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Nitric oxide (NO) has been recognized as a ubiquitous gaseous transmitter and

the therapeutic potential has nowadays received increasing interest. However, NO

cannot be easily directly administered due to its high reactivity in air and high

concentration-dependent physiological roles. As such, a plethora of NO donors have

been developed that can reversibly store and release NO under specific conditions. To

enhance the stability and modulate the NO release profiles, small molecule-based NO

donors were covalently linked to polymeric scaffolds, rendering them with multifunctional

integration, prolonged release durations, and optimized therapeutic outcomes. In this

minireview, we highlight the recent achievements of NO-releasing macromolecules in

terms of chemical design and biomedical applications. We hope that more efforts could

be devoted to this emerging yet promising field.
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INTRODUCTION

Nitric oxide (NO), a gaseous diatom radical, is highly reactive and can be easily oxidized in
air, which used to be known as one of the most notorious resources of air pollution. The
situation remains until NO was identified as the endogenous gaseous transmitter in the 1980s.
NO is continuously produced by the NO synthase-mediated transformation of L-arginine into
L-citrulline. The biomedical functions of NO are highly concentration-dependent (Carpenter and
Schoenfisch, 2012). Because it is inconvenient to directly use NO gas in clinical trials, a number of
NO donors that can store and release NO have been developed including metal nitrosyl, organic
nitrates, N-diazeniumdiolates (NONOates), S-nitrosothiols (SNO) and so on (Quinn et al., 2015).
Indeed, some of them are clinically used for the treatment of diseases such as sodium nitroprusside
and nitroglycerin (Nichols et al., 2012). In the past 20 years, it was of increasing interest to unravel
the biological functions of NO and to develop novel NO donors. To date, it is known that NO exerts
crucial effects in cancer therapy, antibacterial infections, wound healing, host defense and immune
response and so on.

In this minireview article, we manage to outline the recent achievements of macromolecular
NO donors and special attention is paid to the chemical design strategies. Although it was
not difficult to appreciate that the fabrication of macromolecular NO donors primarily inherits
the design concepts of small molecule NO releasers, the incorporation of small molecule NO
donors into polymeric scaffolds results in the formation of polymeric NO donors can not only
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improve the storage and release performance of NO but
also optimize the pharmacokinetics. The following sections
are categorized into three parts according to the chemical
structures of NO-releasing moieties, which encompasses N-
diazeniumdiolates (NONOates), S-nitrosothiols (SNO), and
other NO donors (Figure 1). Finally, a conclusion and outlook
section is given. The intention is not to provide an exhaustive
literature survey but to showcase many possibilities to construct
macromolecular NO donors. The rational design and functional
applications of small molecule-based NO donors are now
available (Zhou et al., 2016), which are not included in this
minireview. Also, the direct mixing small molecule NO donors
and polymeric matrices with the formation of NO-doping
polymers through non-covalent interactions does not fall within
the scope either (Mowery et al., 2000). Without a doubt, this
emerging field contains numerous possibilities and the further
development of macromolecular NO donors will be further
advanced by the cooperation of polymer chemists, materials
scientists, biologists, and so on.

N-DIAZENIUMDIOLATE
(NONOATE)-BASED POLYMERIC NO
DONORS

N-diazeniumdiolate (NONOate) derivatives are the most
widely investigated NO donors and some of them such as
diethylamine/NO adduct (DEA NONOate) and spermine
NONOate are commercially available. The excellent
contributions of Drago and coworkers (Drago and Paulik,
1960; Drago and Karstetter, 1961) made it possible to prepare
and purify NONOate derivatives, which are now of extensive
use in investigating the physiological function of NO. These
compounds are typically synthesized by the reaction of secondary
amines with NO under high pressure (e.g., 5 atm) and alkaline
condition (e.g., sodium methoxide). NONOate derivatives are
relatively stable at basic pH but they spontaneously release 2
moles of NO per mole of donors in the presence of protons.
The NO release profiles follow first-order kinetics and the
half-lives of NONOates can span from several seconds to hours
depending on the chemical structures of the secondary amines
(Miller and Megson, 2007). Interestingly, after NO release,
NONOate derivatives were transformed into the original amines
without the generation of other metabolites. To minimize
the uncontrolled release and optimize the pharmacokinetics
of NONOate-based small molecule donors, researchers have
functionalized amine-containing polymeric matrices to obtain
NONOate-based macromolecular NO donors (Sadrearhami
et al., 2018). In the seminal contributions, NONOate-based
macromolecular NO donors with varying chain topologies
were prepared (Smith et al., 1996; Pulfer et al., 1997). They
ingeniously demonstrated that the NO-releasing kinetics could
be remarkably changed, highly dependent on the spatial location
and localized microenvironment of the NONOate moieties.

