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INTRODUCTION 
 

Lung cancer is the most frequently diagnosed cancer 

and the leading cause of cancer-associated death 

worldwide [1, 2]. Non-small cell lung cancer (NSCLC), 

which is the predominant form and accounts for 80–

85% of all lung cancers [3], includes lung squamous 

cell carcinoma (SCC), lung adenocarcinoma (AD) and 

large-cell carcinoma (LCC). Although much progress in 

various therapies has been made for NSCLC patients in 

the past decade, such as EGFR and PD-L1 targeted 

therapy, the prognosis of NSCLC patients remains poor 

[1, 2]. Thus, it is critical to understand the underlying 

pathological mechanisms and identify novel 

diagnostic/prognostic markers for NSCLC in order to 

develop new therapeutic targets to increase patient 

survival.  

 

Previous studies have suggested that long non-coding 

RNAs (lncRNAs) not only play an important role in 

regulating gene expression at various levels, but also 

can function as oncogenes or tumor suppressor genes, 

and thus are directly related with the malignant 

biological behavior of multiple tumors [4, 5]. 

Accumulating evidence indicate that lncRNAs can 

serve as novel molecular biomarkers for specific 
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processes in cancer biology, including cell growth, 

death, cell cycle progression, proliferation, invasion 

and migration [5].  

 

Though studies have shown that lncRNAs play 

important roles in gene expression and cancer 

progression, their role in NSCLC remains largely 

unexamined. To investigate the expression pattern and 

importance of lncRNAs in NSCLC, we analyzed three 

large sets of RNAseq data including TCGA [6], Seo [7] 

and UM [8], and discovered LOC389641 as one of the 

most up-regulated lncRNAs as compared to normal 

lung tissues. A previous study indicated that 

LOC389641 can increase cell invasion of pancreatic 

ductal adenocarcinoma cells by regulating E-Cadherin 

expression [9]. Our current study was aimed at 

examining the relationship between LOC389641 

expression and its clinical significance in NSCLC, and 

defining its potential oncogenic functions such as 

effects upon NSCLC cell proliferation, cell death, 

migration and invasion. 

 

RESULTS 
 

LOC389641 is highly expressed in lung 

adenocarcinomas and associated with poor patient 

survival 

 

In our previous study, we combined the gene 

expression data from three large RNAseq datasets and 

identified differentially expressed lncRNAs in lung 

adenocarcinomas (AD) [10]. The three cohorts were 

the Korean cohort (Seo) [7], including 85 ADs and 77 

normal lung tissues; the Cancer Genome Atlas 

(TCGA) data [6], including 312 ADs and 79 normal 

lung tissue samples; and the University of Michigan 

(UM) cohort, including 67 ADs and 6 normal lung 

tissue samples [8]. Among the lncRNAs dysregulated 

in ADs, we found that LOC389641 was highly 

expressed in ADs compared with normal lung tissues 

in all three cohorts (Figure 1A–1C). In order to 

determine whether the LOC389641 expression pattern 

has significant clinical utility, we performed a 

Receiver Operating Characteristic (ROC) curve 

analysis. The Area Under Curve (AUC) values were 

larger than 0.80 in all 3 cohorts (Figure 1D–1F) 

indicating that LOC389641 may be potentially used as 

a novel diagnostic marker for this type of lung cancer. 

We next analyzed the association of LOC389641 and 

patient survival using the Okayama microarray dataset 

[11] containing 224 early stage (stage 1 and 2) AD 

tissue samples. Kaplan-Meier analysis revealed that 

the patients with elevated LOC389641 expression 

demonstrated a poorer overall survival as compared to 

those patients whose tumors had low expression (p = 

0.001) (Figure 1G). 

