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The cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J
2
(15d-PGJ

2
) is a natural ligand of peroxisome proliferator-

activated receptor gamma (PPAR-𝛾) and a potential mediator of apoptosis in cancer cells. In the present study, we evaluated the
effect of 15d-PGJ

2
in human thyroid papillary carcinoma cells (TPC-1) using different doses of 15d-PGJ

2
(0.6 to 20𝜇M) to determine

IC
50
(9.3𝜇M) via the MTT assay. The supernatant culture medium of the TPC-1 cells that was treated either with 15d-PGJ

2
or with

vehicle (control) for 24 hours was assessed for IL-6 secretion via CBA assay. RT-qPCRwas used to evaluate mRNA expression of IL-
6, SOCS1, SOCS3, and STAT3. TPC-1 cells treated with 15d-PGJ

2
decreased the secretion and expression of IL-6 and STAT3, while

it increased SOCS1 and SOCS3. Overall, we demonstrated that 15d-PGJ
2
downregulated IL-6 signaling pathway and led TPC-1 cells

into apoptosis. In conclusion, 15d-PGJ
2
shows the potential to become a new therapeutic approach for thyroid tumors.

1. Introduction

Thyroid cancer combined with some of the commonest
endocrine cancers shows as the 5th commonest neoplastic
disease in humans, which are increasing in incidence more
rapidly than any other type. The treatment of thyroid cancer
consists mainly of surgical excision and ablation of the
remaining tissue using radioactive iodine, which is only
effective in nonmetastatic primary tumors.Metastatic disease
and recurrence are mostly incurable and require advanced
therapeutic strategies to improve survival [1].

Themolecular pathogenesis of thyroid cancer and several
signaling pathways involve signal transducers and activators

of transcription (STATs), which are a family of transcription
factors that regulate cell proliferation, differentiation, apop-
tosis, immune and inflammatory responses, and angiogenesis
[2, 3]. Cumulative evidence has established that STAT3 plays
a critical role in the development [4] and mediation of
oncogenic signaling in many different cancers [5]. Phospho-
rylation of STAT3 can be induced via the stimulation of
the heterodimeric receptor complex by the IL-6 cytokine
family, including IL-6, leukemia inhibitory factor, ciliary
neurotrophic factor, oncostatin M, IL-11, and cardiotrophin-
1 [6]. Moreover, STAT3 phosphorylation must be precisely
controlled to maintain cellular homeostasis during both
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embryonic and adult development, requiring the participa-
tion of several negative regulators [7].

These negative regulators include cytoplasmic tyrosine
phosphatases, for example, protein tyrosine phosphatase 1B
STAT, suppressor of cytokine signaling (SOCS) proteins,
which block the cytokine receptor [8]. Loss of SOCS is
known to contribute to abnormal activation of STAT3 in
leukemia, lymphoma, hepatocellular carcinoma, and non-
small-cell carcinoma of the lung [9].

Cyclopentenone prostaglandin 15-deoxy-Δ12,14-pros-
taglandin J

2
(15d-PGJ

2
), which is an endogenous molecule

generated from the dehydration of PGD
2
, is a natural ligand

of peroxisome proliferator-activated receptor gamma (PPAR-
𝛾) and a potential mediator of apoptosis [10]. 15d-PGJ

2
has

recently been demonstrated to exert both anti-inflammatory
and antineoplastic effects in different cell lines and mouse
models [11–15], although such effects have been shown
to be largely independent from PPAR-𝛾 [10], many of
which are mediated via redox-modulating transcription
factors, such as nuclear factor-kappaB (NF-𝜅B), signal
transducers and activators of transcription 3 (STAT3),
nuclear factor-erythroid 2p45 (NF-E2) related factor (Nrf2),
activator protein-1 (AP-1), hypoxia inducible factor, p53,
and peroxiredoxins [16]. The electrophilic carbonyl group
present in 15d-PGJ

2
cyclopentenone ring has been suggested

as the main culprit for most such non-prostaglandin-like
effects, since it promptly reacts with cysteine thiol groups of
proteins that can be critical in the proliferative machinery of
the cell [10].