Inspired by these seminal works, polymeric scaffolds
containing amine residues such as hyperbranched poly(ethylene
imine) (PEI) have been widely used for the fabrication of

macromolecular NO donors (Kang et al., 2015). In a recent
study, propylene oxide was used to functionalized with
hyperbranched PEI with the formation of hydroxyl moieties
and the residual amine groups was treated with NO. In vivo
study on mice revealed that the resulting macromolecular NO
donors exhibited accelerated wound healing performance in full
thickness excisional cutaneous woundmodel (Zhang et al., 2019).
The PEI-derived NONOate-based NO donors can also be used
as the stabilizing agents of inorganic nanoparticles. As a result,
hybrid nanomaterials could be achieved by taking advantages of
the physiochemical properties of inorganic nanoparticles and the
therapeutic effect of NO (Yu et al., 2018). In this context, silica
nanoparticles were coated with PEI and then treated the surface-
bound PEI with NO with the formation of NONOate residues
(Jeong et al., 2018). These hybrid nanoparticles displayed
sustained and prolonged NO release behavior that can be used to
treat bacterial keratitis.

The selective reaction between amine residues and NO
renders it possible to develop versatile macromolecular NO
donors. Besides PEI, methacrylate monomers consisting of linear
and cyclic pendant secondary amines in the side chains which
were initially protected by tert-butyloxycarbonyl (Boc) group
were devised and synthesized (Parzuchowski et al., 2002; Zhou
and Meyerhoff, 2005). After polymerization and deprotection
protocols, the deprotected amine residues were further decorated
with NO, generating NO-releasing polymers. In addition to
linear chain polymers, cross-linked polymers can readily be
synthesized by prior cross-linking of the amine-containing linear
precursors. This design concept was further expanded and
NONOate-containing block copolymers were synthesized, which
self-assembled into micellar nanoparticles in aqueous solution
(Jo et al., 2009). Note that the formation of nanoassemblies can
not only shield the labile NONOate moieties from protons in
water that led to burst NO release but also render the localized
delivery of NO possible by taking advantage of enhanced
permeability and retention (EPR) effect of micellar nanoparticles.

The Schoenfisch group (Stasko and Schoenfisch, 2006;
Lu et al., 2011, 2013; Sun et al., 2012; Worley et al.,
2014, 2015) has made tremendous achievements on the
development of NO-releasing dendrimers. In an early example,
they systematically investigated the effects of the dendritic
generations and amine types on the storage and release of NO.
Thorough investigations demonstrated that, as compared to the
small molecule counterparts, the secondary amine-containing
dendrimers showed a unique dendritic effect and exhibited a
significantly longer NO release period (Stasko and Schoenfisch,
2006). After elucidating the correlations between the chemical
structures and NO-releasing performance, they examined the
antibacterial effect of these NO-releasing dendrimers. Although
these dendrimers cannot efficiently penetrate bacterial biofilms,
the incorporation of NO can drastically boost the anti-biofilm
activity (Sun et al., 2012; Lu et al., 2013;Worley et al., 2014, 2015).