Validation of LOC389641 expression in an 

independent cohort of ADs and lung cancer cell lines 

 

In order to validate the association between LOC389641 

expression and survival discovered from the above 

analyzed RNAseq and microarray datasets, we 

performed qRT-PCR in an independent cohort of tissue 

samples from UM including 101 AD and 27 normal 

lung tissues. We found that LOC389641 was 

significantly increased in ADs (vs normal lung tissues) 

(p < 0.01, Figure 2A). ROC curve analysis revealed the 

AUC value was 0.87 thus indicating LOC389641 

expression could significantly separate the ADs from 

normal lung tissues (Figure 2B). Kaplan-Meier survival 

curve analysis indicated that higher LOC389641 

expression was unfavorable for patient survival in this 

validation cohort (Figure 2C). 

 

Next, we want to determine whether LOC389641 

expression was associated with specifics type of lung 

cancer cell lines which are available through analysis of 

the CCLE database [12]. We found LOC389641 

expression was significantly lower in small cell lung 

cancer (SCLC) cell lines (Figure 2D). We also found 

LOC389641 was expressed in a variety of AD cell lines 

(Figure 2E). Taken together, this data indicated that 

LOC389641 was highly expressed in AD and other 

types of NSCLC. These results support the potential of 

LOC389641 as a biomarker for NSCLC. 

 

LOC389641 cellular location and knockdown 

impairs cell proliferation  

 

To examine the potential cellular location of 

LOC389641, we assessed its expression in both nuclear 

and cytoplasmic fractions from H1299, H838 and PC-9 

cells using qRT-PCR, and found that 61%-77% of the 

expression of LOC389641 was primarily localized in 

cytoplasm (Figure 3A–3C).  

 

In order to reduce off-target effects by siRNAs, we 

used SMARTpool siRNAs of LOC389641 which 

represent a mixture of 4 individual siRNAs. 

LOC389641 expression decreased significantly 

following siRNAs transfection indicating that the 

siRNAs had the high interference efficiency in these 

cells (Figure 3D). We next evaluated the effects of 

LOC389641 on cell proliferation using WST-1 assay 

in AD cells. Our data revealed that knockdown of 

LOC389641 significantly suppressed the cell 

proliferation of three AD cell lines (Figure 3E). Cell 

cycle analysis of flow cytometry showed that more 

cells were arrested at G1 phrase with less in S phrase 
in the siRNAs (siLOC389641) group as compared to 

the control (siCtrl) group (Figure 3F, 3G). Taken 

together, these results suggest that LOC389641 is 
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Figure 1. LOC389641 is highly expressed in lung adenocarcinomas and is associated with poorer patient survival. (A–C), Dot 

plots of LOC389641 expression levels in lung adenocarcinoma (AD) and normal lung (N) tissues in the Seo (85 AD vs 77 N), TCGA (312 AD vs 
79 N) and UM (67 AD vs 6 N) RNAseq datasets (y-axis is log2 of FPKM value, ** AD vs. Normal, t test, p < 0.01). (D–F) ROC curves with AUC 
values of LOC389641 in Seo (85 AD vs 77 N), TCGA (312 AD vs 79 N) and UM (67 AD vs 6 N) RNAseq datasets. (G) Kaplan-Meier survival curve 
with log-rank test of LOC389641 in Okayama dataset (226 ADs, U133plus2.0 array). Higher LOC389641 expression (1/3 cases for each group 
based on LOC389641 value) was significantly correlated with poor patient survival.  
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Figure 2. Validation of LOC389641 expression in an independent cohort of ADs and lung cancer cell lines. (A) Dot plot indicating 

LOC389641 expression was higher in ADs in an independent validation cohort measured by RT-PCR. y-axis is fold-change to mean of all 
tissues, ** AD vs. normal, t test, p < 0.01. (B) ROC curve indicated an excellent AUC (0.87) for classifying 101 AD from 27 normal lung tissues 
based on LOC389641 expression in this independent validation cohort. (C) Kaplan-Meier survival curve indicated higher LOC389641 
expression was unfavorable for patient survival in this independent validation cohort. Log-rank test, p = 0.03. (D) LOC389641 expression in 
different types of lung cancer cell lines. LOC389641 expression was significantly lower in small cell lung cancer (SCLC) cell lines (CCLE, RNAseq 
data, *** NSCLC vs. SCLC, p < 0.001 by t test). (E) LOC389641 expression in individual lung adenocarcinoma cell lines (CCLE, RNAseq data) and 
these cell lines were ranked in order of LOC389641 expression.  
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Figure 3. LOC389641 cellular location and knockdown impairs cell proliferation. (A–C) qRT-PCR showing the nuclear and 

