square root). Samples are colored by microenvironment (Leaf: upper and lower sections, RR, roots and rhizomes; Sed, sediment; SW,
seawater), with different shapes for sites (PB, Palm Beach; RB, Rose Bay; N, Narrabeen Lagoon; LM, Lake Macquarie). Sample clustering patterns by
microenvironment are shown in ellipses in the nMDS plot, representing the level of similarity between samples based on the degree to which OTUs are shared
between them. The 2D stress is shown in the upper right corner of the nMDS plot (Kruskal stress formula = 1, minimum stress = 0.01). The nMDS for the three
microenvironments within the phyllosphere is provided in Supplementary Figure 3 and a hierarchical cluster analysis (CLUSTER) for all samples is provided in
Supplementary Figure 2.

Brown et al., 2012; Giovannoni, 2017), and members of
the Rhodobacteraceae, Halomonadaceae, and Cryomorphaceae
often dominating pelagic microbial assemblages in coastal and
estuarine habitats (Pinhassi et al., 2004; Prabagaran et al., 2006;
Buchan et al., 2014; Jeffries et al., 2016).

The bacterial assemblages inhabiting the seagrass sediments
also represented a clearly distinguished cluster from the other
microenvironments on the nMDS, with conservation of the
bacterial assemblage structure within this microenvironment
across all four sampling sites (Figure 4 and Supplementary
Figure 2). Within this microenvironment, OTUs matching the
Flavobacteriaceae (116 unique OTUs), the order Chromatiales
(39 unique OTUs), and the Desulfobacteraceae (Desulfococcus
sp., 26 unique OTUs) dominated these communities, accounting
for 13, 13, and 8% of the sequences, respectively (Figure 3).
The relative over-representation of these organisms within
the sediment was also most responsible for the differences
in bacterial assemblage structure relative to the other five
microenvironments (Figure 5). Members of these three taxa have
previously been shown to dominate the sediments associated
with seagrasses (Sun et al., 2015; Cucio et al., 2016, 2018; Ettinger
et al., 2017) and salt marsh plants (Thomas et al., 2014), where
Chromatiales and Desulfobacteraceae play important roles in

nutrient cycling, given their sulfur-oxidizing and sulfate-reducing
capabilities, respectively (Kleindienst et al., 2014; Varon-Lopez
et al., 2014). Members of the Flavobacteriaceae are also often
abundant in coastal marine sediments when sufficient oxygen
is available (Raulf et al., 2015; Sun et al., 2015), where they
can play a prominent role in the degradation of complex
polymeric substrates (i.e., organic matter decomposition)
(Bowman et al., 2012).

Like the communities associated with the surrounding
microenvironments, bacterial assemblages within the roots and
rhizome samples collected across the four sites generated a
discrete cluster, discriminated from the other microenvironments
on nMDS (Figure 4). The bacterial community in the roots
and rhizomes was significantly different from the microbiomes
associated with the surrounding sediments and seawater across
all four sampling locations (p < 0.05, Supplementary Table 3).
There were also statistically significant differences between these
samples and each of the three phyllosphere microenvironments
at all sites (p < 0.05 for 10 comparisons), with only two
exceptions at Palm Beach (psh = 0.0776) and Narrabeen Lagoon
(plol = 0.0510) (Supplementary Table 3). Relative to the other five
microenvironments, the roots and rhizomes were characterized
by a higher proportion of unclassified members of the orders
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FIGURE 5 | Bacterial discriminatory OTUs at the microenvironmental scale. Extensive hypothesis testing of taxonomic profiles was coupled with similarity
percentages analyses (SIMPER) for bacterial microbiomes across the six microenvironments. The proportion of sequences (mean frequency %) of OTUs significantly
over-represented (Kruskal–Wallis H-test, α = 0.05, effect sizes: η2) and consistently contributing to the differences between microenvironments is indicated by
varying color intensities. Corrected p-values were calculated using the Benjamini–Hochberg’s approach. Two-way crossed SIMPER analyses were performed with
site and microenvironment variables as factors (S17 Bray–Curtis similarity matrix). High contributors were selected from the top-5 contributors of each pair-wise
comparison between microenvironments, and those OTUs consistently accounting for the dissimilarities between any given microenvironment and at least three
other microenvironments were chosen as high contributors to couple with the statistical results. High contributors that were significantly over-represented were
classified as discriminatory OTUs (i.e., 1–8). OTUs are sorted by decreasing mean abundance, and samples are clustered by average neighbor distance (UPGMA,
distance threshold = 0.75) and colored by microenvironment. Different symbols represent the distribution of enriched phyla. UpL, upper leaf; LoL, lower leaf; Sh,
sheath; RR, roots and rhizomes; Sed, sediment; SW, seawater.