Considering the cumulative evidence pointing towards a
potent antineoplastic effect of 15d-PGJ

2
as well as the scarcity

of studies investigating its effects on thyroid malignancies
[17], the aim of this study was to evaluate the chemothera-
peutic effect of 15d-PGJ

2
in thyroid cancer cells in vitro.

2. Materials and Methods

2.1. Cell Line. Apapillary thyroid cancer (TPC-1) cell line was
selected and cultured in Dulbecco Modified Eagle Medium
(DMEM) supplementedwith 10% fetal bovine serum (FBS) in
humidified 5% CO

2
atmosphere at 37∘C. A normal fibroblast

cell line (FG11) was cultured under the same conditions and
used as control for cytotoxicity.

2.2. Analysis of Cell Viability. The effect of 15d-PGJ
2
on

TPC-1 viability was evaluated using the MTT assay. Briefly,
thyroid cancer cells were seeded in triplicate in 96-well
plates containing 200𝜇L of DMEM + 10% FBS (1 × 104 cells
per well) and incubated with 15d-PGJ

2
at concentrations

ranging from 0.6 to 20 𝜇M for 72 hours. Cells from each well
were treated with 10 𝜇L solution 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma-Aldrich)
and plates were incubated for additional 4 h at 37∘C. Sulfuric
acid at 2N (200𝜇L/well) was added andmixed thoroughly to
dissolve the dark-blue crystals. Absorbance of the converted
dye was measured by spectrophotometry using a microplate
reader at 570 nm (test) and 650 nm (reference). Cell survival
was calculated as the percentage ofMTT inhibition as follows:

% survival = (mean experimental absorbance/mean control
absorbance) × 100.

FG11 cells were also seeded as described above for TPC-
1 cells.They were then incubated with 15d-PGJ

2
at concentra-

tions ranging from 5 to 15 𝜇M for 24, 48, and 72 hours. Cell
count and viability were assessed on Vi-Cell XR equipment
(Beckman Coulter, USA).

2.3. Evaluation of Apoptosis via Annexin V Staining. Drug-
induced apoptosis was measured using Annexin V-fluores-
cein isothiocyanate (Annexin V-FITC) and PI costaining
using Annexin V-FITC Apoptosis Detection Kit (Sigma-
Aldrich). After 24 hours of treatment with 15d-PGJ

2
, cells

were rinsed and resuspended in 100𝜇L of staining solution
(Annexin V-FITC and PI in HEPES buffer). Cells were
then incubated at room temperature in the dark for 15min,
followed by the addition of 400 𝜇L of binding buffer.The per-
centage of apoptotic cells was established by flow cytometry
using a FACS Accuri C6 Flow (BD eBiosciences).

2.4. Cytokine Analysis. The effect of 15d-PGJ
2
on cytokines

production by TPC-1 cells was evaluated in IMDM medium
from 0 to 24 hours at 37∘C and 5% CO

2
. This experi-

ment was performed in triplicate using 24-well plates (1
× 104 cells/well). Cells suspensions were supplemented with
15d-PGJ

2
at 9.3 𝜇M per well. Cytokines present in the culture

supernatants were analyzed by BD Cytometric Bead Array
(CBA) for Human Th1/Th2/Th17. This method uses beads
with different fluorescence intensities in conjunction with a
cytokine-specific capture antibody. Measurements were per-
formed using FL2 and FL3 channels of the Flow Cytometer
Accuri C6 Flow (BD eBiosciences). A specific detection kit
for IL-6 was used according to the manufacturer’s protocols
(BD eBioscience). Analysis output was obtained in the form
of tables and charts using the FCAP Array� Version 3.0
Software (BD eBioscience).

