
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16843  | https://doi.org/10.1038/s41598-020-73987-0

www.nature.com/scientificreports

The SensorOverlord predicts 
the accuracy of measurements 
with ratiometric biosensors
Julian A. Stanley, Sean B. Johnsen & Javier Apfeld*

Two-state ratiometric biosensors change conformation and spectral properties in response to 
specific biochemical inputs. Much effort over the past two decades has been devoted to engineering 
biosensors specific for ions, nucleotides, amino acids, and biochemical potentials. The utility of these 
biosensors is diminished by empirical errors in fluorescence-ratio signal measurement, which reduce 
the range of input values biosensors can measure accurately. Here, we present a formal framework 
and a web-based tool, the SensorOverlord, that predicts the input range of two-state ratiometric 
biosensors given the experimental error in measuring their signal. We demonstrate the utility of this 
tool by predicting the range of values that can be measured accurately by biosensors that detect pH, 
NAD+, NADH, NADPH, histidine, and glutathione redox potential. The SensorOverlord enables users 
to compare the predicted accuracy of biochemical measurements made with different biosensors, and 
subsequently select biosensors that are best suited for their experimental needs.

Genetically encoded two-state ratiometric biosensors have revolutionized our ability to monitor a wide variety 
of biochemical species1–8. The development of these biosensors has enabled the visualization in real-time of the 
biochemical properties of live animals using fluorescence-ratio microscopy. However, the potential of these 
biosensors has not been fully realized because the empirical imprecision of their fluorescence-ratio signal meas-
urements reduces the range of biochemical input values those biosensors can measure accurately.

The capacity to make accurate measurements with sensors is important because it enables observers to make 
confident predictions about the state of a system. Using a thermometer that makes inaccurate temperature 
measurements can lead to incorrect predictions about the state of a physical system; for example, in predicting 
whether water will be a solid, a liquid, or a gas. Similarly, using a genetically encoded biosensor that makes inac-
curate measurements can lead to incorrect predictions about the state of a biological system.

One application of genetically encoded biosensors is the prediction of proteome reduction–oxidation (redox) 
states. The human and C. elegans proteomes contain ~ 210,000 cysteine residues9,10 and ~ 15% of these cysteines 
are reversibly oxidized11. These protein networks can be understood as markets where cysteines in proteins buy 
(reduction) and sell (oxidation) pairs of electrons only via a central broker, the abundant glutathione tripeptide12, 
resulting in a single price for trading electrons that determines the oxidation of all cysteines in the network 
(Fig. 1a). In chemical terms, this price is the glutathione redox potential (EGSH): the Nernst potential that quanti-
fies the balance between reduced and oxidized glutathione species. Measuring EGSH accurately is critical because 
cysteine oxidation modulates the function of hundreds of cytosolic proteins13–19 which regulate a wide vari-
ety of cellular processes19,20. The mechanisms that regulate EGSH in vivo remained largely unexplored until the 
development of the EGSH-specific, reduction–oxidation-sensitive Green Fluorescent Protein (roGFP) family of 
genetically-encoded biosensors21–23. These GFP-derived biosensors include two cysteines that form a (revers-
ible) intramolecular disulfide bond upon oxidation, resulting in spectral changes that can be quantified via 
fluorescence-ratio microscopy (Fig. 1b)8.