Chromatiales (39 unique OTUs) and Bacteroidales (63 unique
OTUs) and the Spirochaetaceae (Spirochaeta sp., 41 unique
OTUs) (Figure 3). The same OTUs from the Chromatiales that
dominated sediment communities were also over-represented
in the roots and rhizomes relative to the phyllosphere and
surrounding seawater, and along with the spirochaetes, these
bacteria drove the differences between this community and the
other five microenvironments (Figure 5). Although not often
found directly in association with the roots and rhizomes,
members of the Spirochaetaceae are often found within seagrass
sediments (Cifuentes et al., 2000; Doty, 2015; Trevathan-Tackett
et al., 2017), while members of the Bacteroidales have elsewhere
been shown to dominate communities attached to roots of
aquatic angiosperms (Crump and Koch, 2008).

In contrast to the clear discrimination of bacterial assemblages
in the other microenvironments, the three microenvironments
within the phyllosphere (i.e., upper leaf, lower leaf, and sheath)
overlapped with one another on the nMDS plot (Supplementary
Figure 3), but were clearly discriminated from the bacterial
assemblages from the roots and rhizomes and the surrounding

seawater and sediments (Figure 4). Furthermore, there were no
statistical differences in bacterial community structure between
these three compartments of the phyllosphere at Palm Beach
and Rose Bay (p > 0.05), whereas only the upper leaf and the
sheath differed from each other at Narrabeen Lagoon (p = 0.0411)
and Lake Macquarie (p = 0.0282) (Supplementary Table 3). It
should be noted, however, that the lack of statistical differences
between the three microenvironments within the phyllosphere
could have resulted from either a more homogenous distribution
of bacteria across the entire phyllosphere or from the high
level of heterogeneity observed across replicates within each site
(Figure 3). Therefore, while no statistically significant differences
were observed between the three different compartments of the
phyllosphere, there remains the possibility that a higher degree
of replication may have resolved significant differences, given
the spatially variable photosynthetic rates and nutrient contents
throughout the leaf (Duarte, 1990; Hemminga et al., 1991; Stapel
and Hemminga, 1997; Borum et al., 2006; Larkum et al., 2007;
Koren et al., 2015), and the dissimilar oxic conditions between
the sheath and the upper leaf (Tyerman et al., 1984).
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Across all sampling locations, a single family, the
Burkholderiaceae (2 unique OTUs), dominated all three
microenvironments within the phyllosphere, representing an
average of 30% of these communities (Figure 3). Some OTUs,
however, were exclusively dominant in a single phyllosphere
microenvironment. These included OTUs matching the
Rhodobacteraceae in the upper leaf (including Loktanella sp.,
139 unique OTUs, average relative abundance = 13%), the
Comamonadaceae in the lower leaf (9 unique OTUs, relative
abundance = 6%), and the Paenibacillaceae in the sheath
(Paenibacillus sp., 1 unique OTU, relative abundance = 6%).
The assemblage structure of phyllosphere-associated bacteria
differed from the other microenvironments primarily due to an
over-representation of the Burkholderiaceae (2 unique OTUs)
in both the lower leaf and the sheath, the Rhodobacteraceae
(Loktanella sp., 14 unique OTUs) in the upper leaf, and the
Pseudomonadaceae (Pseudomonas sp., 4 unique OTUs) in
the lower leaf. Together, these bacteria drove the differences
between the phyllosphere to the rhizosphere and the adjacent
seawater (Figure 5).

Overall, these results show that while the nature of the seagrass
microbiome is influenced to some extent by local environmental
conditions that can vary with biogeography, intrinsic differences
between the discrete microenvironments associated with the
host have a larger effect on shaping the seagrass microbiome
structure (Figures 3, 4 and Supplementary Figure 2). Some
regional differences in the overall bacterial assemblage structure

between sampling locations (Supplementary Table 3) were
potentially governed by environmental characteristics at each
site, such as physicochemical conditions, exposure to the open
ocean and anthropogenic impact (Supplementary Figure 1 and
Supplementary Table 1). However, the observed conservation of
some bacterial OTUs within specific microenvironments across
all sites, is highly suggestive of the existence of universally
important members of the microbiome across all environments
(Shade and Handelsman, 2012; Astudillo-Garcia et al., 2017).
To explore this pattern more directly, we next determined
the existence of core microbiome members within the specific
seagrass microenvironments.

The Bacterial Core Microbiomes
No single OTU was observed across all seagrass
microenvironments, which both indicates that there is not
an overall “core seagrass bacterial microbiome” and confirms
that the seagrass microenvironments examined here represent
markedly different microbial niches. However, core microbiome
members were found in each of the microenvironments,
whereby there was evidence of maintenance of specific
core members across the four discrete sampling regions.
The size of core microbiomes varied substantially between
microenvironments, ranging from one core OTU within the
sheath microenvironment, up to 102 core OTUs within the
surrounding sediments (Figure 6A). The core microbiome
members of the six seagrass microenvironments cumulatively

FIGURE 6 | The seagrass core microbiomes. Bacterial (A) and microalgal (B) core OTUs associated with the seagrass and surrounding microenvironments were
identified based on their predominance (i.e., occurrence ≥ 67%, relative abundance > 0%) across the four sampling sites. Cores are listed under columns for each
microenvironment, and their sizes are shown in brackets. Core OTUs were identified at the family (bacteria) and order (microalgae) levels and are colored by their
relative abundance within each microenvironment. Abundant pelagic microbes were removed from the phyllosphere core microbiomes, and only the 20 most
abundant bacterial core OTUs within each microenvironment are plotted to help remove visual clutter. The full version of the table is provided in Supplementary
Table 4. UpL, upper leaf; LoL, lower leaf; Sh, sheath; RR, roots and rhizomes; Sed, sediment; SW, seawater; RA, relative abundance.
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spanned more than 39 bacterial families, across 14 phyla
(Supplementary Table 4).