2.5. mRNA Expression Analyses. Quantitative real-time PCR
(RT-qPCR) assays were performed using the Applied Biosys-
tems 7500 Sequence Detecting system (Applied Biosystems,
California, USA) and SYBR Premix Ex Taq II (Takara, Shiga,
Japan) under the following reaction conditions: 40 cycles
of PCR (95∘C for 15 s and 60∘C for 1min) after an initial
denaturation (95∘C for 1min). The primers used for ampli-
fication were as follows: SOCS3, Forward: TCACCGAAAA-
CACAGGTTCCA and Reverse: GAGTATGTGGCTTTCC-
TATGCTGG; 𝛽-actin, Forward: CTACAATGAGCTGCGT-
GTGGC and Reverse: CAGGTCCAGACGCAGGATGGC.
Amplification of the housekeeping gene 𝛽-actin was used as
an internal control to normalize the SOCS3 mRNA level.
The RT-qPCR data were presented as cycle threshold levels
and were normalized against the corresponding 𝛽-actin
control cycle threshold values. Relative gene expression was
calculated using the 2−ΔΔCT method, as described previously
[18].

2.6. Statistical Analysis. Thedata were analyzed onGraphPad
Prism (v.6.0c) software to compare the effects of different
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Figure 1: 15d-PGJ
2
decreased the viability of TPC-1 cells. TPC-1 cells were treated with 15d-PGJ

2
. (a) represents the cell culture without

treatment. (b) Cells treated with 10𝜇Mof 15d-PGJ
2
. (c) Viability of the TPC-1 cells treated with 15d-PGJ

2
in the concentrations of 0 to 20𝜇M.

(d) IC
50
from cell viability following treatment with 15d-PGJ

2
. The data are presented as means ± standard deviation of three replicates from

at least three independent tests. An asterisk ∗ indicates statistically significant difference from the control (∗𝑃 > 0.01; ∗∗∗𝑃 > 0.001).

treatments. Two-way ANOVA and Bonferroni’s post hoc tests
were used to analyze the data.

3. Results

3.1. In Vitro Effect of 15d-PGJ2 on TPC-1 and FG11 Cell Pro-
liferation and Viability. 15d-PGJ

2
decreased cell proliferation

(Figures 1(a) and 1(b)) and cell viability at the concentrations
of 10 𝜇Mand 20𝜇M(Figure 1(c)).These findings were used to
calculate IC50, which was established at 9.3𝜇M (Figure 1(d)).
This concentration was then used for subsequent experi-
ments. 15d-PGJ

2
did not show significant effect on fibroblast

proliferation and viability in doses varying from 5 to 15 𝜇M
(Figure 2).

3.2. Apoptotic Effects of 15d-PGJ2 onThyroidCancer Cells. The
Annexin V apoptosis assay on TPC-1 showed that 47% of
the cells treated with 15d-PGJ

2
(9.3 𝜇M) entered apoptosis,

whereas less than 5% were observed in the control group
(Figure 3).

3.3. Relative IL-6 mRNA Expression and IL-6 Release by TPC-
1. Theresults revealed that IL-6was highly expressed inTPC-
1 and treatment with 15d-PGJ

2
decreased the relative IL-6

mRNA expression after 4 hours (Figure 4(a)). Concurrently,
IL-6 release in the cell culture medium increased at a
much lower rate than in the control group, thus demon-
strating the downmodulation effect of 15d-PGJ

2
on IL-6

secretion by TPC-1 cells as soon as two hours after treatment
(Figure 4(b)).

3.4. Relative Expression of SOCS3, SOCS1, and STAT3. Upreg-
ulation of SOCS1 and SOCS3 occurred rather early in TPC-1
treated with 15d-PGJ

2
(Figures 5(a) and 5(b)). A significant

difference between the control and the treated cells was
observed two hours after treatment, with SOCS3 showing
a fourfold increase in relative mRNA expression. Such an
effect was not long-lasting, and 4 hours after treatment the
expression of SOCS1 and SOCS3 was normalized. STAT3 was
downregulated 4 hours after treatment and was maintained
throughout the assay for 24 hours (Figure 5(c)).
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Figure 2: Fibroblast (FG11) cell proliferation under 15d-PGJ
2

treatment. FG11 cells were treated with 5 to 15𝜇M of 15d-PGJ
2
.