cytoplasmic fractions of LOC389641 in H1299, H838 and PC-9 cells. GAPDH is used as cytoplasmic control and U1 snRNA as nuclear control. 
LOC389641 is primarily in cytoplasm (61% - 77%). (D) LOC389641 siRNA knockdown efficiency (48 h) in H1299, H838 and PC-9 cell lines 
measured by qRT-PCR. GAPDH is used as loading control. (E) Cell proliferation is decreased after LOC389641 siRNAs treatment in H1299, 
H838 and PC-9 cell lines. ** p < 0.01 by t test. (F, G) Flow cytometry analysis to evaluate the effects of LOC389641 on cell cycle distribution in 
H1299 and H838 cell lines. 
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cytoplasmic and its knockdown can influence the cell 

cycle and cell proliferation. 

 

LOC389641 knockdown impairs colony formation 

and invasion of lung cancer cells 

 

As shown in Figure 4A, 4B, cell colony formation was 

substantially decreased in LOC389641 siRNA-treated 

cells (H1299) (siLOC389641) (p < 0.01), suggesting 

that knockdown of LOC389641 influences colony-

forming ability in ADs. Therefore, we believed that 

knockdown of LOC389641 could be the important 

target to reduce the cell growth ability of ADs. The 

transwell invasion assay is a commonly used for the 

effective analysis of a cell’s invasion ability. Transwell 

invasion assays showed that cell invasion was inhibited 

after LOC389641 siRNA transfection as compared to 

control group (siCtrl) for both H1299 and H838 cells 

(Figure 4C, 4D). (p < 0.01). These results suggest that 

LOC389641 gene silencing decreases the number of 

cells invading the membrane, and also implying 

LOC389641 may promote lung cancer spread and 

metastasis to distance organs. 

 

Knockdown of LOC389641 causes apoptosis and 

autophagy in lung cancer cell lines 

 

To investigate whether LOC389641 affects cell death 

signaling, we examined cell autophagy and apoptosis 

following LOC389641 knockdown. For monitoring 

autophagy flux after LOC389641 siRNAs transfection, 

we introduced the chimeric construct RFP-GFP-LC3B 

into H838, H1299 and A549 cells. We observed that the 

number of RFP-LC3B puncta (autolysosomes) and 

merged puncta (autophagosomes) were increased in 

LOC389641 siRNA-transfected H1299 and A549 cells, 

whereas they were decreased in H838 cells (Figure 5A, 

5B). These results suggest that knockdown of 

LOC389641 can induce autophagy in A549 and H1299 

cells, while inducing autophagy in H838 cells. To more 

specifically define the effects of silencing of 

LOC389641 and the role in lung cancer autophagy, we 

investigated the autophagy-related proteins, AMPK and 

LC3B, by Western blotting. We found that 

phosphorylated AMPK was significantly increased in 

H1299 after LOC389641-siRNA knockdown, but not in 

H838. AMPK is a critical regulator of autophagy and 

the activation of AMPK results in enhanced autophagy 

[13]. Further, LC3 lipidation, which is indicated by the 

formation of LC3-II, is an index of autophagy. 

LOC389641 siRNA significantly increased LC3 

lipidation in H1299 cells but not in H838 cells (Figure 

5C). This result may explain the differences in 
autophagy signaling after LOC389641 siRNA 

knockdown in H1299 (autophagy-induced cell line) vs 

H838 (non-autophagy-induced cell line).  

Next, we measured PARP, a marker of apoptosis, by 

Western blot. We found that cleaved-PARP was 

decreased with a cleaved band of lower molecular 

weight occurring following siRNA interference in H838 

cells. In the majority of cases, apoptosis and autophagy 

are mutually inhibitory [14]. For cell death pathways 

upon LOC389641 knockdown, H838 undergoes 

apoptosis, while in H1299 it induces autophagy 

signaling. Finally, we found the expression of cell cycle 

inhibitory proteins p21 and p27 protein were increased 

after LOC389641 knockdown. This is consistent with 

the data shown in Figure 3F, 3G, where the inhibition of 

LOC389641 caused G1 phase arrest in H1299 and H838 

cells. 