The upper leaf microenvironment was characterized by a
core community including two OTUs from the Alpha- and
Gamma- Proteobacteria, which together made up 75% of the core
within this microenvironment. This is consistent with previous
observations, whereby members of these groups represented
≥50% of bacterial communities associated with the seagrass
phyllosphere (Weidner et al., 2000; Jiang et al., 2015), and both
classes are widely recognized as abundant bacteria within the
Zostera microbiomes (Cucio et al., 2016; Bengtsson et al., 2017;
Ettinger et al., 2017; Fahimipour et al., 2017; Crump et al., 2018).
More specifically, these two core OTUs were classified as the
Pseudomonadaceae and Rhodobacteraceae families and made
up 46 and 29% of the upper leaf core, respectively (Figure 6A
and Supplementary Table 4). Notably, the Pseudomonadaceae
include pathogens and leaf epiphytes of terrestrial angiosperms
(Hirano and Upper, 2000) and have also been shown to dominate
the microbiomes of seagrass leaves from geographically linked
coastal locations (Jiang et al., 2015). The Rhodobacteraceae
are common pelagic and surface-associated marine bacteria
that incorporate a broad suite of metabolisms, including
chemoorganotrophy and photoheterotrophy (Dixon and Kahn,
2004; Haselkorn and Kapatral, 2005), with some members known
to produce antibacterial compounds that may influence leaf
surface colonization by other microbes, including pathogens
(Dang et al., 2008). Members of this family are commonly
observed on the leaves of seaweeds (Fernandes et al., 2012) and
seagrasses (Crump and Koch, 2008; Mejia et al., 2016; Ettinger
et al., 2017), and particularly in Z. marina (Crump and Koch,
2008; Ettinger et al., 2017). Their relative abundance previously
demonstrated to be linked to specific features of the host (i.e.,
different compartments and health status) or environmental
conditions (i.e., water turbidity, nutrients, and geomorphological
features). Members of this group have also been implicated in
macrophyte pathogenesis due to their increased abundance in
aged and bleached macroalgal phenotypes (Fernandes et al., 2012;
Zozaya-Valdes et al., 2015; Mancuso et al., 2016).

The core bacterial assemblage inhabiting the lower leaf
exhibited similarities to that of the upper leaf and sheath
microenvironments, with an OTU from the Pseudomonadaceae
overlapping with the upper leaf core and another OTU from the
Propionibacteriaceae coinciding with the only core member of
the sheath microbiome (Figure 6A and Supplementary Table 4).
The classical propionibacteria have been traditionally isolated
from dairy products, but there are also strains isolated from
soils and terrestrial plants (Stackebrandt et al., 2006), and even
from different areas of the human body (McGinley et al., 1978).
These microorganisms are known as a ubiquitous family within
coral- (Kuang et al., 2015) and cone snail-associated microbiomes
(Valliappan et al., 2014). While not previously reported in
seagrasses, other bacteria within the higher taxonomic rank, the
Actinobacteria, have been repeatedly observed dominating the
communities associated with the seagrass leaf and the rhizosphere
(Cucio et al., 2016; Mejia et al., 2016; Bengtsson et al., 2017;
Fahimipour et al., 2017; Crump et al., 2018; Ugarelli et al., 2019).
When firstly defining the three phyllosphere cores, we observed

that shared members across these three groups (i.e., phyllosphere
microenvironments) included OTUs from the Pelagibacteraceae
and Synechococcaceae families. Given that Pelagibacter and
Synechococcus are both ubiquitous and dominant members of
pelagic microbial assemblages (Li, 1998; Giovannoni and Stingl,
2005), it is probable that their consistent occurrence on leaf
surfaces represented a sampling artifact. This was also supported
by our observations of OTUs from the Pelagibacteraceae and
Synechococcaceae dominating the core associated with the
surrounding seawater, and therefore we removed abundant
pelagic microbes from the phyllosphere datasets in order to
analyze the phyllosphere core microbiomes.

