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Role of the pleckstrin homology domain of PLCy1
in its interaction with the insulin receptor
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Baltimore, MD 21224-6825

binds covalently to the cytoplasmic domain of the

human insulin receptor (IR) B-subunit when cells
are treated with the homobifunctional cross-linker reagent
1,6-bismaleimidohexane. Here, TRAP was found to be
phospholipase C y1 (PLCy1) by mass spectrometry analysis.
PLCy1 associated with the IR both in cultured cell lines
and in a primary culture of rat hepatocytes. Insulin increased
PLCy1 tyrosine phosphorylation at Tyr-783 and its colocal-
ization with the IR in punctated structures enriched in
cortical actin at the dorsal plasma membrane. This association
was found to be independent of PLCy1 Src homology 2

ﬁ thiol-reactive membrane-associated protein (TRAP)

domains, and instead required the pleckstrin homology
(PH)-EF-hand domain. Expression of the PH-EF construct
blocked endogenous PLCy1 binding to the IR and inhibited
insulin-dependent phosphorylation of mitogen-activated
protein kinase (MAPK), but not AKT. Silencing PLCy1 express-
ion using small interfering RNA markedly reduced insulin-
dependent MAPK regulation in HepG2 cells. Conversely,
reconstitution of PLCy1 in PLCy1~'~ fibroblasts improved
MAPK activation by insulin. Our results show that PLCy1 is
a thiol-reactive protein whose association with the IR could
contribute to the activation of MAPK signaling by insulin.

Introduction

The pleiotropic actions of insulin are initiated by binding of
the hormone to the extracellular domain of the insulin receptor
(IR) and activation of its intrinsic tyrosine kinase activity.
Insulin signal transduction requires IR autophosphorylation
and phosphorylation of a number of intracellular molecules,
including insulin receptor substrate 1 (IRS-1) and She proteins
(Saltiel and Pessin, 2002). Many of these molecules contain
modular domains (e.g., Strc homology 2 [SH2] domain and/
or phosphotyrosine-binding domains) that allow interaction
with the tyrosine-phosphorylated IR. The phosphotyrosine-
binding domain of IRS-1 has been shown to bind to the
NPXpY motif of the IR after insulin stimulation, which
leads to the recruitment of various cytosolic signaling inter-
mediates to the cell surface (Virkamaki et al., 1999). The
SH2-containing protein tyrosine phosphatase (PTP) 2 binds
to the COOH-terminal phosphotyrosines of the activated
IR (Rocchi et al.,, 1996), whereas Grb10 isoforms play a neg-
ative role in insulin signaling by binding with the tyrosine
kinase loop of the activated IR via the BPS (between the
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pleckstrin homology [PH] domain and the SH2 domain)
region (He et al., 1998; Kasus-Jacobi et al., 2000). Thus, the
level of IR autophosphorylation may serve a crucial function
in controlling both the phosphorylation of endogenous sub-
strates and the interaction between the IR B-subunit and a
number of proteins that regulate receptor-based signals.

The cytoplasmic domain of the IR B-subunit contains
reactive cysteine thiol(s) that can modulate the receptor catalytic
activity (Li et al., 1991; Bernier et al., 1995; Schmid et al.,
1998). The importance of the IR cytoplasmic cysteines for
the association between this receptor and intracellular effectors
has been investigated in intact cells using 1,6-bismaleimido-
hexane (BMH), an irreversible thiol-specific homobifunctional
cross-linking reagent (Garant et al., 2000). This approach
has led to the identification of a complex between the hu-
man IR and a thiol-reactive membrane-associated protein
(TRAP). The IR-TRAP complex migrates as an ~250 kD
protein on SDS-PAGE under reducing conditions and does
not contain the receptor a-subunit as assessed by immuno-

Abbreviations used in this paper; BMH, 1,6-bismaleimidohexane;
BMOE, bismaleimidoethane; IR, insulin receptor; IRS-1, insulin receptor
substrate 1; MALDI, matrix-assisted laser desorption/ionization; PH,
pleckstrin homology; PI, phosphoinositide; PTP, protein tyrosine phos-
phatase; SH2, Src homology 2; siRNA, small interfering RNA; TRAP,
thiol-reactive membrane-associated protein.
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blot analysis. In the same report, point-mutation analyses
have shown that cysteine 981 of the cytoplasmic domain of
the human IR B-subunit is the nucleophilic thiol responsible
for the covalent binding to TRAP after BMH-induced cross-
linking (Garant et al., 2000).

To further our understanding of the biological impor-
tance of TRAP in insulin signaling, we purified the IR-
TRAP complex and identified TRAP as PLCy1 using ma-
trix-assisted laser desorption/ionization (MALDI) analysis.
Here, our coimmunoprecipitation assays demonstrated con-
stitutive and insulin-inducible association of PLCyl with
the IR in a number of cultured cell lines and a primary cul-
ture of rat hepatocytes, which reflects the potential for phys-
iological significance. Structurally, the catalytic region of
PLCyl1 contains an insert with two SH2 domains and an
SH3 domain. It has been proposed that the two SH2 do-
mains are essential for association of PLCy1 with activated
growth factor receptor tyrosine kinases (Middlemas et al.,
1994, Ji et al.,, 1999), whereas the SH3 domain directs
PLCyl to bind to the cytoskeleton (Park et al., 1999).
Whether these and other motifs play an important function
in the recruitment of PLCy1 to the IR remains unknown.

The dynamic association between PLCyl and the IR
must depend on specific domains within both proteins. In
an attempt to identify some of these motifs, we have ex-
pressed mutant forms of PLCy1 and analyzed the pattern of
IR-PLC1 association in intact cells. Now, we report on the
identification of a domain of PLCy1 containing the PH and
EF-hand (PH-EF) that is required for interaction with the
IR. Overexpression of the PH-EF fragment or reduction of
PLCy1 expression using small interfering RNA (siRNA) ab-
rogates MAPK regulation by insulin, strengthening the no-
tion that PLCy1 plays an important role in insulin signaling
(Kayali et al., 1998; Eichhorn et al., 2002).