We previously used the R12 variant of the roGFP1 biosensor (roGFP1-R12) to measure EGSH in live C. 
elegans12. In this work, we deployed a mathematical framework that enabled us to map the fluorescence-ratio 
signal of roGFP1-R12 into glutathione redox potential (EGSH) values using prior information about our micro-
scope’s properties and the biosensor’s spectral and biochemical properties12,22. Here, we extend that framework 
to determine how the precision of our fluorescence-ratio signal measurements with the roGFP1-R12 biosensor 
constrains the range of EGSH values that can be measured accurately. We then generalize this extended framework 
for all two-state ratiometric biosensors with known spectral and biochemical properties. We demonstrate the 
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Figure 1.   Determining the range of glutathione redox potential EGSH values we can measure accurately with the 
roGFP1-R12 biosensor. (a) Glutathione redox potential (EGSH) directs the oxidation of cysteines in hundreds of 
proteins in the same direction, resulting in their concerted regulation. (b) The reduced and oxidized states of 
the roGFP1-R12 biosensor have different fluorescence spectra8, enabling EGSH measurement via R (fluorescence 
ratio) microscopy. (c) The conversion map from R to EGSH is highly nonlinear. Rreduced state and Roxidized state refer 
to the ratiometric emission of ensembles of reduced and oxidized biosensors, respectively. E0′ is the standard 
midpoint potential of the biosensor. (d) The top panel shows how measurement errors in R cause observed EGSH 
values (EObs) to differ from the true EGSH values (ETrue) that would be observed if R was measured with no error 
(RTrue). The bottom panel shows how the size of an EGSH error (EObs – ETrue) depends not only on the size of the 
error in R but also on the value of R. Each dotted curve corresponds to a different fold-change error in R. The 
shaded region corresponds the interval encompassing 95% of the predicted EObs values for each RTrue value, given 
our empirical error in R. (e) Transforming the map from RTrue to ETrue in the top and bottom panels shown in (d) 
produces plots showing how errors in R influence the map from ETrue to EObs (top panel) and how the size of an 
EGSH error depends not only on the size of the error in R but also on the value of ETrue (bottom panel). Each dotted 
curve corresponds to a different fold-change error in R. The shaded region shows the interval encompassing 95% 
of the predicted EObs values for each ETrue value, given our empirical error in R. (f) Cumulative distribution of the 
empirical fold error in R in live C. elegans expressing the roGFP1-R12 biosensor in the cytosol of the anterior 
(pm3) muscles of the pharynx, the feeding organ. This error distribution was obtained by aggregating with equal 
weight the empirical fold error in R of five separate experiments (see Supplementary Note 3). 95% of the errors 
in R fall within the interval (− 2.8%, + 2.8%), shown shaded in gray. This interval quantifies the precision of our 
fluorescence-ratio measurements. (g) EGSH measurement inaccuracy (the maximum absolute difference between 
ETrue and EObs) decreases with increased precision of R measurement. Each dotted curve corresponds to a different 
precision of R measurement. The shaded region shows the interval encompassing 95% of the predicted EGSH 
measurement inaccuracies for each ETrue value, given our empirical error in R. 
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utility of this new framework by: (1) determining the range of EGSH values that we can measure accurately in live 
C. elegans with the roGFP1-R12 biosensor; (2) quantifying how much that range of EGSH values is expanded by 
increasing the precision of our imaging and image-analysis methods; (3) identifying which biosensors are best 
suited for accurately measuring different ranges of EGSH, pH, and the concentrations of nucleotides and amino 
acids; (4) identifying underused biosensors; and (5) identifying where new biosensors are needed.

To help the community identify biosensors that are well-suited for their experimental needs, we developed 
a web-based tool, the SensorOverlord (https​://www.senso​rover​lord.org), that implements all of these analyses 
with a user-friendly interface.

Results
Predicting the accuracy of a glutathione redox potential biosensor.  In our previous work, we 
used roGFP1-R12 to measure EGSH in live C. elegans12. To map R (fluorescence ratio) measurements into EGSH 
values, we determined three conversion factors that quantify the properties of our imaging microscope and the 
spectral differences between the reduced and oxidized states of the biosensor (Supplementary Note S1). Measur-
ing EGSH instead of R enabled us to make predictions about how the oxidation state of the network of cysteines 
trading electrons with glutathione is influenced by genetic determinants and environmental factors12. However, 
those predictions require that EGSH be measured accurately. Therefore, we set out to determine how the precision 
of our fluorescence-ratio microscopy influenced the range of EGSH values we could measure accurately.