The core microbiome of the roots and rhizomes included
61 bacterial OTUs (Figure 6A and Supplementary Table 4).
Among these were a large number of core OTUs from the
Chromatiales (18% of total core OTUs in the roots and rhizomes),
Desulfobacteraceae (7% of total core OTUs in the roots and
rhizomes), and Rhodobacteraceae (7% of total core OTUs in the
roots and rhizomes). Members of the Desulfobacteraceae family
are anaerobic, chemolithotrophic microorganisms, commonly
involved in sulfate reduction and nitrogen fixation processes
in seagrass environments, particularly near to the roots and
rhizomes (Welsh et al., 1996; Welsh, 2000; Bagwell et al.,
2002; Lovell, 2002; Devereux, 2013; Sun et al., 2015; Cucio
et al., 2016; Lehnen et al., 2016; Ettinger et al., 2017;
Crump et al., 2018). Moreover, these bacteria are well-known
abundant microorganisms within Zostera microbiomes, where
they discriminate communities associated with roots from those
associated with the leaf and surrounding sediments (Ettinger
et al., 2017). Therefore, we suggest that core members from the
Desulfobacteraceae are nitrogen fixers within the rhizosphere of
Z. muelleri. The Chromatiales are members of a large group
of purple sulfur bacteria (Overmann, 1997; Storelli et al., 2013)
that are commonly observed in sediments surrounding Zostera
meadows and salt marshes (Thomas et al., 2014). Co-habitation
of sulfate reducing and sulfur oxidizing bacteria within seagrass
rhizomes has been observed elsewhere (Cifuentes et al., 2000;
Crump and Koch, 2008; Cucio et al., 2016, 2018), whereby
sulfur oxidizing bacteria are likely to play an essential role in
the detoxification of sulfides produced by the sulfate reducing
bacteria (Cifuentes et al., 2000; Crump and Koch, 2008; Cucio
et al., 2016, 2018; Fahimipour et al., 2017).

Together, these results provide evidence of a clear
differentiation of core bacterial communities across the different
microenvironments within the seagrass, instead of a unified
seagrass core microbiome. The phyllosphere core microbiome
mainly consisted of Alpha- and Gamma- Proteobacterial OTUs
exploiting the oxic conditions and high levels of labile organic
substrates within the leaf surface microenvironment, whereas
the core microbiome of the roots and rhizomes included,
likely sulfate reducing, members of the Deltaproteobacteria.
The persistence of core microbiomes across the seagrass
microenvironments has not previously been explored at this
level of detail. However, our demonstration of discrete core
microbiomes across the different seagrass microenvironments
is consistent with patterns in terrestrial plants, whereby the
rhizosphere, the phyllosphere and the root and leaf endospheres
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host communities that are both distinct from one other
and the surrounding soils (Coleman-Derr et al., 2016). The
patterns observed here are also consistent with other benthic
marine organisms including corals, where distinct microbial
communities colonize different microhabitats within the coral
colony, coral polyps and coral tissue (Ainsworth et al., 2009).

The Seagrass Microalgal Microbiome
Microalgal communities within seagrass meadows collectively
provide crucial ecosystem services, including the contribution
of considerable levels of primary production and energy transfer
to higher trophic levels (Stafford-Bell, 2016). Consistent with
the patterns observed for bacteria, levels of alpha diversity
among microalgal communities varied significantly between
both seagrass microenvironments (p = 0.0001) and sites
(pChao1 = 0.0327, pShannon ′ s = 0.0001) (Supplementary Table 5).
However, post hoc analyses for both diversity indices indicated
that the between site differences were solely driven by differences
between Palm Beach and Lake Macquarie (pChao1 = 0.0018,
pShannon ′ s = 0.0001). Although no consistent patterns were
observed across habitats, several significant differences in alpha
diversity were observed between seagrass microenvironments
within each site (Supplementary Table 5). In general, microalgal
diversity within the seagrass microenvironments was lower
(p < 0.05) than in the surrounding seawater (Figure 2),
which might be attributed to competitive interactions
between microalgae and other epiphytes on the seagrass

leaves, and/or regulatory mechanisms whereby microalgae are
suppressed by metabolic products from the host (Harlin, 1975;
Pinckney and Micheli, 1998).

Similarly to the bacteria, the composition of microalgal
assemblages varied significantly between both seagrass
microenvironments (p = 0.0001) and sampling sites (p = 0.0001).
Although statistically significant differences in microalgal
composition were observed between sampling sites (p < 0.05),
the differences between microenvironments within each
sampling location were greater [ECV, Mi(Si) = 488.81,
Supplementary Table 6]. However, the clear partitioning within
the assemblage structure that was observed for bacteria across the
different seagrass microenvironments on nMDS plots was not
as evident for microalgae, with only the surrounding seawater
and sediment associated communities generating clearly discrete
clusters (Figure 7 and Supplementary Figure 4). Furthermore,
unlike the seagrass-associated bacterial communities, the
nature of the variability in microalgal structure across
microenvironments differed between habitats. Explicitly,
there were no significant differences between microalgal
communities associated with different plant microenvironments
(i.e., phyllosphere and roots and rhizomes, Supplementary
Figure 5) at Rose bay and Lake Macquarie (p > 0.05), whereas
the roots and rhizomes assemblages differed significantly from
the lower leaf communities at Palm Beach and Narrabeen Lagoon
(p < 0.05) and also from the upper leaf at Narrabeen Lagoon
(p = 0.0482) (Supplementary Table 6).