Results

Insulin promotes formation of the IR-TRAP complex
CHO cells expressing the human IR were incubated with
insulin and then subjected to a cross-linking reaction
with BMH before cell lysis and Western blotting with an
antibody against the IR B-subunit (Fig. 1 A, top). The
IR-TRAP complex was detected in lysates from unstimu-
lated cells upon BMH addition. Insulin increased the re-
cruitment of TRAP to the IR with a concomitant reduc-
tion in the free IR B-subunit (Fig. 1 A, lane 4 vs. lane 3),
but not in the IR a-subunit (Fig. 1 A, bottom). A second
protein band was detected just below the IR-TRAP com-
plex (Fig. 1 A, lane 4); however, it contained a much
smaller amount of the conjugated IR B-subunit. Thus,
TRAP can interact with the IR both in a constitutive and
insulin-inducible manner. Of significance, association be-
tween the activated IR and TRAP was also observed in
NIH3T3-IR cells and the human HepG2 cell line after
incubation with BMH (unpublished data). The forma-
tion of the IR-TRAP complex was then assessed in anti-
IR immunoprecipitates. Metabolically labeled CHO-IR
cells were left untreated or incubated with insulin to in-
duce IR autophosphorylation, followed by cross-linking
reaction with BMH. Analysis of IR immunoprecipitates
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Figure. 1. TRAP recruitment to the human IR in intact cells.
(A) CHO-IR cells were serum starved before stimulation with 100
nM insulin for 5 min at 37°C. After a cross-linking reaction with 100
wM BMH, cell lysates were prepared and then immunoblotted with
anti-IR B-subunit or anti-IR a-subunit antibodies. (B) CHO-IR cells
were labeled with [*>SIMet/Cys for 16 h before stimulation with 100
nM insulin for 5 min at 37°C. After a cross-linking reaction, endogenous
IR was immunoprecipitated with anti-IR antibodies, resolved by
SDS-PAGE, and detected by autoradiography. Right margin, a-
and B-subunits of the IR; left margin, M, X 1073; asterisk, TRAP/IR
B-subunit complex.

from BMH-treated cells demonstrated insulin’s ability to
increase the extent of IR-TRAP covalent association with
concomitant decrease in the amount of free IR B-subunit
(Fig. 1 B).

To ascertain whether the length of the cross-linker spacer
arm dictates the extent of IR-TRAP covalent association,
insulin-stimulated CHO-IR cells were incubated either
with bismaleimidoethane (BMOE), bismaleimidobutane,
or BMH, which are three related thiol-specific homobifunc-
tional cross-linking reagents whose maleimido groups are
separated with flexible spacer arms of 8.0, 10.9, and 16.1 A,
respectively. Insulin promoted IR-TRAP complex forma-
tion irrespective of the cross-linker used (unpublished data),
indicating that the nucleophilic thiols (on TRAP and the IR
B-subunit) may be separated by at least 8 A.

Characterization of TRAP

The silver-stained gel of the anti-IR immunoprecipitates
resolved four major bands that corresponded to the TRAP/
B-subunit complex, IR proreceptor (af-dimer), and «-

and B-subunit, respectively, with apparent molecular masses
ranging between ~100 kD (B-subunit) and ~275 kD
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Figure 2. Purification and characterization of TRAP. Endogenous
IR was immunoprecipitated from insulin-stimulated CHO-IR cells
that were treated with BMH, and the immunoprecipitates were size
fractionated before SDS-PAGE and gel staining (left). A duplicate sam-
ple was blotted with anti-IR B-subunit antibody (right). M, size markers.

(TRAP/B-subunit) (Fig. 2). The IR B-subunit and TRAP/
B-subunit protein bands were subjected to in-gel digestion
with trypsin, followed by peptide mass fingerprinting and
MALDI analysis of the eluted peptides to provide tentative
identification of each protein species. 17 and 15 peptide
masses covering 17 and 9% of the IR B-subunit, respec-
tively, were found in both protein bands (estimated z value
of 2.16 and 2.38, respectively), whereas 12 peptide masses
within the TRAP/B-subunit band matched the 155-kD
PLCy1 (estimated z value of 2.39), corresponding to 10%
of the molecule. These peptides covered various regions
of PLCy1. Analysis of recombinant GST-tagged PLCy1
SH2/SH3 domain fusion protein by MALDI returned 18
peptide masses (estimated z value of 1.82), many of which
were strong matches with those found in the TRAP/B-sub-
unit protein band. Subsequent immunoblot analyses re-
vealed the presence of PLCyl in the IR-TRAP complex
(see below).

The cross-linking of PLCy1 with the IR upon cell treat-
ment with BMH indicates that both proteins must contain
reactive cysteines. Therefore, the ability of PLCy1 to react
with maleimidobutyrylbiocytin was investigated in HEK293
cells transfected with vector alone or HA-tagged PLCvy1. In
this thiol-specific biotinylation assay (Bernier et al., 1995),
recombinant as well as endogenous PLCyl were readily
modified (unpublished data), supporting the notion that
PLCv1 contains reactive thiol group(s).

Immunodetection of the PLCy1-IR complex

The association of PLCy1 with the IR was evaluated in
CHO-IR cells that were left untreated or exposed to a satu-
rating concentration of insulin (100 nM) for 3-30 min. Im-
munoblotting the ant-IR immunoprecipitates with andi-
PLCy1l antibody showed a time-dependent increase in
PLCy1 association with the IR in response to insulin that
persisted throughout the 30 min of the experiment (Fig. 3
A). The interaction is stimulated by insulin in a dose-depen-
dent manner, with detectable levels at 5 nM insulin (Fig. 3
B). Similar results were obtained by probing anti-PLCyl
immunoprecipitates with anti-IR antibody (unpublished
data). When immunoprecipitation was performed with a
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Figure 3. Insulin elicits recruitment of PLCy1 to the IR. (A) Serum-
starved CHO-IR cells were left untreated or stimulated with 100 nM
insulin for 3, 10, or 30 min. (B) CHO-IR cells were incubated with
the indicated concentrations of insulin for 15 min. Anti-IR immuno-
precipitates were blotted using anti-PLCy1™ and anti-IR a-subunit
antibodies. (C) CHO-IR cells were pretreated for 30 min with 200 pM
orthovanadate before stimulation with the indicated concentrations
of insulin for 15 min. Lysates were blotted with antibodies against
PLCy1 phosphorylated at Tyr-783 (pPLCy1) or PLCy1™. (D) Vanadate-
pretreated CHO-IR cells were stimulated with 100 nM insulin for
15 min. Anti-PLCy1 immunoprecipitates were subsequently probed
with anti-IR B-subunit, pPLCy1, or PLCy1™ antibodies. Preincubation
of anti-pPLCy1 antibody with antigenic peptide abolishes pPLCy1
signals (not depicted). Results shown are representative of several
independent experiments.

control IgG, no cosedimentation of the IR with PLCy1 was
detectable (unpublished data).