We first modeled how errors in fluorescence-ratio measurement influenced EGSH errors. The conversion map 
from R to EGSH is highly nonlinear (Fig. 1c). As a result, the size of an EGSH error depends not only on the size 
of the error in R but also on the value of R (Fig. 1d): as R approaches its lower and upper bounds EGSH errors 
increase rapidly (Supplementary Note S2). Thus, even a small difference between observed and true R values 
(RObs and RTrue, respectively) can lead to a large difference between observed and true EGSH values (EObs and ETrue, 
respectively) (Fig. 1d).

We then determined the size of our fluorescence-ratio measurement errors. We quantified the precision of 
our fluorescence-ratio measurements in live C. elegans expressing the roGFP1-R12 biosensor in the cytosol of the 
muscles of the pharynx, the feeding organ. This retrospective analysis of 10,572 images showed that our errors 
in R were proportional to R—that is, RObs = RTrue * (1 + error) (Supplementary Note S3). Within a given experi-
ment, the size of the relative error in R was invariant over the range of all possible R values (Supplementary Note 
S3). The size of the relative error in R, however, varied up to three-fold between experiments (Supplementary 
Note S3). Differences in the proportion of animals moving during imaging accounted for most of the variation 
in the relative error in R across experiments (S.B.J., J.A.S., and J.A., manuscript in preparation). Our analysis 
indicated that, in a typical experiment, the median relative error in R was zero and 95% of the relative errors in 
R were in the interval (− 2.8%, + 2.8%) (Fig. 1f). These 95% confidence bounds quantified the precision of our 
fluorescence-ratio measurements.

Last, we determined how the empirical precision of our fluorescence-ratio measurements influenced the 
accuracy of individual EGSH observations. Knowing the precision of our R measurements enabled us to determine 
the 95% confidence bounds of EObs as a function of RTrue (Fig. 1d). Converting RTrue into ETrue produced a map 
of how the 95% confidence bounds of EObs varied as a function of ETrue (Fig. 1e). The maximum absolute differ-
ence between ETrue and either the upper or lower 95% confidence bound of EObs represents the inaccuracy of our 
EGSH measurements (Fig. 1g). Our mathematical modeling indicated that the precision of R measurements, the 
biochemical and biophysical properties of the biosensor, and the choice of excitation wavelengths used in our 
experiments all influenced the EGSH values that we could measure most accurately (Supplementary Note S4). 
EGSH inaccuracy rapidly increased as ETrue moved farther away from those values.

This analysis enabled us to extract the range of EGSH values that our biosensor was well-suited to measure at 
a given level of EGSH inaccuracy (Fig. 1g). For example, the range of EObs values we could measure with an inac-
curacy of 2 mV was between -284 and -234 mV. This range encompassed all EGSH values we observed in wild-type 
nematodes under normal conditions (− 278 to − 262 mV) and under oxidative stress (− 278 to − 250 mV)12, 
indicating that our experimental set up was well-suited to measure the EGSH values that C. elegans feeding mus-
cles exhibited in vivo: 95% of the individual EGSH observations deviated from their true value by less than 2 mV.

Balancing the need for accurate measurements with the constraints of microscopy.  Our ana-
lytical framework provides a criterion for determining if it is possible to measure EGSH accurately. Scientific needs 
demand accurate observations, but experimental approaches constrain the extent to which observations can 
be made accurately. The trade-off between these scientific and experimental constraints can be visualized in a 
phase diagram (Fig. 2). The precision of R measurements determines the range of EGSH values that is possible to 
measure at a specific inaccuracy level (Fig. 2). For values outside that range, it is impossible to guarantee that an 
observation will be accurate. Scientific needs impose a maximum tolerable inaccuracy beyond which observa-
tions are too inaccurate and, therefore, not useful. Together, these constraints determine whether it is possible 
to measure EGSH accurately (Fig. 2).