FIGURE 7 | Microenvironmental and regional partitioning of the seagrass microalgal microbiome. Non-parametric multidimensional scaling (nMDS) of microalgal
microbiomes (n = 72), based on a lower triangular resemblance calculated with the S17 Bray–Curtis similarity measure from relative abundances of OTUs (high
values down-weighted with square root). Samples are colored by microenvironment (Plant: upper leaf, lower leaf, sheath and roots and rhizomes; Sed, sediment,
SW, seawater), with different shapes for sites (PB, Palm Beach; RB, Rose Bay; N, Narrabeen Lagoon; LM, Lake Macquarie). Sample clustering patterns by
microenvironment are shown in ellipses in the nMDS plot, representing the level of similarity between samples based on the degree to which OTUs are shared
between them. The 2D stress is shown in the upper right corner of the nMDS plot (Kruskal stress formula = 1, minimum stress = 0.01). A hierarchical cluster analysis
(CLUSTER) for all samples is provided in Supplementary Figure 4 and the nMDS for the four microenvironments associated with the plant is provided in
Supplementary Figure 5.
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FIGURE 8 | Microalgal community composition across seagrass microenvironments. Beta diversity of microalgal microbiomes across the six microenvironments
within the plant and its surroundings. Triplicate samples per microenvironment within each of the four sampling sites (n = 72) are colored by taxonomic order. Unique
OTUs were summarized at the species level, and the representation of taxonomic groups within each sample are plotted. Only representative species with a relative
abundance >1% in all samples are shown to help remove visual clutter. UpL, upper leaf; LoL, lower leaf; Sh, sheath; RR, roots and rhizomes; Sed, sediment; SW,
seawater; PB, Palm Beach; RB, Rose Bay; N, Narrabeen Lagoon; LM, Lake Macquarie.

A single and ubiquitous order of green microalgae, namely
the Chlorellales (3 unique OTUs), dominated the microalgal
community across all microenvironments and sites, representing
on average 23% of these assemblages, with the exception of
the surrounding sediments (Figure 8). The sediments, on the
other hand, were exclusively dominated by the Cymatosirales
(2 unique OTUs) and the Cymbellales (1 unique OTU),
comprising 14% and 16% of the sequences within all sediment
samples, respectively.

In the upper leaf microenvironment, members of the
Bacillariophyceae (4 unique OTUs) were the dominant
microalgae, comprising groups known to contain both benthic
and pelagic representatives (Crosby and Wood, 1958a,b).
This family represented an average of 33% of sequences
and was responsible for the greatest differentiation from
the other microenvironments, where it made up <9% of
the microalgal assemblage (Figure 9). The Bacillariophyceae
include diatoms, commonly among the most abundant and
productive phototrophic microbes associated with seagrasses
(Jacobs and Noten, 1980; Govindasamy and Anantharaj, 2013;
Ambo-Rappe, 2016). Compositional changes of epiphytic
diatoms, including members of the Bacillariophyceae, are closely
related to morphological changes of the seagrass leaf (Chung
and Lee, 2008). These differences in species composition and

the specific modifications of the blade surface itself might
alter competitive interactions between major algal groups
(Pinckney and Micheli, 1998).

The roots and rhizomes were dominated by OTUs affiliated
with the Vaucheriales (2 unique OTUs) and Triceratiales (1
unique OTU) orders, which represented 29% and 24% of the
sequences across all locations, respectively (Figure 8). The
Triceratiales include benthic and epontic diatom species, with
representatives previously isolated from corals, fossil beds,
marine mud, seagrasses, and similar aquatic plants (Crosby and
Wood, 1958b). Notably, this order, along with several members of
the Bacillariophyceae, have been shown to be major components
of the epiphytic diatom community in other seagrass species
(López-Fuerte et al., 2013). The Vaucheriales are yellow-green
algae that have also been widely observed as epiphytes in
salt marshes, seagrass meadows and mangroves (Gallagher and
Humm, 1981; Saifullah et al., 2003).

Our results provide evidence for microenvironmental
partitioning of the seagrass microalgal microbiome, with often
clear differences in the identity of microalgal OTUs dominating
different microenvironments. However, and in contrast to
our observations for bacterial assemblages, no core microalgal
members of the seagrass microbiome were observed for any of
the plant-associated microenvironments, indicating a lower level
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FIGURE 9 | Microalgal discriminatory OTUs at the microenvironmental scale. Extensive hypothesis testing of taxonomic profiles was coupled with similarity
percentages analyses (SIMPER) for microalgal microbiomes across the six microenvironments. The proportion of sequences (mean frequency %) of OTUs
significantly over-represented (Kruskal–Wallis H-test, α = 0.05, effect sizes: η2) and consistently contributing to the differences between microenvironments is
indicated by varying color intensities. Corrected p-values were calculated using the Benjamini–Hochberg’s approach. Two-way crossed SIMPER analyses were
performed with site and microenvironment variables as factors (S17 Bray–Curtis similarity matrix). High contributors were selected from the top-5 contributors of
each pair-wise comparison between microenvironments, and those OTUs consistently accounting for the dissimilarities between any given microenvironment and at
least three other microenvironments were chosen as high contributors to couple with the statistical results. High contributors that were significantly over-represented
were classified as discriminatory OTUs (i.e., 1–9). OTUs are sorted by decreasing mean abundance, and samples are clustered by average neighbor distance
(UPGMA, distance threshold = 0.75) and colored by microenvironment. Different symbols represent the distribution of enriched phyla. High contributors that were not
significantly over-represented (gray) were also classified as discriminatory OTUs if their contribution to the differences between microenvironments was consistent.
UpL, upper leaf; LoL, lower leaf; Sh, sheath; RR, roots and rhizomes; Sed, sediment; SW, seawater.