Notably, one of the most important goals is to explore the
potentials of NO-releasingmacromolecules in biological systems.
Thus, the biocompatibility of polymer scaffolds is of crucial
importance. In this regard, biocompatible polysaccharides (e.g.,
chitosan and dextran) and oligosaccharides (e.g., cyclodextrin)
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FIGURE 1 | Fabrication of macromolecular NO donors through the incorporation of small molecule NO donors into polymer scaffolds and their biomedical applications.

were also employed as the polymeric matrices to fabricate
NONOate-based polymeric NO donors. For example, the amine
residues of oligochitosan were first modified with 2-methyl
aziridine through ring-opening reaction and the newly formed
amine groups were further treated with NO gas (Lu et al.,
2014). The NO loading capability, maximum NO flux, and half-
lives of the resulting NO-releasing oligochitosan were highly
dependent on the molar ratio of 2-methyl aziridine to the
amine residues. Cell viability studies revealed that the NO-
releasing oligochitosan had minimal toxicity to normal L929
mouse fibroblast but could efficiently eradicate bacterial biofilm.
Detailed antibacterial studies revealed that the water solubility,
appropriate molecular weights, and ionic characteristics of
the NO-releasing chitosan synergistically contributed to the
biofilm killing. Recently, mono-substituted andmulti-substituted
β-cyclodextrin (β-CD)was engineered as NO-releasingmaterials
as well, exhibiting cooperative antibacterial activity by means
of NO and antibiotics loaded within the cavity of β-CD via
host-guest interaction (Jin et al., 2018).

Although many of the NONOate-based polymeric NO donors
were obtained by the functionalization of secondary amine-
containing polymers, aliphatic primary amines can also be
transformed into NONOate derivatives as well. Recently, a
statistical ternary copolymer containing primary amine residues
was synthesized (Namivandi-Zangeneh et al., 2018). The primary
amine moieties were converted into NONOates in the presence
of NO gas under high pressure. The resulting polymers exerted
synergistic antibacterial effects by taking advantages of NO-
mediated eradication of biofilm and cationic polymer-assisted
membrane disruption of bacteria.

As mentioned above, although amine-containing polymers
can be functionalized with NO gas to form NONOate-
based macromolecular NO donors and the half-lives and
pharmacokinetics could be effectively altered, the spontaneous
NO release from these NONOate-based polymeric NO donors
cannot be eliminated. It will be more promising to develop
polymeric NO donors with on-demand release behavior that
could avoid premature NO leakage. In this context, the terminal
oxygens of NONOate derivatives were protected by glycosidase-
responsive galactose moieties (Zhao et al., 2013). As a result,
the spontaneous NO release was remarkably inhibited and
controlled NO release could be achieved by incubating the
NO donors with glycosidase. After attaching the enzyme-
responsive NO donors to chitosan backbones through copper(I)-
catalyzed azide-alkyne cycloaddition (CuAAC) reaction, the
resulting macromolecular NO donors inherited glycosidase-
enzyme characteristics. This newly designed NO-releasing
material cannot only inhibit platelet adhesion and prolong partial
thromboplastin time but also show increased angiogenesis in
a diabetic mouse model. Indeed, beside glycosidase, NONOate
derivatives can be selectively caged by many other functional
groups and selective uncaging reactions could be actuated by
light irradiation, glutathione (GSH), and other enzymes such
as esterase, nitroreductase, and DT-diaphorase (Makings and
Tsien, 1994; Sharma and Chakrapani, 2014). The introduction
of protected group chemistry opens a new avenue to devise
stable NONOate donors, which should be more advantageous
in biomedical application due to the possibility to minimize
premature NO release and accomplish on-demand NO release at
regions of interest.
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S-NITROSOTHIOL (SNO)-BASED NO
POLYMERIC NO DONORS

In comparison with exogenous NONOate-based donors, SNOs
have been recognized as endogenous transports of NO and S-
nitrosoglutathione (GSNO) and S-nitrosocysteine (CysNO) have
been identified in biological systems. SNO derivatives were
generally synthesized in aqueous solution by the modification
of thiols in the presence of nitrosating agents such as nitrogen
dioxide (NO2), dinitrogen tetroxide (N2O4), dinitrogen trioxide
(N2O3), and nitrite (NO−

2 ). The nitrosation reactions can also
be implemented in an organic solvent using tert-butyl nitrite as
the nitrosating agent. The bond energy of S-NO was calculated
to be ∼150 kJ/mol, which was even lower than that of a redox-
responsive disulfide bond (∼240 kJ/mol) (Fan et al., 2015a).
Because of the low bond energy, the NO release from SNO
derivatives can be readily activated by light irradiation, heat,
metal ions [e.g., Cu(I)], ascorbate and so on.

