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The skin of mammalian organisms is home for a myriad of microbes. Many of these 
commensals are thought to have beneficial effects on the host by critically contributing to 
immune homeostasis. Consequently, dysbiosis can have detrimental effects for the host 
that may manifest with inflammatory diseases at the barrier tissue. Besides bacteria, 
fungi make an important contribution to the microbiota and among these, the yeast 
Malassezia widely dominates in most areas of the skin in healthy individuals. There is 
accumulating evidence that Malassezia spp. are involved in a variety of skin disorders 
in humans ranging from non- or mildly inflammatory conditions such as dandruff and 
pityriasis versicolor to more severe inflammatory skin diseases like seborrheic eczema 
and atopic dermatitis. In addition, Malassezia is strongly linked to the development of 
dermatitis and otitis externa in dogs. However, the association of Malassezia spp. with 
such diseases remains poorly characterized. Until now, studies on the fungus–host inter-
action remain sparse and they are mostly limited to experiments with isolated host cells 
in vitro. They suggest a multifaceted crosstalk of Malassezia spp. with the skin by direct 
activation of the host via conserved pattern recognition receptors and indirectly via the 
release of fungus-derived metabolites that can modulate the function of hematopoietic 
and/or non-hematopoietic cells in the barrier tissue. In this review, we discuss our current 
understanding of the host response to Malassezia spp. in the mammalian skin.

Keywords: Malassezia, commensalism, opportunistic pathogenic fungi, skin disorders, innate immunity, adaptive 
immunity, allergic response, indoles

inTRODUCTiOn

Malassezia spp. are lipophilic yeasts, which are part of the skin microbiota of many mammals and 
birds. In fact, the genus Malassezia is by far the most abundant eukaryotic member of the microbial 
flora of the skin in these organisms (1). Most Malassezia spp. have a predilection for seborrheic skin 
sites such as the scalp and the trunk. They rely on exogenous fatty acid sources for their nutritive 
requirements because of their lack of genes encoding for the fatty acid synthase and genes involved 
in carbohydrate metabolism (2–4). In agreement, the cell wall of Malassezia spp. is particularly rich 
in lipids (5).

The genus Malassezia currently comprises 17 species, three of which have only recently been 
proposed (6–8). Malassezia globosa, Malassezia restricta, and Malassezia sympodialis are most 
frequently isolated from the healthy human skin with distinct relative frequencies at specific 
body sites (1, 9). The age of the host and geographic factors also influence their distribution (10). 
Malassezia pachydermatis, Malassezia nana, and Malassezia caprae are found predominantly in non-
human hosts (6). Surprisingly, the microbial communities of the skin are astonishingly stable and 
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FiGURe 1 | Interaction of Malassezia spp. with the mammalian skin. Direct interactions involve various PRRs, which recognize fungal cell wall constituents and are 
distinctly expressed on the surface of non-hematopoietic (i.e., keratinocytes) and hematopoietic cells (i.e., Langerhans cells, mast cells) of the skin. Spatial and 
temporal signal integration of different PRR signals results in the induction of inflammation and immunity or, alternatively, in the regulation and tolerance of the host 
toward Malassezia spp. Indirect interactions of Malassezia spp. with the skin include fungus-derived metabolites such as irritant fatty acids on the one hand and 
indoles that are potent agonists for the AhR, which is expressed by various skin cells, on the other hand. KCs, keratinocytes; LCs, Langerhans cells; DCs, dendritic 
cells; Mϕ, macrophages; MCs, mast cells; SC, stratum corneum; AhR, aryl hydrocarbon receptor.
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maintained over time, despite the skin’s exposure to the external 
environment (11). It is currently unknown whether Malassezia 
spp. play a mutualistic role and may thus contribute to immune 
homeostasis of the host.

Apart from their commensal nature, Malassezia spp. are also 
associated with common skin disorders such as pityriasis versi-
color and seborrheic dermatitis as well as more severe inflam-
matory skin pathologies including atopic eczema and atopic 
dermatitis in humans (10) and dermatitis and otitis externa in 
animals, most frequently in dogs (12). The composition of the 
skin mycobiome can vary under pathological conditions and 
some species of Malassezia such as M. sympodialis and Malassezia 
furfur are found to be enriched in certain skin disorders (10). To 
date, a causative link between Malassezia and disease develop-
ment has only been made for Pityriasis versicolor, while the role 
of the yeast in other pathologies remains correlative (10, 13, 14). 
Changes in the degree of colonization in diseased compared to 
healthy skin have been documented in dogs (15) but remain 
uncertain in humans (16).