 

LOC389641 knockdown decreases EGFR, MET and 

STAT3 proteins expression 

 

To further define the mechanism underlying the effects 

of LOC389641 on AD, we explored the expression 

status of proteins in major pathways of AD. Western 

blot showed that total EGFR, total MET and 

phosphorylated STAT3 proteins were decreased in AD 

cell lines (PC9, A549, H1299 and H838). These three 

proteins are the well-known major proto-

oncogenes/proteins in AD [15–17] (Figure 6A).  

 

To determine the relationship between EGFR and MET, 

we examined EGFR, MET and STAT3 proteins changes 

upon siRNAs treatment of EGFR or MET in two EGFR 

mutant AD cells, PC-9 and H1975. Western blot showed 

that MET protein was decreased upon EGFR 

knockdown, while EGFR protein was increased after 

MET knockdown indicating MET may be a downstream 

protein of EGFR (Figure 6B). Increased EGFR protein 

may provide the cell with a feedback mechanism upon 

MET knockdown. STAT3 was decreased upon EGFR or 

MET knockdown indicating STAT3 may be regulated by 

both EGFR and MET in AD cells. 

 

Finally, we performed DAVID gene ontology analysis 

to explore potential underlying biological processes 

associated with LOC389641. We first did the Pearson 

correlation analysis between LOC389641 and the 

20,000 coding genes based on the Okayama data set 

[11]. There were 348 positively-correlated genes (n = 

226, r = 0.46, p < 0.001) (Supplementary Table 1). 

Analysis of biological processes with DAVID using 

these 348 genes, revealed that cell cycle regulation-

related biological processes were on the top of the list, 

which further confirms that LOC389641 is involved in 

cell proliferation and cell cycle regulation (Figure 6C 

and Supplementary Table 2). 
 

In summary, our analyses suggest that LOC389641-

mediated control of cell proliferation, autophagy, 
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apoptosis in AD may occur via EGFR, MET and 

STAT3 signaling (Figure 6D).  Further mechanistic 

studies of the role of LOC389641 in these signaling 

pathways are warranted. 

 

DISCUSSION 
 

The results of our studies indicate that LOC389641 

plays an oncogenic role in NSCLC biology. We found 

that LOC389641 is highly expressed in AD, and that 

increased expression is associated with poor patient 

survival. Using a ROC curve analysis, LOC389641 

levels significantly separate ADs from normal lung 

tissues. LOC389641 expression in NSCLC appears to 

be higher than in small cell lung cancer (SCLC). 

Therefore, LOC389641 may have potential use as a 

biomarker for NSCLC. 

 

We found that knockdown of LOC389641 significantly 

reduced cell proliferation, colony formation and 

invasion capability of lung cancer cells. Accelerating 

cell cycle processes is a major attribute of the unlimited 

proliferation and rapid growth characteristic of cancer 

cells [18]. Cell cycle progression is regulated by cyclin 

kinase regulators p21 and p27, which are upregulated 

during cell cycle arrest [19]. In this study, we found that 

 

 
 

Figure 4. LOC389641 knockdown impairs colony formation and invasion in lung cancer cells. (A, B), Colony formation is 

decreased after LOC389641 knockdown with siRNAs on H1299 cell line. (B) is the relative quantified value. ** p < 0.01 by t test. (C, D), 
Silencing of LOC389641 by siRNAs decreased cellular invasion ability in H1299 and H838 cell lines (10X). (D) are the relative quantified 
value. ** p < 0.01 by t test. 
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p21 and p27 proteins were increased after LOC389641 

siRNA knockdown. Consistent with this, flow 

cytometry analysis indicated that inhibition of 

LOC389641 expression caused G1 phase arrest in 

H1299 and H838 lung AD cell lines. DAVID gene 

ontology analysis corroborated that cell cycle signaling 

is associated with the genes correlated with highly 

expressed LOC389641. These data imply that 

LOC389641 promotes tumor cell proliferation and cell 

growth through modulation of the cell cycle. The exact 

mechanisms how LOC389641 regulates cell cycle 

progression requires further in-depth studies. 