Akin to that of polymeric NONOate donors derived from
amine-containing polymers, macromolecular SNO-based donors
could be prepared from polymer precursors having thiol residues
(Coneski et al., 2010; Coneski and Schoenfisch, 2011). It is
known that reversible addition-fragmentation chain transfer
(RAFT) polymerization could be used for the synthesis of
polymers with varying compositions and chain topologies.
The as-prepared polymers with RAFT agents at the chain
terminals could be converted into free thiol groups. As such,
it would be straightforward to synthesize SNO-terminated
polymers via the combination of RAFT polymerization, RAFT
agent removal, and nitrosation modification. For example, the
benzodithioate terminal of a diblock copolymer synthesized by
RAFT polymerization was successively transformed into a free
thiol and SNO motif in the presence of hydrazine and nitrite,
respectively (Yu et al., 2015). The NO release kinetics can be
modulated by the solution pH and the formation of micellar
nanoparticles at basic condition can markedly slow down the NO
release rate (Hu et al., 2014a).

As mentioned above, amine-containing polymers can be
successfully transformed into NONOates. Notably, they can
also be engineered as SNO-type NO donors via an S-nitroso-
N-acetylpenicillamine (SNAP) derivation approach. The SNAP
approach provides a robust procedure to functionalize both
natural and synthetic peptides bearing amine residues (e.g.,
lysine) to formNO donors. For instance, a natural protein, fibrin,
was decorated with SNAP with the formation of NO-releasing
peptide and the resulting peptide can remarkably inhibit bacterial
adhesion compared with natural fibrin without NO-releasing
capability (Vanwagner et al., 2013). Besides peptides, natural
polysaccharides and oligosaccharides could also be modified
with the formation of SNO-type NO donors. For example,
the amine residues of chitosan can be easily transformed into
thiols with Traut’s reagent (i.e., 2-iminothiolane hydrochloride);
the resulting thiols underwent nitrosation reaction with the
formation of SNO-containing macromolecular NO donors. The
NO release could be activated by endogenous ascorbic acid,
eliciting a 4-log reduction in the viability of Pseudomonas
aeruginosa (Lu et al., 2015). As a representative example of

oligosaccharide, β-CD has been extensively investigated in host-
guest chemistry (Hu and Liu, 2014). Because the hydroxyl groups
in β-CD could be selectively functionalized, β-CD with one
and seven SNO moieties were synthesized (Piras et al., 2013).
Moreover, the mono-substituted β-CD-SNO can still be used
as a host molecule to include specific guest molecules such
as tamoxifen citrate and N-desmethyltamoxifen hydrochloride,
which may show synergistic therapeutic performance.

OTHER POLYMERIC NO DONORS

Apart from NONOates and SNOs, other potential NO donors
could be incorporated into polymer scaffolds such as organic
nitrates and nitrobenzene derivatives. It is known that NO has
a high affinity to many transition metal ions and transition
ion-containing molecules can thus be used for NO storage
(Wang et al., 2017, 2018). Although metal nitrosyls have been
clinically prescribed, the covalent attachment of metal nitrosyls
tomacromolecular scaffolds has rarely been investigated, possibly
due to the difficulties in chemical modification of metal nitrosyls.
To obtain organic nitrates, halogenated alkyl precursors were
typically treated with silver nitrate (AgNO3). Recently, 2-
(nitrooxy)acetic acid was conjugated to hyaluronic acid via
esterification reaction and photothermal agent (e.g., indocyanine
green; ICG) and chemotherapeutic drug (e.g., doxorubicin;
DOX) were simultaneously loaded into the nanoparticles. The
resulting multifunctional nanoparticles exhibited hyaluronidase
(HAase)-mediated size shrinkage and near-infrared (NIR) light-
triggered NO release, exerting a synergistic effect on cancer
therapy (Hu et al., 2018). Intriguingly, besides NIR light, organic
nitrates also responded to endogenous reducing agents such as
GSH (Duong et al., 2014).