of geographic conservation of these patterns. Core microalgal
microbiomes were only identified for the sediment and seawater
microenvironments (Figure 6B). The sediment-associated
microbiome included three core members belonging to the
orders Cymbellales (1 OTU) and Cymatosirales (2 OTUs),
whereas the seawater-associated microbiome comprised eight
core members matching the orders Chlorellales (1 OTU),
Pyrenomonadales (4 OTUs), Mamiellales (2 OTUs), and
Triceratiales (1 OTU). The absence of any clear “core microalgal
microbiome” within Z. muelleri perhaps implies a weaker
ecological coupling between seagrasses and specific microalgal
taxa, relative to that observed for the bacterial component of the
seagrass microbiome.

The Seagrass Mycobiome
Although less studied in seagrasses, several fungi have been
demonstrated to be highly beneficial for aquatic and terrestrial
plant fitness while establishing intimate relationships with

their host (i.e., mycorrhizal associations) to facilitate nutrient
uptake or compete against other potentially pathogenic microbes
(Azcon-Aguilar et al., 1999; Kohout et al., 2012; Raghukumar,
2012). In this study, fungal communities associated with
Z. muelleri displayed significantly different levels of alpha
diversity for the two measured indices (Chao1 and Shannon’s
Index) between both seagrass microenvironments (pChao1 =
0.0006, pShannon′s = 0.0001) and sampling sites (pChao1 = 0.0051,
pShannon′s = 0.0010) (Supplementary Table 7). Our post-hoc
analyses indicated that the differences across habitats were mostly
driven by differences between Lake Macquarie and all other sites.
At Lake Macquarie, fungal microbiomes exhibited significantly
lower levels of alpha diversity (p < 0.05, Supplementary
Table 7). Moreover, several significant differences in alpha
diversity were observed between seagrass microenvironments
within each site (Supplementary Table 7). Even though some of
these differences varied from site to site, general patterns were
similar to those observed for microalgal assemblages, whereby
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FIGURE 10 | Microenvironmental and regional partitioning of the seagrass
fungal microbiome. Non-parametric multidimensional scaling (nMDS) of fungal
microbiomes (n = 35), based on a lower triangular resemblance calculated
with the S17 Bray–Curtis similarity measure from relative abundances of OTUs
(high values down-weighted with square root). Samples are colored by
microenvironment (RR, roots and rhizomes; Sed, sediment, SW, seawater),
with different shapes for sites (PB, Palm Beach; RB, Rose Bay; N, Narrabeen
Lagoon; LM, Lake Macquarie). Sample clustering patterns by
microenvironment within each site represent the level of similarity between
samples based on the degree to which OTUs are shared between them. The
2D stress is shown in the upper right corner of the nMDS plot (Kruskal stress
formula = 1, minimum stress = 0.01). The nMDS for the three
microenvironments associated with the leaf is provided in Supplementary
Figure 6 and a hierarchical cluster analysis (CLUSTER) is provided in
Supplementary Figure 7.

seagrass-associated microenvironments (here roots and rhizomes
only) had lower levels of fungal diversity than the surrounding
seawater and sediments (Figure 2). This is possibly due to
antifungal chemical defenses and physiological responses from
the host against co-occurring marine fungi, which have been well
described for other seagrass species (Ross et al., 2008).

Consistent with the patterns observed for bacterial
and microalgal assemblages, fungal community structure
varied significantly across both seagrass microenvironments
(p = 0.0001) and sampling sites (p = 0.0001). Notably, all sites
differed significantly from each other (p < 0.05). However,
the differences between microenvironments within each
sampling location explained a greater level of variation
between mycobiomes compared to the differences between sites
[ECV, Mi(Si) = 1262.70, Supplementary Table 8]. Roots and
rhizomes, sediment and seawater communities formed discrete,
separated clusters within each site, as evidenced in nMDS
(Figure 10) and CLUSTER (Supplementary Figure 7) analyses.
However, such clear separation of fungal communities between
microenvironments was not apparent in unrarefied data from
leaf samples (Supplementary Figure 6).