The pathophysiology of Malassezia-associated skin conditions 
is largely unknown. The lack of knowledge on the cellular and 
molecular interactions between Malassezia spp. and the host 
preclude a better understanding of the factors determining 
commensalism versus disease. Herein, we review the current 
knowledge with regard to how the host recognizes Malassezia 
spp. and responds to it (Figure 1).

SenSinG OF Malassezia spp.  
BY THe HOST

Through their localization in the skin, Malassezia spp. interact 
primarily with keratinocytes, tissue-resident dendritic cells 
(DCs), and macrophages, as well as with myeloid cells that are 
recruited to the skin under inflammatory conditions. Activation 
of DCs is key for induction of adaptive immunity and memory 
formation. The fungus is recognized by the host either directly 
through interaction of fungal cell wall components with mem-
brane bound pattern recognition receptors (PRRs) or indirectly 
through soluble metabolites that are released by Malassezia spp. 
The set of receptors expressed by the hematopoietic and the non-
hematopoietic compartment are largely distinct.

Direct Recognition of Malassezia spp.  
by Surface-Bound Receptors
The fungal cell wall is rich in carbohydrates and glycoproteins that 
are recognized by PRRs of the family of Syk-coupled C-type lectin 
receptor (CLR), which are expressed primarily by myeloid cells 
(17, 18). Binding to these receptors results in ligand internaliza-
tion and activation of multiple signaling pathways, including the 
MAPK, NF-κB, and NFAT pathways as well as the inflammasome.

The polysaccharides of the Malassezia cell wall are organized 
differently than in other fungal species analyzed to date (19, 20). 
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Moreover, the cell wall is surrounded by a lipid-rich outer layer 
(21). Several CLRs have been shown to respond to Malassezia spp. 
in vitro. The two FcRγ-associated receptors Dectin-2 and Mincle 
sense Malassezia spp., albeit through recognition of distinct 
ligands (22). While Mincle binds to two distinct glycolipids in 
Malassezia, Dectin-2 recognizes the fungus through α-1,2-linked 
mannose. High-mannose binding is a general feature of Dectin-2, 
which is reported to recognize a variety of fungi, including Candida 
albicans, Saccharomyces cerevisiae, Blastomyces dermatitidis, 
Aspergillus fumigatus, Cryptococcus neoformans, and Fonsecaea 
pedrosoi (23). In contrast, Malassezia spp. were initially found 
to be unique agonists of Mincle when a large panel of 50 differ-
ent fungi was tested in a glycoconjugate microarray (24). More 
recently, other fungi such as Pneumocystis carinii, F. pedrosoi, 
and Fonsecaea monomorpha were also reported to engage Mincle 
(25–27), in addition to bacterial ligands (28–32), mammalian 
alarmins released from damaged cells (33, 34) and even choles-
terol crystals (35, 36). Mincle is thus a highly pleiotropic recep-
tor, which can bind chemically and structurally distinct ligands 
through at least two complementary binding sites (37–40). The 
β-glucan receptor Dectin-1, which was the first member of the 
family of Syk-coupled CLRs to be identified (41), was also found 
to sense Malassezia and was linked to the activation of the NLRP3 
inflammasome (42). Finally, Langerin was suggested to act as a 
receptor for Malassezia in the skin due to its prominent expression 
by epidermal Langerhans cells and by a subset of dermal DCs.  
Direct binding of the fungus to recombinant Langerin was indeed 
observed (43, 44).

Activation of myeloid cells by Malassezia spp. via these dif-
ferent CLRs was shown to induce the secretion of proinflamma-
tory cytokines. However, the relative contribution of individual 
receptors to fungal control in  vivo during commensalism and 
in infectious settings remains to be determined. At least partial 
redundancy of receptors that signal via the same pathway may 
occur, similarly to what was found for other fungi (45, 46). 
Dissecting the role of Mincle in the context of Malassezia spp. in 
more detail will also be interesting in light of its reported antago-
nizing activity, e.g., in response to Fonsacaea spp. (27), and thus 
this receptor may also mediate regulatory or inhibitory responses 
to Malassezia spp.

In addition to CLRs, Toll-like receptors (TLRs), and in particu-
lar TLR2, also contribute to fungal recognition by the host. TLR2 
was implicated in sensing of Malassezia spp. and inducing a pro-
inflammatory response characterized by the release of cytokines, 
chemokines and antimicrobial peptides by keratinocytes (47–50).