On the other hand, nitrobenzene derivatives have been
developed as photoresponsive NO donors, exhibiting good
stability without light irradiation yet photo-triggered NO release
upon light exposure. In this aspect, the Sortino group and other
researchers have focused on 4-nitro-3-(trifluoromethyl)aniline
derivatives and demonstrated these photoresponsive NO-
releasing molecules having board biomedical applications
(Caruso et al., 2007; Kandoth et al., 2014; Rapozzi et al.,
2015; Fraix and Sortino, 2018). Photo-mediated NO release
from 4-nitro-3-(trifluoromethyl)aniline was ascribed to the
presence of trifluoromethyl group in the ortho position
that forced the nitro group in a twisted geometry. Recently,
4-nitro-3-(trifluoromethyl)aniline and lectin-binding D-
mannopyranoside derivatives were attached to an alternative
copolymer of poly(styrene-alt-maleic acid) (Yang et al., 2013).
Interestingly, the NO release from the resulting polymer
can be actuated by chemiluminescence process derived from
luminol/horseradish peroxidase (HRP) system, which overcame
the drawback of the poor tissue penetration of exogenous
light irradiation.

Notably, the introduction of bulky groups to nitrobenzene
derivatives in a proximal position renders them responsive to
light with the capability of releasing NO, which has proved to be
a general and efficient method toward nitrobenzene-based NO
donors (Suzuki et al., 2005; Hishikawa et al., 2009; Horinouchi
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et al., 2011; Nakagawa et al., 2013). To further elevate the
photosensitivity and light-triggered NO release performance, N-
nitrosoamine derivatives were developed, which can be cleaved
by UV/visible/NIR light irradiation (Namiki et al., 1997; Ieda
et al., 2014; Zhou et al., 2018), ultrasonication (Jin et al., 2017),
heat (Fan et al., 2015b) and so on, highly relying on the
chemical structures (Ohwada et al., 2001). In addition, furoxan
derivatives that can selectively release NO trigged by thiol-
containing molecules were also integrated into the polymeric
system to fabricate polymeric NO donors (Wang et al., 2015a;
Poh et al., 2017). Significantly, compared with labile NONOates
and SNOs, furoxan derivatives were compatible with typical
CuAAC reaction conditions, providing many possibilities to
construct NO-releasing polymers.

CONCLUSIONS AND OUTLOOK

In this minireview, we have summarized the recent achievements
of polymeric NO-releasing materials in terms of chemical design
strategies and biomedical applications. These polymeric NO
donors can be roughly divided into three categories according
to the chemical structures and display promising applications
in anticancer, antibacterial, wound healing and so on (Table 1).
Only selective literature reports are discussed, but it is not
difficult to observe that this emerging field is now receiving
increasing interest, particularly for exploring the biomedical
applications of these NO-releasing macromolecules. Despite

tremendous achievements, there remain some challenges to be
resolved in future studies.

First, because the unstable nature of many NO donors such as
NONOates and SNOs, the preparation of polymeric NO donors
was dominantly achieved through a postmodification approach.
Although the stability of NO-releasing precursors could be
efficiently elevated and the release durations could be modulated
by the polymeric scaffolds, the uncontrolled release nature cannot
be eliminated. To minimize the side effects of NO, polymeric NO
donors with controlled release performance are more appealing
when considered their biomedical applications. To this end, it is
of crucial importance to screen novel NO donors with sufficient
stability at physiological conditions and triggered NO release
under specific stimuli such as non-invasive light and endogenous
stimuli (e.g., acidic pH, redox, and overexpressed enzymes). The
development of organic nitrate- and nitrobenzene-based NO
donors can significantly increase the stability of NO donors,
whereas many of the nitrobenzene-based NO donors were only
responsive to ultraviolet (UV) light with poor tissue penetration.

Second, the developed polymeric NO donors through the
postmodification approach rendered it difficult to tune the
self-assembly behavior of polymeric NO donors due to the
non-specific modification. To date, the self-assembly behavior
of polymeric NO donors was far less explored and only a few
examples of micelle-based NO carriers have been reported.
Recent results suggested that the NO-releasing moieties
could be introduced into the preformed nanostructures by

TABLE 1 | Summary of the properties of NO donors and working mechanisms in biomedical applications.