The data are presented as means ± standard deviation of three
replications from at least three independent tests. 15d-PGJ

2
did not

show significant difference from the control at the doses of 5𝜇M,
10𝜇M, and 15𝜇M.

4. Discussion

The most important adverse aspects in the current surgical
approach to treat papillary thyroid carcinoma is the risk
of long-term recurrence and the difficulty in managing
metastatic disease, especially in those cases initially regarded
as low risk [19, 20]. In the recent past, great efforts have
been made to define new molecular therapies to potentiate
the effectiveness of current cytostatic drugs and 15d-PGJ

2
has

recently emerged as a potent antineoplastic molecule [21].
Several studies have demonstrated that although 15d-

PGJ
2
is an endogenous ligand of PPAR-𝛾, most of its antineo-

plastic effects are PPAR-𝛾-independent [22, 23]. The effects
of PPAR-𝛾 ligands may also act by independent mechanisms
because they differ widely amongst carcinoma types and thus
must be individually examined.

The present study investigated the role of exogenous 15d-
PGJ
2
on papillary thyroid carcinoma cells, the TPC-1 cell

line. The drug reduced cell viability at the doses of 10 and
20𝜇M (Figure 1(c)). Similar results have been found in cell
viability in cultures with other cell lines of breast cancer, lung
cancer, lymphoma [24, 25], and colorectal [26, 27], ovarian
[22], gastric [21], pancreatic [28], and prostate cancer [29].

Despite the overall antitumoral effect of 15d-PGJ
2
,

most studies have reported both dose and time-dependent
responses, with lower doses often promoting opposing effects
to the cytotoxic doses [23]. Micromolar doses of 15d-PGJ

2

are required to induce lymphoma cell death [30, 31], whereas
physiological concentrations of the metabolite are in the
range of picomolar to nanomolar [23, 32]. It has also been
reported that high doses of 15d-PGJ

2
(≥5 𝜇mol/L) caused

cytotoxicity in cultured neurons, whereas low concentrations
of the agonists (15d-PGJ

2
,≤1 𝜇mol/L) suppress rat and human
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Figure 3: 15d-PGJ
2
induced apoptosis in TPC-1 cells. The Annexin

V assay revealed that 15d-PGJ
2
induced 47% apoptosis in TPC-1

compared to 5% in the control group. The data are presented as
means ± standard deviation of three replicates from at least three
independent tests. ∗∗∗Statistically significant difference from the
control (P > 0.001).

neuronal apoptosis and necrosis induced by H
2
O
2
treatment

[32].
Production of IL-6 and signaling are prerequisites for

tumor progression [33]. Indeed, the overproduction of IL-
6 is commonly encountered in a variety of cancer cells and
elevated serum IL-6 levels correlate with poor outcome in
cancer patients [34–36]. IL-6 was shown to be an autocrine
proliferation factor for tumor cell lines [37–39]. Additionally,
STAT3 has been reported to be overexpressed in nearly 40%
of all breast carcinomas due, in part, to autocrine expression
of IL-6 [40]. In turn, paracrine IL-6 can induce autocrine IL-
6 expression in cells within the tumor microenvironment,
thus establishing an IL-6+ niche and enhancing tumor
progression [35]. The TPC-1 cells treated with 15d-PGJ

2
in

the current study have shown a decrease in IL-6 expression
and release associated with reduced cell proliferation, thus
corroborating the aforementionedmechanism of IL-6-linked
neoplastic progression in thyroid cancer cells. Recent studies
have corroborated the inhibitory effect of 15d-PGJ

2
on IL-6

expression both in vitro [41] and in vivo [42].
Being different from normal cells, which phosphorylate

STAT under stringent control, STAT3 is continuously phos-
phorylated in several neoplastic diseases via the overproduc-
tion of agonists, such as specific cytokines, namely, IL-6, and
their respective cytokine receptors [40]. This cycle can be
further enhanced via antagonism of negative regulators, such
as SOCS and tyrosine phosphatases [43].
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Figure 4: Decreased relative IL-6 mRNA expression and release, TPC-1 cells treated with 15d-PGJ
2
. TPC-1 cells were treated with 15d-PGJ