 

 
 

Figure 5. LOC389641 knockdown induces autophagy and apoptosis in lung cancer cell lines. (A, B) H1299, A549 and H838 were 
treated with LOC389641 siRNAs for 48h and transfected with Premo Autophagy Tandem Sensor RFP-GFP-LC3B for 24h. Cells were visualized 
live using a fluorescence microscope. Autophagosomes and autolysosomes in each 200X field were counted, at least 100 cells were counted 
for each siRNA treatment per cell line. Autophagic flow was increased upon LOC389641 silencing in A549 and H1299 cells but were decreased 
in H838 cells. Scale bar: 5 µm. (C) Western blot showing the changes of autophagy, apoptosis and cell cycle related proteins upon LOC389641 
silencing in H1299 and H838 cells (LOC389641 siRNAs treated for 72 h). Apoptosis marker (cleaved-PARP) was induced upon LOC389641 
knockdown in H838 cell line. 
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Autophagy and apoptosis occur when cells are under 

stress [14]. Autophagy has been found to be closely 

related to apoptosis [16]. Regulation of the balance 

between apoptosis and autophagy is critical during cell 

death. In some conditions, autophagy has a protective 

effect, preventing cells from undergoing apoptosis by 

promoting cell survival [20]. In others, excessive 

autophagy can induce cell death. In this study, knocking 

down LOC389641 in H838 cells stimulated PARP 

cleavage, which is the hallmark of apoptotic cell death, 

but no such change was seen in H1299. Moreover, our 

data indicates autophagy occurred in H1299, but not in 

H838. Therefore, the type of cell death may be differed 

among lung AD cells after LOC389641 siRNAs 

treatment. Autophagy occurred in H1299 which may 

have an anti-apoptotic role, but was then followed by 

apoptosis. Whether we can clearly understand the 

crosstalk between autophagy and apoptosis upon 

LOC389641 silencing is an intriguing issue, which 

certainly will require further investigation. 

 

MET, EGFR and STAT3 function as oncogenes in 

many types of malignant tumors including NSCLC. 

Studies have revealed that the crucial importance of 

these three genes/proteins in tumor cell survival, 

proliferation, apoptosis, autophagy, angiogenesis and 

metastasis in NSCLC [15–17, 21]. EGFR and MET are 

receptors tyrosine kinases [22]. Signaling interactions 

between MET and EGFR pathways have been reported 

[23, 24]. Both EGFR and MET use an overlapping 

repertoire of signaling adaptors and downstream 

effector pathways, highlighting their ability to co-drive 

 

 
 

Figure 6. LOC389641 knockdown decreases EGFR, MET and STAT3 proteins expression. (A) Western blot showing total EGFR, total 
MET and phosphor-STAT3 proteins were decreased upon LOC389641 silencing (si389641) in H1299 and H838 cells. LOC389641 siRNA 
treatment was for 72 h. GAPDH was uses as protein loading control. (B) Western blot showing the changes of EGFR, MET and STAT3 proteins 
after EGFR or MET siRNAs treatment in PC-9 and H1975 cells. siRNAs treated for 72 h, α-Tubulin used as protein loading control. (C) Gene 
Ontology (GO) analysis of LOC389641 positively-correlated genes. Cell cycle related biology processes were on the top of the list. (D) The 
schematic model of the cell proliferation, autophagy, apoptosis signaling regulated by MET, EGFR and STAT3 triggered by LOC389641 
knockdown in lung cancer. 
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oncogenic signaling, as has been observed in NSCLC 

models [25]. EGF-induces activation of extracellular 

signal–regulated kinase 1 (Erk1) and Erk2 via Ras, of 

Akt via phospholipase C γ and phosphatidylinositol 3-

kinase (PI3K), and of signal transducer and activator of 

transcription 3 (STAT3) and STAT5 via Janus kinase 2 

(JAK2) [26]. When the ligand for MET, the human 

hepatocyte growth factor (HGF), binds to MET, it can 

activate downstream RAS/ERK/MAPK, PI3K-AKT, 

Wnt/β-catenin, and STAT signaling pathways [16]. 