The proinflammatory response is generally enhanced by lipid 
removal from the yeast to enhance exposure of fungal cell wall 
carbohydrates (51, 52). In contrast, thymic stromal lymphopoietin 
secretion from keratinocytes was found to be induced specifically 
by the lipid layer components of M. restricta and M. globosa but 
not by yeasts that were depleted of lipids (53).

indirect interaction
Specific products of Malassezia metabolic pathways are thought 
to act as virulence factors promoting inflammation and pathol-
ogy, while others downregulate the production of inflammatory 
mediators and thereby contribute to immune regulation. Fungal 

strains with altered production of such factors have been linked 
to Malassezia-associated skin disorders (54–56).

Malassezia-derived lipases and phospholipases, which are 
required to assimilate host-derived lipids, can initiate an inflam-
matory response in the skin by releasing unsaturated free fatty 
acids from the sebum lipids (57–60). Oleic acid has irritant and 
desquamative effects on keratinocytes (61–63), whereas arachi-
donic acid produces proinflammatory eicosanoids and leads 
to inflammation and damage to the stratum corneum, thereby 
contributing to the disruption of the epithelial barrier function 
and induction of abnormal keratinization (64).

Malassezia furfur is able to convert tryptophan into a variety 
of indole alkaloids. This pathway is mainly active if tryptophan 
is the sole source of nitrogen (65). M. furfur-derived indoles 
including malassezin, indirubin, and indolo [3,2-b] carbazole 
(ICZ) serve as potent ligands for the host aryl hydrocarbon 
receptor (AhR) and thereby potentially modify the function of 
all cells in the epidermis expressing this receptor (54, 55, 66, 67).  
For example, some tryptophan metabolites can promote apop-
tosis of melanocytes (68) or inhibit the respiratory burst in neu-
trophils (69). Given the broad spectrum of biological responses 
that are influenced by AhR activity, M. furfur may engage 
this pathway to modulate inflammation and/or promote skin 
immune homeostasis (70) but may also promote skin pathology 
(71) or even contribute to carcinogenesis (72). The significance 
of yeast-derived indoles in each of these contexts remains to be 
demonstrated in vivo.

innATe iMMUniTY TO Malassezia spp.

The majority of what is currently known about the host response 
to Malassezia spp. is based on in  vitro studies with isolated 
myeloid cells or keratinocyte cell lines. Stimulation of these cells 
with Malassezia yeast leads to the induction of mainly proin-
flammatory cytokines, chemokines, and antimicrobial peptides  
(22, 24, 47–52, 73–76). In line with an inflammatory character of 
the innate response to the fungus, the intraperitoneal injection of 
Malassezia into mice results in the recruitment of neutrophils to 
the peritoneum (24). Only few studies have examined regulatory 
cytokines such as IL-10 and TGF-β by the yeast (24, 49, 51, 74, 77),  
but these may be relevant with regard to the role of Malassezia 
spp. as a skin commensal.

Given the association of Malassezia spp. with inflammatory 
skin disorders and allergic responses, the fungus may also inter-
act with mast cells. Progenitor cell-derived mast cells from atopic 
patients show increased release of proinflammatory cytokines 
upon stimulation with Malassezia (76) and are enriched in the 
skin of atopic eczema patients where they are positioned in the 
superficial dermis and can interact with the fungus (78). Mast cell 
activation in response to Malassezia spp. has also been reported 
in studies with bone-marrow-derived mast cells. These cells are 
directly activated by the fungus in a TLR2-dependent manner and 
release inflammatory mediators and cytokines (79). Moreover, 
the crosslinking of the high-affinity IgE receptor (FcεRI) by 
antigen-bound IgE can induce mast cell degranulation (79). 
Therefore, mast cells may contribute to further barrier disruption 
and thereby amplify the inflammatory response.
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The access of Malassezia to immune cells in the skin may be 
facilitated by disruption of the epithelial barrier as it frequently 
occurs during chronic inflammation. Moreover, Malassezia spp. 
were reported to release nanovesicles/exosomes that contain 
immunogenic proteins and trigger increased release of cytokines 
by DCs (80).

ADAPTive iMMUniTY TO Malassezia spp.

As a commensal, Malassezia interacts continuously with the 
immune system. Therefore, cellular and humoral immune 
memory to the fungus can be evidenced in healthy individu-
als (81). Although there are fewer studies related to dogs when 
compared with humans, dogs also develop cellular and humoral 
immune responses to their commensal yeast, M. pachydermatis 
(82–84). Generally, the adaptive immune responses are heightened 
and qualitatively distinct in patients with Malassezia-associated 
diseases.