PLCy1 is a member of the phosphoinositide (PI)-spe-
cific PLC family whose phosphorylation by many activated
nonreceptor and receptor tyrosine kinases results in its sub-
sequent activation (Rhee 2001). To test the predictions
that PLCy1 tyrosine phosphorylation could occur with in-
sulin, CHO-IR cells were left untreated or treated with
insulin for 15 min both in the absence or presence of or-
thovanadate, a PTP inhibitor. The extent of PLCy1 phos-
phorylation at Tyr-783 was then determined in total
cell lysates by Western blot analysis using a commercially
available phosphospecific antibody. In the absence of vana-
date, the levels of tyrosine-phosphorylated PLCy1 were
barely detectable under basal conditions and after insulin
stimulation (unpublished data). However, PLCy1 tyrosine
phosphorylation was increased in a dose-dependent man-
ner after the addition of insulin to vanadate-pretreated
CHO-IR cells (Fig. 3 C), peaking within 10-30 min (un-
published data). Thus, insulin was found to induce tyro-
sine phosphorylation of PLCy1, and this effect was clearly
sensitive to PTP inhibition.

To further evaluate the role of insulin in mediating tyro-
sine phosphorylation and association of PLCy1 with the
activated IR, anti-PLCy1 immunoprecipitates from vana-
date-treated CHO-IR cells were probed with anti-IR. Insu-
lin stimulation led to a significant increase (6.4 = 1.6-fold;
n = 6) in IR cosedimentation with PLCy1 and in phos-
phoPLCy1 levels (Fig. 3 D).



>~
o0
9
2
aa]
o
)
Y—
o
©
(=
=
>
=}
(D)
e
I._

378 The Journal of Cell Biology | Volume 163, Number 2, 2003

Ip: anti-PLCyl

vanadate + +
insulin - +
97.4— [ = — Kb
220—
pPLCy1
— - = {Tyr783)
Blot: RC20
Ip: C anti-PLCyl
insulin  + - +
— | — IR t-sub
974—

Figure 4. Insulin induces tyrosine phosphorylation and association
of PLCy1 with the IR in HepG2 cells and rat hepatocytes. (A) Serum-
starved HepG2 cells were pretreated with 200 wM orthovanadate
for 30 min before stimulation with 100 nM insulin for 15 min.
Anti-PLCy1™ immunoprecipitates were blotted with the indicated
antibodies. Equal loading was confirmed by reprobing the membranes
with anti-PLCy1™. Results shown are representative of three inde-
pendent observations. (B) A primary culture of rat hepatocytes was
treated (or not treated) with 100 nM insulin for 10 min. Lysates were
incubated with anti-PLCy1 antibody or a control mAb (C), and the
immunoprecipitates were blotted with anti-IR a-subunit antibody.

Physiological significance of the IR-PLC+y1 association

Next, we investigated the role of insulin in the recruitment
of PLCyl to the endogenous IR in insulin-responsive
HepG2 cells. These cells were pretreated with orthovanadate
and then left untreated or exposed to 100 nM insulin for 15
min. Fig. 4 A shows the results of a typical experiment ana-
lyzing PLCyl immunoprecipitates that were blotted with
the IR B-subunit. In agreement with our previous results
with CHO-IR cells from this report, a constitutive and insu-
lin-inducible cosedimentation of the IR with PLCy1 was
observed, suggesting that insulin could promote the recruit-

ment of PLCy1 to the IR in a number of cell types. Higher
tyrosine phosphorylation of PLCyl was also noted in re-
sponse to insulin when PLCyl was immunoprecipitated
and then visualized with either anti-phosphoPLCy1 (pTyr-
783) or phosphotyrosine (clone RC20) antibody (Fig. 4 A).
Next, we determined that endogenous PLCy1 interacted
with the IR in primary culture of rat hepatocytes (Fig. 4 B).
These results strongly support a physiological role for the
PLCy1 association to the IR in insulin signaling.

PLCvy1 colocalizes with the IR at the plasma membrane
Immunofluorescence microscopy was used to test whether
the subcellular localization of the IR, PLCv1, and tyrosine-
phosphorylated PLCy1 is affected after stimulation of
CHO-IR cells with insulin. The IR was primarily found at
the plasma membrane when cells were left untreated or in-
cubated with insulin for 10 min (Fig. 5, left panels). The
distribution of PLCy1 throughout the cytosolic space was
not affected by the addition of insulin (Fig. 5, right pan-
els). In contrast, a strong tyrosine-phosphorylated PLCy1
signal was found at the plasma membrane of insulin-stimu-
lated cells (Fig. 5, middle panels). Confocal sectioning
showed that the ventral side of the cells (point of attach-
ment to the substratum) was largely devoid of IR and
PLCy1 (unpublished data), whereas the apical side was
decorated with both the IR and tyrosine-phosphorylated
PLCy1 in the form of small clusters surrounding the cell
membrane that are likely to be derived from the cortical cy-
toskeleton (Fig. 5, bottom panels).

Role of PI 3-kinase in mediating PLCy1 recruitment to
the IR

Recently, it has been shown that the generation of PI 3,4,5-
trisphosphate by PI 3-kinase may serve to target PLCy1 to
the plasma membrane via its PH domain (Falasca et al.,
1998). Therefore, we sought to examine the potential role of
the PI 3-kinase pathway in the modulation of PLCy1 bind-

Figure 5.  Cellular localization of IR and tyrosine-
phosphorylated PLCy1. CHO-IR cells were left
untreated or were stimulated with 100 nM insulin
for 10 min before fixation and permeabilization.
Cells were stained with antibodies against IR
B-subunit (left panels), pPLCy1 (middle panels),
and total PLCy1 (top two right panels). Bound
primary antibodies were detected with Alexa®
488-conjugated (green) or Alexa® 568-conjugated
(red) secondary antibody, and DNA was stained
blue by TO-PRO®-3. In some instances, cells were
stained only for F-actin using Alexa® 568—conjugated
phalloidin (red). Confocal sectioning in mid area
(bar, 10 wm) and apical surface (bar, 5 um) of
representative cells is shown. Similar results were
obtained in at least three independent experiments. insulin
Arrows indicate localization of tyrosine-phosphor-

ylated PLCy1 to the plasma membrane. Arrowheads

indicate punctate signal coalescence at the plasma
membrane.