Retrospectively increasing measurement accuracy with improved image analysis.  To increase 
the range of EGSH values that we could measure accurately, we set out to improve our image-analysis methods. 
Movement of live C. elegans during image acquisition lowers the precision of fluorescence-ratio measurements 

https://www.sensoroverlord.org
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in individual pharyngeal muscles. In a typical experiment 21% of animals moved during imaging. We devel-
oped a new image-feature registration algorithm that corrects for displacement and deformation of the muscles 
along the anterior–posterior axis of the pharynx (S.B.J., J.A.S., and J.A., manuscript in preparation). This new 
image-analysis algorithm reduced the relative error in R along most positions in the pharynx, especially in the 
boundaries between adjacent muscles and in the muscles of the anterior and posterior bulbs. For example, in 
the pm7 muscles of the posterior bulb, the new algorithm reduced the interval with 95% of the relative errors 
in R from ± 4.3 to ± 2.6% in moving animals and from ± 2.0 to ± 1.9% in stationary animals. As a result, the new 
algorithm increased the accuracy with which we could measure EGSH and thereby expanded the range of EGSH 
values that we could measure accurately in past experiments (Fig. 3a).

Comparing glutathione redox potential biosensors.  We determined the ranges of EGSH values that 
we could have measured accurately had we used different biosensors. Theoretical modeling indicated that the 
accuracy of a biosensor is influenced by the choice of wavelengths used for biosensor excitation, and by the 
biosensor’s dynamic range and midpoint-potential (E0′, the price point where a biosensor is 50% likely to sell its 
electrons) (Supplementary Note S4). These biosensor physical and chemical properties vary among all existing 
roGFP-based biosensors (Supplementary Note S5). We estimated the conversion factors that map fluorescence-
ratio measurements into EGSH values for the eleven roGFP-based biosensors with published midpoint potentials 
and fluorescence spectra (Supplementary Note S5). This enabled us to determine the EGSH inaccuracy we would 
expect to observe had we measured EGSH in the feeding muscles of live C. elegans with each of those biosensors 
instead of roGFP1-R12 (Fig. 3b and Supplementary Note S5). This analysis enabled us to identify which biosen-
sors would measure EGSH most accurately under our experimental conditions: roGFP5 for EGSH values below 
− 297 mV, roGFP2 for EGSH values from – 296 to − 258 mV, roGFP1-R12 for EGSH values from − 257 to − 240 mV, 
and roGFP1-iE for EGSH values above − 239 mV. We note that often many biosensors were predicted to have 
comparable accuracies (Fig. 3b).

This analysis helped us identify underused biosensors. Neither roGFP3 nor roGFP5 has ever been used 
in vivo, yet we predict that these biosensors would be the most accurate biosensors for low EGSH values such 
as those expected for the mitochondrial matrix. We currently disfavor roGFP5, even though this biosensor 
was predicted to be more accurate than roGFP3, because roGFP5 can potentially form more than one type of 
internal disulfide bridge due to its two additional cysteines; a better understanding of roGFP5′s biochemistry is 
warranted given its potential utility.
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Figure 2.   Balancing the need for accurate measurements with the constraints of microscopy. The empirical 
precision of our R measurements determines the range of EGSH values that is possible to measure at a specific 
inaccuracy level. Values outside that range are impossible to measure accurately (red and light red regions). 
Scientific needs impose a maximum tolerable inaccuracy beyond which observations are too inaccurate and, 
therefore, not useful (light red and orange regions). Together, these constraints determine whether it is possible 
to accurately measure EGSH (green region).
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Comparison of the predicted accuracy of biosensors originally designed for similar purposes enabled us 
to identify the variables that explain why one biosensor was predicted to be more accurate than another (Sup-
plementary Note S6). For example, both roGFP1-iE and roGFP2-iL were designed to have higher midpoint 
potentials than previous roGFPs, making them more suitable for measuring the higher EGSH values common in 
the endoplasmic reticulum24,25. However, while roGFP1-iE has a higher midpoint potential than roGFP2-iL, it 
is predicted to be more inaccurate than roGFP2-iL even for measuring higher EGSH values. The higher dynamic 
range of roGFP2-iL makes it a more accurate EGSH biosensor than roGFP1-iE.