Fungal OTUs identified within four taxonomic groups
consistently dominated fungal assemblages across the three
microenvironments and four sampling locations studied here
(Figures 11, 12). This is consistent with the hypothesis of

extreme ecological flexibility acclaimed for obligate marine fungal
species (Nicoletti and Andolfi, 2018). OTUs matching the order
Pleosporales (291 unique OTUs) and the species Wallemia
ichthyophaga (54 unique OTUs) represented the most abundant
fungi across the roots and rhizomes, sediments and seawater
microenvironments, making up an average of 38 and 18% of these
communities, respectively (Figures 11, 12). Many freshwater
and marine species of Pleosporales have been described to date,
including several endophytes and saprophytes of plants, as well
as symbionts, parasites and pathogens of seagrasses and marine
macroalgae (Suetrong et al., 2009; Zhang et al., 2009; Boonmee
et al., 2012; Hyde et al., 2013; Hashimoto et al., 2017). Some
species are also dominant members of microbiomes associated
with mangroves, showing a microenvironmental preference for
intertidal parts of the host, which occur above the water
level (Raghukumar, 2012). Our observations of predominant
Pleosporales OTUs across all three microenvironments and
particularly within roots and rhizomes, where these fungi
represented 55% of the mycobiome, are highly consistent with
previous reports of the dominance of a single marine fungus
from the Pleosporales, probably representing a new genus,
associated with the roots of the seagrass species Posidonia
oceanica (Vohník et al., 2016). While, to our knowledge,
the other dominant fungal species, W. ichthyophaga, has not
previously been reported in seagrasses, it has been found to occur
in association with other benthicmarine organisms, including
corals (Raghukumar, 2012). We also observed OTUs that
dominated the microenvironments surrounding the seagrass.
These included the species Mortierella horticola (42 unique
OTUs) and unclassified members of the Pezizomycetes class (7
unique OTUs), which represented 7 and 0.38% of the sediment
and seawater fungal communities, respectively (Figures 11, 12).
Despite its low relative abundance, the Pezizomycetes was the
only taxon that differed significantly across the three seagrass
microenvironments (p = 0.013, Figure 12). Nevertheless, further
exploration of our beta diversity data revealed high relative
abundances and high contributions to microenvironmental
dissimilarities of the other fungi aforementioned, suggesting their
potential importance within the seagrass mycobiome.

Besides the Pleosporales and W. ichthyophaga, we observed
additional OTUs that were consistently present in all plant
microenvironments, with the exception of the upper leaf. These
included members of the Glomeraceae family (133 unique
OTUs), which were consistently found in the lower leaf, sheath,
and roots and rhizomes, where they represented an average of
9% of these assemblages (Figures 11, 12). The Glomeraceae are
arbuscular mycorrhizal fungi, known for their obligate, symbiotic
association with the roots of vascular plants (Schubler et al.,
2001). While the lack of mycorrhizal symbioses in seagrasses has
been previously proposed (Nielsen et al., 1999), our observations
of the consistent presence of the Glomeraceae within the
mycobiomes associated with lower, achlorophyllous parts of
the seagrass, across all sampling locations, suggest a potentially
important role of this fungus in the Z. muelleri mycobiome.

Operational Taxonomic Units belonging to the
Rhytismataceae family (53 unique OTUs) were consistently
present only in the upper leaf and accounted for 4% of
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FIGURE 11 | Fungal community composition across seagrass microenvironments. Beta diversity of fungal microbiomes across the three seagrass
microenvironments studied here. Triplicate samples per microenvironment within each of the four sampling sites (n = 35) are colored by the highest assigned
taxonomic level. Unique OTUs were summarized at the species level, and the representation of taxonomic groups within each sample are plotted. Only
representative species with a relative abundance > 1% in all samples are shown to help remove visual clutter. RR, roots and rhizomes; Sed, sediment; SW,
seawater; PB, Palm Beach; RB, Rose Bay; N, Narrabeen Lagoon; LM, Lake Macquarie.

FIGURE 12 | Fungal discriminatory OTUs at the microenvironmental scale. Extensive hypothesis testing of taxonomic profiles was coupled with similarity
percentages analyses (SIMPER) for fungal microbiomes across microenvironments. The proportion of sequences (mean frequency %) of OTUs significantly
over-represented (Kruskal–Wallis H-test, α = 0.05, effect sizes: η2) and consistently contributing to the differences between microenvironments is indicated by
varying color intensities. Corrected p-values were calculated using the Benjamini–Hochberg’s approach. Two-way crossed SIMPER analyses were performed with
site and microenvironment variables as factors (S17 Bray–Curtis similarity matrix). High contributors were selected from the top-5 contributors of each pair-wise
comparison between microenvironments, and those OTUs consistently accounting for the dissimilarities between any given microenvironment and the other two
microenvironments were chosen as high contributors to couple with the statistical results. High contributors that were significantly over-represented were classified
as discriminatory OTUs (i.e., 1–4). OTUs are sorted by decreasing mean abundance, and samples are clustered by average neighbor distance (UPGMA, distance
threshold = 0.75) and colored by microenvironment. Different symbols represent the distribution of enriched phyla. High contributors that were not significantly
over-represented (gray) were also classified as discriminatory OTUs if their contribution to the differences between microenvironments was consistent. RR, roots and
rhizomes; Sed, sediment; SW, seawater.