basal

PPLCY1(Tyr783) PLCy1

mid-section
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Figure 6. The effect of PI 3-kinase inhibition on insulin-dependent
recruitment of PLCy1 to the IR. (A) Serum-starved CHO-IR cells
were pretreated with 200 wM orthovanadate for 20 min before addition
of either vehicle (DMSO) or 100 nM wortmannin for 30 min and a
10-min stimulation with 100 nM insulin. Anti-PLCy1 immunopre-
cipitates were blotted using anti-IR B-subunit and anti-PLCy1""
antibodies. (B) Cells were treated as in A before cross-linking reaction
with BMH. Anti-pPLCy1 immunoprecipitates were probed for the IR
B-subunit. Asterisk, IR B-subunit/PLCy1 complex. Results shown are
representative of at least two separate experiments.

ing to the IR. To address this issue, CHO-IR cells were pre-
treated with wortmannin, a pharmacological inhibitor of PI
3-kinase, followed by the addition of insulin. Blocking insu-
lin-dependent phosphorylation of AKT on Ser 473 with
wortmannin failed to inhibit PLCy1 association with the IR
(Fig. 6 A). Moreover, anti-phosphoPLCy1 (pTyr-783) im-
munoprecipitates did not display a reduction in BMH-
induced IR-PLCv1 cross-linking after pretreatment of cells
with wortmannin (Fig. 6 B), suggesting that PLCy1 recruit-
ment to the ligand-activated IR is independent of the PI
3-kinase pathway.

SH2 domain-independent association of PLCy1

with the IR

In addition to its catalytic subdomains, PLCy1 has a region
that contains two adjacent SH2 domains and an SH3 do-
main (Rhee, 2001). It has been proposed that the two SH2
domains are prerequisite for the association of PLCy1 with
activated receptors for PDGF and EGF. The R586K and
R694K mutations within the rat PLCyl SH2 domains
(N7C7) block the ability of PLCy1 to associate with acti-
vated PDGF receptors and to become tyrosine phosphor-
ylated (Ji et al., 1999). To test the importance of SH2
domains in mediating PLCyl association with the IR,
HEK293 cells were transiently cotransfected with the IR or
EGEF receptor along with either the HA-tagged PLCy1 wild-
type or N"C™ double SH2 domain mutant. After stimula-
tion with insulin or EGF, total cell lysates were prepared and
analyzed by immunoblotting. Both the wild-type and mu-
tant PLCy1 proteins were expressed at comparable levels
(Fig. 7 A, middle panels). As anticipated, the mutant PLCy1
protein was not tyrosine phosphorylated upon the addition

Insulin receptor-PLCvy1 interaction | Kwon etal. 379

A vt IR Vt _ EGFR

HA-PLCylwt - + - s W =
HA-PLCYIN-C- - - +

Blot: anti-pPLCy1{Tyr783)
- | -

Blot: HA

|<€ prca
220
-l

 EGFR

IR B-sub.

974 — .

Blot: RC20

Ip: anti-IR Ip: anti-EGFR

vt IR vVt  EGFR
HA-PLCYIwt - + - - - + -
HAPLGINC - - + - - - 4
| o | e
Blot: HA

|- PLCy1

Ip: anti-IR Ip: anti-EGFR

HA-PLCyl wt . 4+ . . o &
HA-PLCYINC- - - + - - +

— | — |"'|"LCT|

IR B-sub. Blot: HA
! 220

9;_}- --l |- L1 “‘EGFR

Blot: RC20

Figure 7. SH2 domain-independent association of PLCy1 with
the IR. (A and B) HA-tagged wild-type (wt) or N"C™ mutant PLCy1
was coexpressed with either the IR or EGF receptor in HEK293 cells.
Cells were serum starved before stimulation with 100 nM insulin
(left panels) or 20 nM EGF (right panels). Lysates were blotted with
the indicated antibodies (A). Exogenous IR or EGF receptors were
immunoprecipitated with specific antibodies and blotted with
anti-HA mAb (B). Vt, empty vector. (C) CHO cells stably expressing
human IR and EGF receptors were transfected with vector control
and either wild-type or N"C™ mutant PLCy1. Lysates from insulin-
or EGF-treated cells were immunoprecipitated as illustrated in B,
and blotted with anti-HA and RC20 antibodies. Shown are blots
of a representative experiment that was repeated three times with
identical results.

of insulin or EGF, despite marked autophosphorylation of
these receptors (Fig. 7 A). However, the expressed N™C™
PLCy1 mutant was coprecipitated with the IR, but not with
the liganded EGF recepror (Fig. 7 B).

To further test the selectivity of PLCy1 interaction with
these receptors, we transfected CHO cells stably expressing
both the IR and EGF receptors (CHO-EI) with wild-type
PLCy1 or the N"C™ mutant. Stimulation of CHO-EI cells
in response to insulin or EGF resulted in the cosedimenta-
tion of wild-type PLCry1 with activated IR or EGF receptors
(Fig. 7 C). In contrast, the N"C™ PLCyl mutant was re-
cruited to the liganded IR, but not to EGF receptors (Fig. 7
C). Together, these data show the SH2 domain-indepen-
dent association of PLCy1 with the IR.

A number of IR-interacting proteins, including Gab-1
and IRS, contain a PH domain that allows their membrane
association. To assess the importance of this domain in the
recruitment of PLCy1 to the IR in intact cells, various ex-
periments were performed using HA-tagged PH-EF domain
(aa 1-301) of rat PLCyl. This construct was readily de-
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Figure 8. Ectopic expression of the PH-EF domain alters PLCy1
interaction with the IR. (A) Empty vector (pcDNA) or HA-tagged
PH-EF domain of PLCy1 was expressed in HEK293 cells for 48 h.
Lysates were immunoprecipitated with either anti-HA or anti-PLCy1™
antibody and blotted as indicated. Asterisk, endogenous PLCy1.
(B) HEK293 cells transfected with either control pcDNA vector, PH-EF,
or APH-EF PLCy1 mutant were treated with 200 uM orthovanadate
before stimulation with 100 nM insulin for 10 min. Cosedimentation
of endogenous PLCy1 in anti-IR immunoprecipitates was detected
with anti-PLCy1™ antibody, and the membrane was then reprobed
with anti-IR 8 subunit antibody. (C) HEK293 cells transfected with
either pcDNA, PH-EF, or APH-EF PLCy1 mutant were serum starved
and then stimulated with 20 nM EGF for 10 min. Endogenous EGF
receptors were immunoprecipitated and then blotted with anti-RC20
and PLCy1™ antibodies. An aliquot of total cell lysates was probed
with anti-HA antibody to confirm expression of each construct
(B and C). (D) Serum-starved HEK293 cells transfected with either
control pcDNA vector or PH-EF were treated with 200 pM ortho-
vanadate before stimulation with 100 nM insulin for 10 min. Cell
lysates were blotted with the indicated antibodies. Shown are repre-
sentative experiments that were repeated at least three times.