Identifying where new glutathione redox potential biosensors are needed.  We predicted the 
EGSH inaccuracy that we would observe if we measured EGSH in the feeding muscles of live C. elegans with the 
most accurate biosensor for each EGSH value. Using a phase diagram, we visualized the trade-off between our 
scientific need for accuracy and the experimental constraints imposed by the precision of our R measurements 
and the properties of existing biosensors (Fig. 3c). This analysis indicated that we lack biosensors well-suited to 
measure EGSH values above − 177 mV or below − 337 mV with at least 10 mV accuracy.

A general framework to predict the accuracy of two‑state ratiometric biosensors.  To establish 
a general criterion for determining whether a two-state biosensor is well-suited to measure its input accurately, 
we generalized the analysis framework for glutathione redox potential biosensors to all ratiometric two-state 
single-ligand-binding biosensors (Supplementary Notes S1, S5, S7). To demonstrate the utility of the general-
ized framework, we applied it to biosensors that measure pH and small molecules, including histidine, NAD+, 
NADH, and NADPH. For each biosensor with a known affinity constant and fluorescence spectra, we derived 
the conversion factors that map its fluorescence-ratio to pH or ligand concentration (Supplementary Notes S8, 
S9). We then determined the pH and ligand concentration ranges that each biosensor would be well-suited to 
measure accurately given the precision of our R measurements and after selecting optimal excitation or emission 
filters for each biosensor (Fig. 4a,b and Supplementary Notes S8, S9).

Our comparison of the predicted accuracy of nine ratiometric pH biosensors identified optimal biosensors 
for pH measurement with dual-excitation red-fluorescent pH biosensors, dual-excitation green-fluorescent pH 
biosensors, and single-excitation dual-emission pH biosensors (Fig. 4a). The NADH-specific Frex biosensor6 
had a higher predicted accuracy than the FrexH biosensor6, as a result of its higher dynamic range (Fig. 4b). The 
NADPH-specific iNAP1 biosensor7 was predicted to more accurately measure NADPH concentration than the 
iNAP1-mCherry biosensor (Fig. 4b). The iNAP1-mCherry biosensor sacrifices the iNAP1 dynamic range in 
one excitation band with pH-sensitive fluorescence, enabling pH-resistant NADPH measurement but lowering 
this biosensor’s accuracy.

A web‑based tool that predicts biosensor accuracy.  To help the community find biosensors that 
are well-suited for their experimental needs, we developed the SensorOverlord toolkit. This open-source S4 
class-based R package implements all the analyses described here. We also built a user-friendly web application, 
available at https​://www.senso​rover​lord.org (Fig. 5). The SensorOverlord toolkit enables users to model how 
the precision of their fluorescence-ratio signal measurements and their microscopy configuration constrain the 
range of input values that their biosensor is well-suited to measure accurately (Supplementary Note S10).

The SensorOverlord R package provides a set of classes, methods, and functions with which users can ana-
lyze their microscopy accuracy. Briefly, users can create a Sensor object by (1) programmatically uploading an 
excitation-emission spectrum, (2) inputting biophysical parameters of the biosensor, or (3) querying a biosen-
sor database containing the excitation-emission spectra of the biosensors discussed in this manuscript. Sensor 
objects can then be used to generate maps between R and the predicted inaccuracy of EGSH, pH, and p[Ligand] 
at different levels of empirically-determined error in the measurement of R. The package also enables users to 
directly create Spectra excitation-emission plots, and to plot the predicted inaccuracy and predicted suitable 
range of any custom EGSH, pH, or ligand-sensitive two-state biosensor. We designed the package so users can 
not only recreate the analysis presented here, but also quickly and easily apply the SensorOverlord framework 
to other biosensors and experimental configurations.