Frontiers in Microbiology | www.frontiersin.org 16 May 2019 | Volume 10 | Article 1011

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01011 March 5, 2021 Time: 19:43 # 17

Hurtado-McCormick et al. The Z. muelleri Seagrass Microbiome

these communities (Figures 11, 12). While we only observed
Rhytismataceae in the leaf, and not in the roots and rhizomes
or the surrounding sediments, members of this group have been
previously isolated from the rhizosphere in other seagrass species
(Panno et al., 2013; Gnavi et al., 2014). As many endophytes
of the foliar communities in wood plants (Ganley et al., 2004),
they may represent substantial, unknown biodiversity with
functional novelties.

Here we chose to use 97% similarity criteria for defining fungal
OTUs characterized using our ITS sequencing approach, which
we consider a suitable conservative approach given the lower
levels of taxonomic diversity covered in fungal ITS databases
(relative to e.g., bacteria) and is consistent with values previously
used to characterize the mycobiome associated with terrestrial
plants (Giordano et al., 2009) and coastal grasses (Sánchez-
Márquez et al., 2008). The overall dominance of four taxonomic
groups across the three microenvironments studied here is in
line with previous observations of very narrow mycobiomes
associated with seagrasses (Devarajan and Suryanarayanan, 2002;
Vohník et al., 2016), plants from salt marshes (Al-Nasrawi and
Hughes, 2012), mangroves (Xing and Guo, 2011), and other
aquatic plants (Kohout et al., 2012). Nevertheless, and similar
to microalgae, we did not observe a conserved “core” of fungal
associates within any of the seagrass microenvironments (here
roots and rhizomes only), and a core fungal microbiome of two
members was only identified for the seawater microenvironment.

FIGURE 13 | Ecological dynamics of the seagrass microbiomes. Distinct
microbial communities live in association with disparate sections of the plant
(i.e., upper leaf, lower leaf, sheath, and roots and rhizomes) and its
surroundings (i.e., surficial sediment and adjacent seawater). Their
composition and structure are strongly shaped by the varying conditions
offered within each microenvironment and also influenced by the environment.
Therefore, specific bacterial (full color) and microalgal (gray) members make
up core microbiomes that are different from each other and constitute up to
4% of the entire microbiome. This variability at the microscale is well
conserved within each site, and despite the biogeographical changes of
microbial communities, there are some microorganisms that consistently
occur within microenvironment types. Numbers in the middle represent total
number of core members.

These core OTUs belonged to the family Glomeraceae and
the order Pleosporales. Our results are indicative of a weaker
ecological coupling between seagrasses and fungal taxa, relative
to that observed for seagrass bacterial interactions. We propose
that, relative to bacteria, which appear to display highly specific
interactions with different components of the plant due to a
stronger influence of the conditions at the microscale, seagrass-
associated fungi appear to establish more generalist relationships
with their host.

CONCLUSION

Our results indicate that the seagrass species Z. muelleri harbors
specific microbial assemblages that differ significantly from
the adjacent seawater and sediments. Our data also indicate
that discrete bacterial, microalgal, and fungal communities
occur within specific key seagrass microenvironments, and that
the identity of members of these microenvironment-specific
communities are often conserved across geographically disparate
habitats (Figure 13). Indeed, for all three microbial taxa,
differences in community composition between the specific
seagrass microenvironments, which were generally separated
by just a few centimeters, were significantly greater than the
differences observed between geographical locations spanning
86 km of coastline. These results indicate, that as with many other
organisms, seagrasses host several discrete microbial assemblages
that are each adapted to local environmental conditions.

In the case of bacteria, for example, members of the
Pseudomonadaceae, Rhodobacteraceae, and Comamonadaceae
are dominant features of the microbiome inhabiting the
Z. muelleri phyllosphere, where they exploit the oxic conditions
and high levels of dissolved organic carbon on the leaf surface
(Hirano and Upper, 2000; Dixon and Kahn, 2004; Haselkorn
and Kapatral, 2005; Jorgensen et al., 2009; Juárez-Jiménez et al.,
2010). On the other hand, sulfate reducing and sulfur oxidizing
bacteria from the Desulfobacteraceae and Chromatiales are
dominant core microbiome members within the roots and
rhizomes, where they likely regulate the carbon and sulfur cycling
processes that influence the decomposition of organic material
and ultimately the health of the host (Storelli et al., 2013;
Kleindienst et al., 2014; Thomas et al., 2014; Varon-Lopez et al.,
2014; Lehnen et al., 2016).

Overall, our study demonstrates that while the seagrass
microbiome is highly heterogeneous at small-scales, specific
microbial assemblages are organized according to local
environmental conditions, with this structure maintained
across broad geographic scales. These patterns are indicative
of highly specialized, and likely ecologically important, roles of
the seagrass microbiome, with bacterial, microalgal and fungal
assemblages shifting according to the changing conditions
across the disparate microhabitats within the plant and its
surroundings. Our findings provide fundamental, baseline
information of the composition and structure of microbial
communities associated with Z. muelleri. Future work defining
the seagrass microbiome function by using, for instance,
metagenomics approaches will be critical in evaluating the
relevance of particular seagrass-microbe associations.
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