tected as a 40-kD protein upon transient transfection in
HEK-293 cells and upon immunoprecipitation using anti-
HA or an antibody against the PLCy1 PH domain (Fig. 8
A). Expression of the HA-tagged PH-EF construct led to a
60 = 11% decrease (P < 0.01; » = 4) in the ability of insu-
lin to stimulate recruitment of cellular PLCy1 to the acti-
vated IR (Fig. 8 B, top left). To determine if a PLCyI mu-
tant lacking the PH-EF motif could also interfere with this
interaction, an NH,-terminal truncation of 301 amino acids
was performed to generate the APH-EF PLCyl mutant.
HEK293 cells expressing HA-tagged APH-EF displayed no
reduction in the binding of endogenous PLCy1 with the IR
(Fig. 8 B, top right), but markedly abrogated the PLCy1-
EGF receptor interaction (Fig. 8 C, middle right). Impor-
tantly, expression of the PH-EF construct did not block
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Figure 9. PLCy1 is required for ERK activation by insulin.

(A) Empty vector (pcDNA) or HA-tagged PLCy1 was coexpressed
with the IR in PLCy7™"~ mouse embryonic fibroblasts for 24 h. (B)
HepG2 cells were transfected with either control or PLCyT siRNA
duplex for 48 h. In both cases, serum-starved cells were preincubated
with 200 wM vanadate for 30 min before stimulation with 100 nM
insulin for 10 min. Cell lysates were blotted with the indicated anti-
bodies. Similar results were obtained in three independent experiments.

PLCyl association with the activated EGF receptor in
HEK293 cells (Fig. 8 C, middle left) or HepG2 cells (un-
published data). Ligand-mediated phosphorylation of the
EGF receptors was normal in all conditions tested (Fig. 8 C,
top panels). These results are consistent with the PH-EF do-
main being required for PLCy1 interaction with the IR.

Overexpression of PH-EF had no effect on the stimula-
tion of IR and IRS tyrosine phosphorylation in response to
insulin (Fig. 8 D, top), and it did not inhibit insulin stimu-
lation of AKT phosphorylation. However, the levels of p42/
44 MAPK (ERK) phosphorylation elicited by insulin were
reduced by ectopic expression of the PH-EF construct. (Fig.
8 D, third panel).

To further test the requirement of PLCy1 for insulin sig-
naling, we used PLCyI ~'~ fibroblasts reconstituted with the
IR alone or together with wild-type PLCyl. After serum
withdrawal, cells were stimulated in the absence or presence
of insulin, then in the phosphorylation of endogenous ERK,
and AKT phosphorylation was measured in total cell lysates
using phosphospecific antibodies. Insulin-stimulated ERK
phosphorylation was activated to a greater extent in cells re-
constituted with wild-type PLCy1, whereas there was only
an ~20% increase in AKT phosphorylation levels by insulin
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(Fig. 9 A). Lastly, the role of PLCy1 in insulin action was
determined using siRNA methodology. HepG2 cells trans-
fected with a control siRNA duplex had no reduction in
PLCy1 expression (Fig. 9 B, second panel). However, with a
PLCy1-specific siRNA duplex targeting to the 2979-2999
region of the human PLCyl mRNA-coding sequence, the
expression of PLCy1 was dropped to ~30% of the levels of
siRNA controls. Exposure of these cells to insulin activated
the phosphorylation of IRSs and AKT to levels equivalent to
those in insulin-stimulated cells transfected with control
siRNA (Fig. 9 B). More significantly, incubation with
PLCvy1 siRNA attenuated ERK phosphorylation elicited by
insulin (Fig. 9 B, fifth panel). These results demonstrate the
efficiency of the siRNA template and indicate the pathway
of insulin signaling that PLCy1 may relate to.

Discussion

We have identified and characterized a signaling complex
between the IR and PLCyI in a number of cultured cell
lines and in a primary culture of rat hepatocytes. The results
originate from our initial efforts aimed at identifying a thiol-
reactive protein that covalently associates with the IR upon
cell treatment with the cross-linking agent BMH. The IR-
associated protein was found to be PLCyl by mass spec-
trometry analysis, and was independently confirmed by re-
ciprocal immunoprecipitation experiments. Insulin increases
the binding of PLCy1 to the activated IR in an SH2 do-
main-independent manner. Using various PLCyl con-
structs, we found that the NH,-terminal region of PLCyl
encompassing the PH and EF-hand domain is necessary for
binding the IR. Additional experiments demonstrated that
PLCy!1 and its interaction with the IR play an important
role in ERK activation in response to insulin.

Increase in PLCyl-mediated PI(4,5)-bisphosphate hy-
drolysis has been reported in ant-IR immunoprecipitates
from insulin-stimulated 3T3-L1 adipocytes (Eichhorn et al.,
2001). However, whether the binding of PLCy1 to the IR
was direct or through an accessory protein remains unclear.
It should be noted that c-Cbl tyrosine phosphorylation by
insulin requires the adaptor protein APS, which coordinates
interaction between c-Cbl and the activated IR (Liu et al.,
2002). Our data show the direct interaction between PLCy1
and the IR using cross-linking methodology in intact cells. A
significant conformational change of the cytoplasmic region
of the receptor B-subunit occurs as the result of IR auto-
phosphorylation (Baron et al., 1992; Lee et al., 1997).
Hence, the mechanism by which PLC+1 is recruited to the
IR in response to insulin may involve change in conforma-
tional flexibility at the interface between the two proteins,
which brings the pair of reactive thiols (Cys 981 of the IR
[Garant et al., 2000] and that of PLCy1) in close proximity.
The inter-thiol distance could be separated by as much as
8 A, as the BMH analogue (BMOE) was efficient at pro-
moting the formation of a covalent IR-PLCy1 complex.