2

(9,8 𝜇M) for 0 to 24 h. (a) shows the relative IL-6 expression. (b) Quantitative IL-6 released by TPC-1 cells treated with 15d-PGJ
2
against the

control group. The data are presented as means ± standard deviation of three replicates from at least three independent tests. An asterisk ∗
indicates statistically significant difference from the control group (∗𝑃 > 0.01; ∗∗∗𝑃 > 0.001).

STAT3 has been reported to play an important role in
maintaining cancer stem cells both in vitro and in vivo,
implicating an integral involvement of STAT3 in tumor
initiation, progression, and maintenance [4]. In fact, this
signaling route is so relevant in tumorigenesiswhere targeting
STAT3 in neoplastic bone marrow disease practically inter-
rupted the progression of metastasis [44–47]. Cumulative
evidence points to a clear STAT3-inhibitory effect of 15d-
PGJ
2
in inflammatory diseases [10, 48, 49]. However, our

findings show a small and stable decrease in the relative
expression of STAT3 in thyroid cancer cells treated with 15d-
PGJ
2
(Figure 5(c)), although not significant. It is possible that

STAT3 phosphorylation was prevented by 15d-PGJ
2
through

the upregulation of SOCS3, which results in the inhibition of
STAT3 activation, as shown elsewhere [50].

Upregulation of both SOCS3 and SOCS1 was also fol-
lowed by the downregulation of IL-6 expression in TPC-
1 cells related to the exposure to 15d-PGJ

2
. SOCS3 is an

inducible endogenous negative regulator of STAT3, and it
is suggested as a tumor suppressor gene [51]. Negative
modulation of SOCS1 and SOCS3 is a survival strategy in
most cancer cells [52–54]. Conversely, overexpression of
such cytokine inhibitors may indicate an antiproliferative
response. Indeed, our results have demonstrated that 15d-
PGJ
2
increased SOCS3 on TPC-1 cells within two hours of

contact with the drug, thus supporting the antioncogenic
nature of this gene (Figure 5(b)). Interestingly, cells presented
diminished levels of SOCS3 and SOCS1 six hours after
treatment, which was extended to 24 hours after treatment
(Figures 5(a) and 5(b)), probably because 15d-PGJ

2
was

already driving cells into apoptosis (Figure 3).
Regarding the downregulation of IL-6 mediated by

SOCS3 overexpression, as early as two hours after exposure to
15d-PGJ

2
, and considering the detrimental effects and actions

of IL-6 linked with tumor growth, progression, and relapse
[55–57], 15d-PGJ

2
is presented as a novel antineoplastic drug.

Our data demonstrated that apoptosis was detectable
in nearly 50% of the TPC-1 cells treated with 15d-PGJ

2
,

compared to 5% in the control group. We have also demon-
strated that SOCS3 overexpression was an early event in
treated cells, while STAT3 remained stable over 24 hours. It
is known that the activation of STAT3 in cancers leads to
gene expression promoting cell proliferation and resistance to
apoptosis [58], but 15d-PGJ

2
-induced SOCS3 overexpression

may have prevented STAT3phosphorylation [50]. Despite the
premature and short-lasting effect of 15d-PGJ

2
on SOCS3,

its expressive upregulation (Figure 5(a)) may have been high
enough to mediate apoptotic signaling within cells [59].

5. Conclusion

The present study shows important antiproliferative and
apoptotic activities in human thyroid cancer cells induced
by 15d-PGJ

2
. Such events are linked with the overexpression

of SOCS3 that inhibits IL-6 signaling, a key factor in many
cancers. This is the first report on 15d-PGJ

2
-induced SOCS3

expression, which evidences a novel therapeutic option for
the treatment of thyroid cancer and other cancers that are
dependent on IL-6 signaling.

Competing Interests

The authors declare no competing interests.

Authors’ Contributions
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