Donor Types

Properties
Releasing Triggers Advantages Drawbacks

NONOates Acidic pH commercially available; releasing 2 moles

of NO per mole of NONOate

Tough synthetic conditions; unstable at

physiological conditions

SNOs Light, X-ray, heat, reducing

agents, Cu(I) and so on

Endogenous NO carrier (good

biocompatibility); without tolerance with

long-term use

Unstable at physiological conditions

Other Donors Metal Nitrosyls Enzymes, Light, reducing

agents and so on

Clinically applied Potential cytotoxicity of heavy metal ions

and spontaneous ligand exchange in

biological conditions

Organic nitrate Enzymes, reducing agents Clinically applied Cannot be released without specific

enzymes; generation of tolerance

Nitrobenzene derivatives Light Relatively stable in physiological

conditions; decreased premature NO

leakage

Heavily focused on ultraviolet light

N-nitrosoamine Derivatives Light, heat, ultrasound and

so on

Relatively stable in physiological

conditions; decreased premature NO

leakage

Heavily focused on ultraviolet light

Classification Typical Working Mechanisms

BIOMEDICAL APPLICATIONS OF NO-RELEASING MACROMOLECULES

Wound Healing NO participates all the phases of wound healing including vasodilation and antiplatelet effects during the inflammation process, promotion of

reepithelialization and angiogenesis during the proliferative phase, and enhanced collagen deposition during the remodeling phase.

Antibacterial action NO serves as a major signal for biofilm dispersal at low concentration (e.g., nM) and NO can mediate chemical alternation of DNA and inhibits

DNA repair at high concentration (e.g., > µM).

Cancer Therapy NO exhibits multifactorial effects in cancers and a high concentration (e.g., > µM) of NO leads to deamination of DNA bases, nitrosylation of

enzymes and proteins, cellular dysfunction, elevated inflammatory reactions, and cell apoptosis. NO can also integrate with other therapeutic

techniques such as photodynamic therapy, radiotherapy, and chemotherapy to improve therapeutic outcomes.
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the combination of polymerization-induced self-assembly
(PISA) and postmodification approach (Sadrearhami et al.,
2017). Indeed, the spatial location of NO donors within
the assemblies greatly affected the NO-releasing kinetics.
Given the shape-dependent interactions between cells and
nanoassemblies, it is expected that other self-assembled
morphologies (nanorods, vesicles, etc.) likely altered the
extracellular and intracellular NO delivery performance
(Hu et al., 2013). Therefore, the self-assembly behavior of
polymeric NO donors should be investigated. In this context,
the stability of polymeric NO donors should be a prerequisite
since the spontaneous NO release will change the chemical
compositions and in turn affect the self-assembly behavior.
On the other hand, besides the postmodification method,
new synthetic strategies such as direct polymerization of
NO-releasing monomers appears to be an option, possibly
generating well-defined block copolymers capable of self-
assembling into various nanostructures (Wang et al., 2015b;
Deng et al., 2016, 2018).

Finally, small molecule-based NO donors such as
nitroglycerin and sodium nitroprusside have been widely
used in clinical trials (Nichols et al., 2012). Preliminary results
of polymeric NO donors have revealed promising perspective
in biomedical applications. Besides NO itself, it can also be
delivered with other therapeutic agents to reverse multidrug
resistance and thus improve therapeutic outcomes. However,
it appears that the macromolecular NO donors cannot easily
bypass the long-standing difficulties of other polymeric

nanomedicines including relatively low delivery efficiency,
undesirable biodistributions, and systemic side effects. On the
other hand, it is well-documented that the biological functions
of NO are highly concentration dependent. Besides NO donors
that can selectively release NO in the pathological environment,
the development of NO-responsive polymers that can efficiently
scavenge endogenous NO may open new avenues for specific
disease therapy (Hu et al., 2014b, 2015a,b,c, 2016; Liu et al.,
2017; Zhang et al., 2017; Ding and Hu, 2018). Although many
efforts have to be devoted to resolving the current problems
of polymeric NO donors as well as other macromolecular
nanomedicines, we believe that the continuous development
of nanotechnology, polymer chemistry, and biology will make
polymeric NO donors and other nanomedicines smarter that
could finally conquer the difficulties.
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