Our results show insulin-stimulated phosphorylation of a
positive regulatory residue (Tyr-783) on PLCy1 both in
CHO-IR and HepG2 cells, as well as in HEK293 cells
and PLCyI™"~ fibroblasts transiently expressing wild-type
PLCyl1. A commercially available phosphoPLC+y1 antibody
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(pTyr-783) was used, and the results were confirmed with
anti-phosphotyrosine. By contrast, no PLCy1 tyrosine phos-
phorylation was detected upon addition of insulin in 3T3-
L1 adipocytes (Eichhorn et al., 2001). It has been suggested
that kinases of the Src family have the ability to phosphory-
late and activate PLCy1 (Nakanishi et al., 1993). Src-related
kinases are abundant in caveolin-rich raft preparations of ad-
ipocytes (Mastick and Saltiel, 1997; Miiller et al., 2001) and
CHO-IR cells (unpublished data), and are believed to play a
role during insulin signaling (Sun et al., 1996). Because the
IR appears to be incapable of directly phosphorylating
PLCy1 (Nishibe et al., 1990), it is possible that upon insulin
stimulation, PLCy1 is repositioned for phosphorylation by
raft-associated Src-family kinases. PLCy1 contains several
tyrosine residues that are targets of receptor and nonreceptor
tyrosine kinases and whose phosphorylation may contribute
to positive or negative regulation of PLCyl (Kim et al,,
1991; Plattner et al., 2003). However, a subset of these
phosphotyrosine moieties may function as a docking site for
SH2 domain—containing proteins during signal transduc-
tion (Pei et al., 1997) rather than participating directly in
the regulation of PLCy1.

PLCyI1 accumulates preferentially to cortical actin struc-
tures in EGF-stimulated A431 cells (Diakonova et al.,
1995), where it binds to actin-binding proteins via its SH3
domain (Park et al., 1999). Furthermore, interaction be-
tween the COOH-terminal SH2 domain of PLCvy1 and the
actin cytoskeleton has been demonstrated in an in vitro
binding assay (Pei et al., 1996). Our data show that upon in-
sulin stimulation, the IR and tyrosine-phosphorylated
PLCy1 colocalize with the actin clusters that ringed the
plasma membrane. These results are consistent with the im-
portant role played by PLCy1 in cytoskeletal reorganization
and membrane ruffling after cell activation (Yu et al., 1998).
Similarly, PI 3-kinase is linked to cytoskeletal reorganization
(Vanhaesebroeck et al., 2001) and for full activation of
PLCy1 in some models (Rhee, 2001). Inhibition of PI 3-kinase
activity by wortmannin has provided an opportunity to as-
sess the mechanism of PLCy1 binding to membrane-associ-
ated IR in response to insulin. We found that the insulin-
stimulated formation of PI (3,4,5)-trisphosphate does not
act as a targeting signal for PLCy1 interaction with the IR.

A principal conclusion of this report is that SH2 domains
have little role, if any, in promoting PLCy1 recruitment to
the IR. In contrast, disabling both SH2 domains was found
to prevent the N"C~ PLCyl mutant to associate with
ligand-activated receptors for PDGF (Ji et al., 1999) and
EGF (this paper). In this regard, Grb14 has been proposed
to interact with the IR in an SH2-independent manner, with
the BPS domain being the main interacting region (Kasus-
Jacobi et al., 2000). It is noteworthy that the binding of the
N~C™ PLCy1 mutant to the IR occurs even though the mu-
tant is not phosphorylated at Tyr-783 in response to insulin,
indicating that efficient PLCy1 association with the IR may
not require this phosphorylation event. We established that
the NH,-terminal region of PLCy1 encompassing the PH-
EF domain is able to bind to the IR, as is the full-length pro-
tein, thereby selectively blocking recruitment of endogenous
PLCy]I to the activated IR, but not EGF receptors. Impor-
tantly, our data show that a truncated PLCyl mutant lack-
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ing the PH-EF region fails to bind to the IR, which is con-
sistent with the notion that the PH-EF-hand domain is
necessary for PLCy1 association with the IR. Mutations in
the PH domain of PLCy1 did not affect recruitment of
PLCy1 to the EGF receptor (Matsuda et al., 2001). It is now
believed that PH domains can interact specifically with a
subset of signaling molecules rather than exerting promiscu-
ous effects. For example, the IRS-1 PH domain has recenty
been shown to bind to a protein ligand referred to as PHIP
(Farhang-Fallah et al., 2000), and interaction of F-actin with
proteins that contain PH domains directs them to sites of cy-
toskeletal rearrangement at the plasma membrane (Yao et al.,
1999). On the other hand, the B-adrenergic receptor kinase
PH domain must bind to heterotrimeric G-protein By sub-
units and with PI (4,5)-bisphosphate to promote effective
membrane targeting (Pitcher et al., 1995). The importance
that EF-hand alone has in modulating IR-PLCvy1 associa-
tion will be the subject of future investigations.

Our findings suggest that PH-EF overexpression may ex-
ert selective effects in insulin action through alteration in
PLCy1 signaling. Expression of PH-EF has been found to
inhibit endogenous PLCy1 association with the IR with
concomitant reduction in ERK (but not AKT) phosphoryla-
tion in response to insulin. Similarly, increase in ERK phos-
phorylation by insulin was markedly reduced after blocking
PLCy1 expression in HepG2 cells using siRNA methodol-
ogy. Additionally, reconstitution of PLCy1 in PLCyI ™'~ fi-
broblasts significantly elevates the ability of insulin to pro-
mote ERK activation. PLCy1 has been implicated in the
regulation of MAPK activation in some systems (Zhang et
al., 2000; Jacob et al., 2002). Together, our results support
the hypothesis that PLCy1 association with the IR is neces-
sary for ERK regulation in response to insulin. This may be
of physiological significance, as the unique structure of
PLCy1 with its PH, SH2, and SH3 domains may allow
scaffolding of effector proteins harboring phosphotyrosine
residues or proline-rich domains near the activated IR. The
SH3 domain of PLCy1 has been shown to be involved in
SOS-mediated Ras activation (Kim et al., 2000) and to in-
teract with ¢-Cbl (Tvorogov and Carpenter, 2002). The
finding that the activated hybrid receptor encompassing the
tyrosine kinase domain of the IR requires PLCy1 for effi-
cient calcium mobilization is potentially important (Telting
et al., 1999). On the other hand, a PLCy1 mutant lacking
the lipase activity can induce DNA synthesis (Smith et al.,
1994), indicating that the products of PLCy1 activation and
its associated mobilization of intracellular calcium may not
be required for all aspects of PLCy1 signaling. In view of the
fact that PLCy1 can fulfill functions that are not necessarily
dependent on its enzymatic activity, this raises the possibility
of a unique activation mechanism whereby PLCy1 acts as an
adaptor protein. To what extent the findings reported here
relate to the role of PLCy1 in insulin action remains to be
elucidated.