STAT3 protein becomes activated primarily by tyrosine 

phosphorylation including MET and EGFR. STAT3 is 

constitutively activated and often required to maintain the 

transformed phenotype in a majority of malignant tumors 

including lung cancer, functioning as an oncogene [16]. 

We found that MET, EGFR and phosphorylated STAT3 

proteins were decreased after LOC389641 knockdown in 

human lung AD cell lines. It is probable that EGFR and 

MET may act in concert to activate STAT3 and promote 

the malignant phenotype, or perhaps function 

independently (Figure 6D). Further research is required 

to identify the mechanisms how silencing of LOC389641 

influences NSCLC progression via oncogenes MET, 

EGFR and STAT3. 

 

In conclusion, the present study demonstrates 

LOC389641 as a potential oncogene which acts through 

influencing MET, EGFR and STAT3, thereby 

regulating multiple cell survival/death signals including 

cell proliferation, colony formation, cell invasion, 

apoptosis and autophagy. LOC389641 has potential as a 

new diagnostic/prognostic marker, as well as a 

therapeutic target for lung cancer. 

 

MATERIALS AND METHODS 
 

Patients and tissue samples and lung cancer cell lines 

 

We collected NSCLC tissues and adjacent normal tissues 

from surgical resections of patients between 1991 and 

2012 at the University of Michigan Health System. The 

study was approved by the University of Michigan 

Institutional Review Board and Ethics Committee, and 

each patient provided written informed consent. All 

tissues were confirmed by histopathological evaluation. 

No patients received radiotherapy or chemotherapy prior 

to surgery. Pertinent clinical data, including age, sex, 

histologic tumor type, stage and differentiation were 

collected from surgical and pathological records. All 

tissues were collected, quickly frozen in liquid nitrogen 

and then stored at –80° C before RNA extraction. The 

median follow-up of living patients was 8.6 years. These 

samples were also used in our previous studies [10, 27]. 

 

The NSCLC cell lines (H1299, H838, A549, PC9) were 

purchased from the American Type Culture Collection. 

All cells were cultured in RPMI 1640, 10% FBS, 1% 

antibiotic-antimycotic at 37° C with 5% CO2. All cell 

lines were genotyped for identity at the University of 

Michigan Sequencing Core and were tested for 

Mycoplasma contamination routinely. 

 

RNA isolation and quantitative real-time PCR (qRT-

PCR) 

 

Total RNA was isolated from tissue samples and cell 

lines using miRNeasy Mini kit (Qiagen) according to 

the manufacturers’ instructions. The extracted RNAs 

were converted into cDNA by High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems). The 

expression levels of LOC389641 in NSCLC tissues and 

cell lines were measured by qRT-PCR using the SYBR-

Green method (Takara). The oligonucleotide primers 

for LOC389641 included: forward 5’-

CCTGCCTGCGAAGAACTCC, and reverse 5’-

ACCACACAACAGAAGAGCAGAA. Fold-change in 

expression was calculated relative to house-keeping 

genes (GAPDH or ACTB) and were further normalized 

to the median value of normal samples. 

 

siRNA-mediated knockdown of LOC389641 

 

To down-regulate LOC389641 expression, a SMARTpool 

of LOC389641 siRNAs (Dharmacon) was used in this 

study together with non-targeting siRNA as controls 

(scribe siRNA #1 Dharmacon). For this assay, cells were 

plated in 96-well or 6-well plates and siRNAs or non-

targeting controls transfected into cultured cells 24h after 

plating. Transfection was also performed with 

Lipofectamine® RNAiMax Reagent (Invitrogen, USA) in 

OptiMEM medium. Knockdown efficiency was 

determined by qRT-PCR.  