The SensorOverlord web application makes the SensorOverlord R package accessible via a non-programmatic 
graphical user interface that can be accessed through any modern web browser. Users can generate a Sensor 
object by (1) selecting a biosensor from a biosensor database via a dropdown menu, (2) inputting empirically-
obtained biophysical parameters into text boxes, or (3) interactively uploading a .csv file with excitation-emission 
spectrum values. The application then prompts users to provide an empirical error in the measurement of R, the 
accuracies at which they wish to make measurements, and the excitation or emission wavelength intervals used 
for ratiometric imaging. Once a user inputs these parameters, they click a button to generate two figures: (1) a 
static plot of the suitable ranges of the current biosensor, and (2) an interactive plot of the current biosensor’s 
measurement accuracy as a function of the biochemical parameter being measured (Fig. 5). Besides increasing 
the accessibility of the analysis presented here, the SensorOverlord web application enables users to more quickly 
and easily experiment with how modifying model parameters affects the predicted accuracy of measurements 
with different biosensors.

Documentation for the SensorOverlord toolkit, alongside updated links to the source code and web applica-
tion, can be found at https​://apfel​dlab.githu​b.io/Senso​rOver​lord/.

https://www.sensoroverlord.org
https://apfeldlab.github.io/SensorOverlord/
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Discussion
The SensorOverlord toolkit enables users to predict the accuracy of concentrations and chemical potentials 
derived from fluorescence ratio measurements with two-state biosensors. This tool enables users to select bio-
sensors predicted to be most accurate for measuring specific ranges of biochemical values. The SensorOverlord 
also enables users to quantify the extent to which increasing the precision of their fluorescence-ratio measure-
ments would increase the predicted accuracy of their biochemical measurements with an individual biosensor. 
Therefore, this tool can be used to quantify the accuracy gains resulting from improving experimental practices, 
and from refining image acquisition, registration, and analysis methods.

A wide variety of factors can influence the precision of fluorescence-ratio measurement. In our experience, the 
degree of immobilization of live specimens during image acquisition can influence the precision of fluorescence-
ratio measurements by a factor of three, leading to large differences in the predicted accuracy of biochemical 
measurements. The SensorOverlord enables researchers to disclose the predicted accuracy of the concentrations 
and chemical potentials that they measure, simply by reporting the precision of their fluorescence-ratio measure-
ments—similar to how manufacturers use tolerance ratings to disclose how often the quality of their products is 
expected to deviate from a standard. The broader scientific community may, in turn, adopt appropriate maximum 
tolerable inaccuracy standards for specific biochemical measurements.

Prediction of the input values of two-state ratiometric biosensors from their ratiometric fluorescence requires 
knowledge of conversion factors that quantify the biosensor’s biochemical and biophysical properties. The values 
of these factors could be influenced by the cellular environment where the biosensor is expressed. Our studies 
with roGFP1-R12 in the cytosol of C. elegans feeding muscles showed that the biosensor’s in vivo dynamic range 
was 7.8, slightly higher than the 5.0 dynamic range of the purified biosensor in vitro; as a result, the biosensor 
had a higher predicted accuracy than expected from its properties in vitro (Supplementary Note S5.2). This 
example highlights the need to determine those conversion factors under the relevant experimental conditions, 
which often is very challenging. A better understanding of how the spectral and biochemical properties of each 
biosensor are influenced by the temperature, pH, ionic strength, and osmotic strength of the environment sur-
rounding the biosensor would enable better prediction of the properties of the biosensor in vivo.