Materials and methods

Materials

The anti-human IR mAbs for immunoprecipitation (clones 29B4 and ClI
25.3) were purchased from Calbiochem. The anti-IR B-subunit antibody
as well as HRP-linked phosphotyrosine (clone RC20) antibody for West-

ern blot were purchased from Transduction Laboratories. The phospho-
p42/44 MAPK and phospho-AKT antibodies were purchased from Cell
Signaling Technology. The anti-phosphoPLCy1(Tyr-783) antibody for im-
munoprecipitation and immunofluorescence experiments (sc-12943R),
PLCy1 SH2/SH3 domain fusion protein (residues 530-850), and anti-IR
a-subunit antibody were purchased from Santa Cruz Biotechnology, Inc.
The anti-phosphoPLCy1(Tyr-783) antibody for Western blot was pur-
chased from Biosource International. The anti-PLCy1"" mAb (generated
against a 19-aa sequence within the PH domain) was purchased from
CHEMICON International, and a mixture of anti-PLCy1 mAbs (05-163)
was obtained from Upstate Biotechnology. The HA epitope antibodies
were purchased from Covance. Alexa Fluor® secondary antibodies, Alexa
Fluor® 568—conjugated phalloidin, and TO-PRO®-3 were purchased from
Molecular Probes, Inc. FUGENE™ 6 and LipofectAMINE™ 2000 were
purchased from Roche and Invitrogen, respectively. Recombinant human
insulin and EGF were purchased from Calbiochem and Upstate Biotech-
nology, respectively. BMH, BMOE, and bismaleimidobutane were pur-
chased from Pierce Chemical Co. Wortmannin, sodium orthovanadate,
and DMSO were purchased from Sigma-Aldrich. The commercial sources
for electrophoresis reagents, culture media, sera, films, HRP-linked sec-
ondary antibodies, and the ECL detection system for immunoblot detec-
tion have been described previously (Garant et al., 2000).

Plasmids and mutagenesis

The pRK5 vector containing cDNA for the HA-tagged rat PLCy1 wild-type
and the PLCy1 SH2 domain double mutant (N"C™) were obtained from
Graham Carpenter (Vanderbilt University, Nashville, TN). The plasmid en-
coding the human EGF receptor (pXER) was provided by Alexander Sorkin
(University Colorado Health Science Center, Denver, CO). The HA-tagged
PH-EF domain of rat PLCy1 (1-301) was amplified from the pRK5/HA-
PLCy1 plasmid using PCR-based site-directed mutagenesis with primers to
introduce a Hindlll site between EF-hand and catalytic domain “X” of
PLCy1. A 2,961-bp Hindlll-HindlIll fragment was excised, and the linear-
ized pRK5/HA-tagged PH—EF plasmid was then self-ligated. An HA-tagged
truncated PLCy1 mutant lacking the PH-EF domain (APH-EF) was created
using PCR-based site-directed mutagenesis with primers to introduce EcoRI
sites both at the junction between HA epitope and PH domain and be-
tween EF-hand and catalytic domain “X”. A 903-bp EcoRI-EcoRI fragment
was excised and the linearized pRK5/HA-tagged APH-EF plasmid was then
self-ligated. The constructs were verified by DNA sequence analysis.

Cell culture and metabolic labeling

CHO cells stably expressing wild-type human IR or both the IR and EGF
receptors (CHO-EI cells) have been described previously (Kole et al.,
1996). HEK293 and liver-derived HepG2 cells were purchased from Amer-
ican Type Culture Collection (Manassas, VA), and PLCy1~’~ mouse embry-
onic fibroblasts were gifts from Dr. G. Carpenter (Ji et al., 1998). All CHO
cell lines were expanded and maintained in Ham’s F12 supplemented
with 10% FBS, 100 U/ml penicillin, and 100 pg/ml streptomycin, whereas
HepG2 and HEK293 cells were maintained in DME and McCoy’s 5A me-
dium containing 10% FBS and antibiotics. Cells were incubated in a hu-
midified atmosphere of 5% CO, at 37°C.

For metabolic labeling experiments, confluent monolayers of CHO-IR
were incubated for 16 h with 60 pw.Ci/ml Trans **S-label (ICN Biomedicals)
in methionine- and cysteine-free RPMI 1640 medium containing 3% FCS.
After a series of PBS washes, cells were serum starved for 3 h and were
then subjected to treatments as described below.

Isolation and culture of rat hepatocytes

Hepatocytes were isolated from 5-mo-old male Fischer 344 rats by the col-
lagenase perfusion method of Seglen (Ikeyama et al., 2002). The isolated
cells were seeded onto Biocoat Collagen | cellware (BD Discovery Lab-
ware) in William’s E medium supplemented with 5% FBS, 2 mM L-gluta-
mine, 100 U/ml penicillin, and 100 pg/ml streptomycin for 2 h in 5% CO,
at 37°C to allow attachment to the dishes. The medium was then replaced
with serum-free William’s E medium plus the above supplements, and
cells were cultured for an additional 16 h before treatment. This procedure
results in <5% contamination with nonhepatocyte cells.

Transient transfection assays

HEK293 cells were cultured for 24 h until 60-80% confluence was
reached. Transient transfection was performed according to the manufac-
turer’s protocol for the use of FUGENE™ 6. In brief, empty expression vec-
tor (pcDNA3.1) and expression plasmids encoding HA-tagged PLCy1 [wild
type or N~C™] together with recombinant human IR or human EGF recep-
tor were mixed with the transfection reagent and directly added into the
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culture plates at a ratio of 1.5 pg of each plasmid per 60-mm dish. Both
CHO-EI cells and PLCy1™"~ mouse embryonic fibroblasts were transfected
using LipofectAMINE™ 2000 according to the manufacturer’s protocol.
24 h after transfection, cells were serum starved for 18 h and then sub-
jected to a 30-min treatment with 200 uM orthovanadate followed by stim-
ulation with 100 nM insulin or 20 nM EGF for 5-10 min at 37°C. Transfec-
tion efficiency was monitored using a plasmid DNA encoding eGFP.

siRNA preparation and cell transfection

The siRNA sequence targeting human PLCy1 (GenBank/EMBL/DDBJ ac-
cession no. NM_002660) was from position 2979-2999 relative to the
start codon. This PLCy1 sequence was reversed and used as unspecific
siRNA control. 21-nt RNAs were purchased from Dharmacon in depro-
tected and desalted form, and the formation of siRNA duplex (annealing)
was performed according to the manufacturer (Dharmacon). Subconfluent
HepG2 cells were transiently transfected with siRNAs using Oligo-
fectamine™ according to the manufacturer’s protocol (Life Technologies).
In brief, 100 pl Opti-MEM® I medium and 10 ul Oligofectamine™ per 60-
mm dish were preincubated for 5 min at RT. During the time for this incu-
bation, 100 pl Opti-MEM® | medium was mixed with 20 ul of 20 pM
siRNA. The two mixtures were combined and incubated for 20 min at RT
for complex formation. The entire mixture was then added to the cells in
one dish resulting in a final concentration of 100 nM for the siRNAs. Cells
were usually assayed 48-72 h after transfection. Specific silencing was
confirmed by at least three independent experiments.