 

Cell proliferation assay 

 

Proliferation was measured using the cell proliferation 

reagent, Water Soluble Tetrazolium (WST)-1 (Roche). 

For this assay, cells were seeded in 96 well plates. For 

non-targeting control (siCtrl) group and LOC389641 

knockdown (siLOC389641) group, cells were plated in 

triplicate and the siRNAs were transfected into cultured 

cells 24 h after plating. The cells proliferation rates 

were measured at 72 h after siRNAs transfection. 

 

Cell invasion assay 

 

For invasion assays, cells were treated with the indicated 

siRNAs. After 48 h transfection, the cells (H1299: 

0.5×105; H838: 1×105) were collected and resuspended in 
serum-free medium. These cells were seeded onto 

basement membrane matrix Boyden chambers (8-μm pore 

size, BD) present in the insert of a 24-well culture plate. 
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The lower compartment of Boyden chambers was filled 

with 600 μl medium containing 20% FBS as 

chemoattractant. After 48h incubation, matrigel and non-

migrating cells were removed from the top chamber with 

cotton swabs. Invading cells on the bottom were stained 

with Diff-QuikTM Stain Set (SIEMENS). After air 

drying, the number of invaded cells per chamber was 

counted in five separate fields under a microscope and the 

average values calculated. 

 

Cell cycle analysis by flow cytometry 

 

Cells were collected 48 hours after transfection in cell 

cycle assay. H1299 and H838 cells were washed three 

times with cold phosphate buffer saline (PBS, 0.1 M, 

pH 7.4), fixed with 70% ice-cold ethanol at -20° C for 

12 hours, washed with PBS, re-suspended in 1ml of 

propidium iodide (PI) staining solution, and incubated 

for 30 min in the dark at room temperature. Analyses 

were performed on FACScan flow cytometer.  

 

Western blotting analysis 

 

Proteins were separated by electrophoresis through a 

10% SDS/polyacrylamide gel. After electrophoresis, all 

proteins were transferred to PVDF membranes. 

Blocking was performed with 5% bovine serum 

albumin for 1 h. The membranes carrying transferred 

proteins were incubated with primary monoclonal 

antibodies at 4° C on orbital shaking overnight. After 

incubation with HRP-conjugated secondary antibody 

for 1 h at room temperature, the PVDF membranes were 

followed by ECL and exposed to X-ray film or the 

ChemiDoc MP Imaging System (BIO-RAD).  

 

Published microarray and RNA sequencing data 

collection 

 

Three published RNAseq data sets from lung cancer 

tissues including Seo et al., (85 AD and 77 normal lung 

tissues) [7], TCGA (309 AD and 73 normal lung tissues) 

[6] and UM (67 AD and 6 normal lung tissues) [8]. 

RNAseq data of lung cancer cell lines were obtained 

from the CCLE database [12]. Expression levels of 

transcripts were represented as reads per kilobase per 

million mapped reads (RPKM) [28]. One published 

Affymetrix microarray data [11] representing 226 

primary early stage lung ADs was also utilized. The CEL 

files of microarray data were normalized using the 

Robust Multi-array Average (RMA) method [29].  

 

Statistical analyses for experimental data 

 
Statistical analyses were analyzed using the R packages 

and GraphPad Prism 8. Kaplan-Meier survival curves 

were used to display survival curves, and survival 

differences were evaluated by the log-rank test using R 

packages. The Area Under Curve (AUC) was 

determined by the Receiver Operating Characteristic 

(ROC) curve using GraphPad Prism 8. It was used to 

show the tradeoff between specificity and sensitivity for 

the different possible cut-points of a diagnostic test. The 

dot plots in Figure 1 and were drew by GraphPad Prism 

8. The other data such as LOC389641 expression level, 

proliferation, colony formation and invasion were 

evaluated by unpaired Student’s t-test. P value < 0.05 

was considered to be statistically different. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse full text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Positive correlated gene list. 

 

Supplementary Table 2. Analysis of biological processes with DAVID using these 348 genes. 