Humoral Responses
During steady state, Malassezia-specific antibodies are pre-
dominantly of the IgG and IgM isotypes (81). In contrast, 
although Malassezia-specific IgE is not usually detected in 
healthy individuals, it is common in atopic patients (85). A 
positive correlation was found between the sensitization to 
Malassezia-specific IgE and the severity of atopic dermatitis (86, 
87). Similar observations were made in atopic dogs (83, 84). 
However, whether the IgE response plays a pathogenic role in 
atopic and other Malassezia-associated inflammatory disorders 
or rather serves as a marker for the severity of disease remains 
unclear.

T Cell Responses
Patients with atopic dermatitis often show positive skin prick 
test and atopic patch test reactions to Malassezia (85). T cell-
responsiveness to Malassezia in such patients was associated 
with a Th2 response (88), in line with the classical paradigm of 
Th2-polarized allergic T cells. GATA3+ T cells were identified in 
pityriasis versicolor lesions (89) and likewise Malassezia-specific 
T cell in allergic dogs were found to be strongly polarized toward a 
type 2 response (82). More recently, other T helper cell subsets 
such as Th17 and Th22 cells have been found enriched in allergic 
individuals (90, 91) as well as in non-allergic immune-mediated 
skin diseases such as psoriasis (92). Consistent with this notion, 
Malassezia-reactive skin homing T  cells from Malassezia-
sensitized atopic dermatitis patients comprise not only Th1 and 
Th2 subsets but also IL-17- and IL-22-secreting cells (93). Of 
note, IL-4/IL-17 coproducers have also been described in the 
context of atopic eczema especially in children (94). Importantly, 
Th17 differentiation is a hallmark of T cell responses induced by 
CLR signaling (46) and T cells directed against other fungi, in 
particular Candida spp., belong predominantly to the Th17 sub-
set (95). Whether and how IL-17 and/or IL-22 may contribute 
to pathogenicity in atopic dermatitis remains to be determined. 
It is also unknown to which subset Malassezia-specific T cells 
belong in healthy individuals and to what extent T cell plasticity 
contributes to sensitization.

Malassezia Allergens
To date, 13 Malassezia-derived allergens have been identified 
from M. furfur and M. sympodialis (3, 96). Interestingly, more 
allergens are released from M. sympodialis when cultured at the 
increased pH conditions of atopic skin compared with culture 
at the pH of healthy skin (97). Several of the known allergens 
belong to a class of phylogenetically highly conserved proteins 
and display a high degree of homology with the corresponding 
mammalian proteins. Cross-reactivity between Malassezia-
derived allergens and endogenous human proteins (e.g., thiore-
doxin, manganese-dependent superoxide dismutase) has been 
indeed demonstrated (93, 98, 99). Therefore, the induction of 
autoreactive T cells by Malassezia allergens may play a role in 
sustained inflammation.

COnCLUSiOn

Malassezia spp. have been implicated in various pathologies. 
Yet, direct evidence for a causal relationship between Malassezia 
spp. and the mammalian host remains elusive. For instance, it is 
unclear whether Malassezia actively promotes atopic dermatitis 
or whether the inflammatory environment in the atopic skin trig-
gers a dysregulated immune response toward the fungus.

At the basis of this is the key question of what determines the 
balance between commensalism and pathogenicity of Malassezia 
spp. The answer likely relates to changes occurring in both the 
fungus (55) (e.g., variable secretion of AhR agonists) and in 
the host (e.g., barrier defects, changes in immune polarization) 
which are responsible for promoting the development of pathol-
ogy. Changes in the environment such as seasonal variations 
in sebum production have also been linked to altered disease 
prevalence (100).

Inter-species variations in the skin mycobiome may further 
contribute as different species of Malassezia can induce variable 
inflammatory responses (51, 75, 101). Moreover, Malassezia 
spp. have been shown to display a large intra-species diversity 
(73) similarly to what is known for other opportunistic fungal 
pathogens (102), and thus the exact composition of Malassezia 
strains and species present in an individual at a given time may 
contribute to different outcomes in the interaction between 
the fungus and the host. The recently completed assembly and 
detailed annotation of the genome of M. sympodialis makes an 
important contribution to approach this complexity (103). Future 
research will help fill the important gaps in our knowledge on the 
pathophysiology of and the host response to Malassezia in vivo. 
Enhanced understanding of host-Malassezia interactions may 
contribute to improved diagnostic and therapeutic options for 
patients affected by Malassezia-associated pathologies.
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