We hope that the SensorOverlord motivates the development of new biosensors, microscopy techniques, 
and image-analysis methods, by enabling biosensor developers and users to quantify the accuracy gains that 
would result from modifying the biochemical and spectral properties of their biosensors and from increasing 
the precision of their fluorescence-ratio measurements.

Methods
Code availability.  Mathematical modeling was performed in the R language and environment for statisti-
cal computing (v3.6.0)26. The web application and associated visualizations were developed with the R packages 
ggplot2 (v3.1.1)27, Shiny (v1.3.2)28, and plotly (v4.9.2)29. Source code for the SensorOverlord is available at https​
://apfel​dlab.githu​b.io/Senso​rOver​lord/.

Statistical analysis.  All statistical analyses were performed in JMP (SAS). We tested for differences in the 
average R among groups using ANOVA. We used the Tukey HSD post-hoc test to determine which pairs of 
groups in the sample differ, in cases where more than two groups were compared. We used least-squares regres-
sion to quantify the dependency on R of the absolute error in R and the absolute relative error in R.

Figure 3.   Predicted accuracy of glutathione redox potential biosensors. (a) Predicted accuracy gains from 
improved image analysis in the pm7 (posterior) feeding muscles of live C. elegans expressing the roGFP1-R12 
biosensor. Animals that moved during image acquisition showed a higher R measurement error than stationary 
animals. A feature-registration algorithm increased the precision of R measurements, retrospectively expanding 
the range of EGSH values that we could measure accurately. The colored bars denote the range of EGSH values 
where we have 95% confidence that an individual EGSH observation would deviate from its true value by less than 
the error denoted by the color of the bar. (b) Predictions of the ranges of EGSH values that we expect to measure 
accurately in pm3 pharyngeal muscles with eleven roGFP-based biosensors given the empirical precision of 
our R measurements. Coloring of bars as in (a). (c) The empirical precision of our R measurements determines 
the range of EGSH values that would be possible to measure at a specific inaccuracy level if we measured EGSH in 
the pharyngeal muscles of live C. elegans with the most accurate roGFP biosensor for each EGSH value. Values 
outside that range are impossible to measure accurately (red and light red regions). Scientific needs impose a 
maximum tolerable inaccuracy beyond which observations are too inaccurate and, therefore, not useful (light 
red and orange regions). Together, these constraints determine whether it is possible to accurately measure 
EGSH with the eleven roGFP biosensors (green region). The dotted curves correspond to the predicted EGSH 
inaccuracies of each of the eleven roGFP biosensors shown in (b), given the precision of our R measurements.

▸

https://apfeldlab.github.io/SensorOverlord/
https://apfeldlab.github.io/SensorOverlord/
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Figure 4.   Predicted accuracy of pH and ligand-binding biosensors. Predictions of the ranges of pH (a), and 
histidine, NAD+, NADH, and NADPH values (b) that we expect to measure accurately in pm3 pharyngeal 
muscles with existing biosensors given the empirical precision of our R measurements and selecting optimal 
excitation or emission filters for each biosensor. The E2GFP biosensor can be used in two different modalities, 
dual-excitation green-fluorescence and single-excitation dual-emission. Differences in the predicted pH 
inaccuracy of this biosensor under each imaging modality arise from the differences between the values in 
each imaging modality of this biosensor’s overall dynamic range and dynamic range in the second wavelength 
(Supplementary Note 8). The colored bars denote the range of values of the biosensor’s biochemical input where 
we have 95% confidence that an individual observation would deviate from its true value by less than the error 
denoted by the color of the bar. p[Ligand] is the negative base 10 logarithm of the Molar concentration of the 
biosensor’s ligand.
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Figure 5.   SensorOverlord web application. The SensorOverlord toolkit enables users to model how the range 
of input values that their biosensor is well-suited to measure accurately is constrained by the user’s fluorescence-
ratio signal measurement precision and microscopy configuration.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16843  | https://doi.org/10.1038/s41598-020-73987-0

www.nature.com/scientificreports/

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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