Immunofluorescence and confocal microscopy

Cells grown on coverslips were fixed in fresh 4% PFA in PBS for 10 min
and permeabilized in 0.1% Triton X-100 in PBS for 10 min at RT. The cells
were incubated with blocking buffer (8% BSA in PBS) for 20 min at RT,
washed in PBS supplemented with 0.5% BSA and 0.05% Tween 20, and
incubated with anti-IR B-subunit (1:100; 06-492, Upstate Biotechnology),
phosphoPLCy1(1:50; Tyr-783), or PLCy1 (1:200; Upstate Biotechnology)
antibody for 16 h at 4°C. After washing, cells were stained with Alexa
Fluor® secondary antibody (1:1,000). For immunolocalization of F-actin,
fixed cells were incubated with Alexa Fluor® 568-conjugated phalloidin.
Nuclear counterstaining was performed by incubating coverslips with TO-
PRO®-3 in PBS for 5 min before mounting slides with Vectashield® (Vector
Laboratories). Images were acquired using an inverted confocal micro-
scope (LSM-410; Carl Zeiss Microlmaging, Inc.) with a 63X oil-immersed
objective, and processed using the MetaMorph® software (Universal Imag-
ing Corp.). No fluorescent staining was observed when the primary anti-
body was omitted.

IR-TRAP cross-linking in intact cells

Serum-starved cells were washed twice in PBS, and were then incubated
in Krebs Ringer phosphate buffer for 5 min at 37°C. 100 nM insulin was
added for 5 min and cells were then transferred to thermoregulated alumi-
num cooling plates set at 6°C. The cross-linking reaction was initiated by
the addition of 100 uM BMH or vehicle (DMSO) and quenched 10 min
later with 4 mM L-cysteine. In some instances, cross-linking was performed
in the presence of 100 uM BMOE or BMB. For wortmannin treatment, 100
nM wortmannin was added to the cells 30 min before insulin stimulation.

Immunoprecipitation and immunoblotting

Cells were lysed in immune precipitation buffer (20 mM Tris-HCI, pH 7.5,
137 mM NaCl, T mM orthovanadate, 100 mM NaF, 0.1% SDS, 0.5%
deoxycholate, 1% Triton X-100, 0.02% sodium azide, 0.25 mM Pefabloc-
SC [Boehringer], T mM benzamidine, 8 wg/ml aprotinin, and 2 pg/ml leu-
peptin) for 20 min on ice, and then centrifuged at 10,000 g for 20 min at
4°C to sediment insoluble materials. The clarified lysates were incubated
with the indicated antibodies for 16 h at 4°C with rocking. Then, protein
A/G-agarose (Oncogene Research Products) beads were added and the in-
cubation was continued at 4°C for 2 h. The beads were pelleted by cen-
trifugation and washed twice in the same buffer and twice in 50 mM
Hepes, pH 7.4, and 0.1% Triton X-100 before solubilization in Laemmli
sample buffer supplemented with 5% 2-mercaptoethanol. In some experi-
ments, cells were lysed directly in Laemmli sample buffer containing 5%
2-mercaptoethanol and T mM orthovanadate. After heating at 70°C for 10
min, proteins were separated by SDS-PAGE and were electrotransferred
onto polyvinylidene difluoride membranes. Detection of individual pro-
teins was performed by immunoblotting with specific primary antibodies
and visualized by ECL. Signals were quantitated by densitometry coupled
with the ImageQuant software (Molecular Dynamics). Where indicated,
membranes from **S-labeling experiments were dried and autoradiogra-
phy was performed.
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Purification of the IR-TRAP complex

10 X 150-mm dishes of CHO-IR cells were incubated with 100 nM insulin
for 5 min and were then subjected to cross-linking reaction with BMH as
shown above. After immunoprecipitation of the cell lysates with anti-IR
antibodies prebound to protein G-agarose, the immune pellets were
washed extensively and then incubated with 1 ml 1.5X Laemmli sample
buffer without 2-mercaptoethanol for 60 min at RT. The eluted proteins
were then concentrated down to 50 pl using an Ultrafree® centrifugal filter
(molecular weight cut-off of 100 kD, Millipore). The concentrated material
was incubated with 2-mercaptoethanol (7.5% final concentration) for 10
min at 70°C, and was then resolved by SDS-PAGE.

TRAP identification by MALDI mass spectrometry

Colloidal blue-stained bands were cut out of the gels for in-gel digestion
as follows. The gel pieces were equilibrated for 20 min in 200 pl 25 mM
ammonium bicarbonate, 50% acetonitrile. The supernatant was decanted
and the same procedure was repeated until full decoloration of the gel.
The gel pieces were dried, rehydrated for digestion with 5 pg/ml porcine
trypsin (Roche) in 25 mM ammonium bicarbonate, and incubated at 37°C
overnight. The reaction was stopped by adding 1 vol of 50% acetonitrile,
0.5% trifluoroacetic acid. The peptides were extracted from the gel matrix
by sonication for 0.5-1 h. Peptide mass fingerprinting was performed using
a mass spectrometer (Voyager-DE STR; PerkinElmer) operating in delayed
reflector mode at an accelerating voltage of 20 kV. The peptide samples
were cocrystallized with matrix on a gold-coated sample plate using 1 pl
matrix (a-cyano-4-hydroxy-transcinnamic acid) and 1 wl sample. After in-
ternal calibration with protein standards (renin, angiotensin, and adreno-
corticotropic hormone), the monoisotope peptide masses were assigned
and then used in database searches with ProFound (http://prowl.rockefeller.
edu/profound_bin/webProFound.exe). Cysteines were modified by acryl-
amide, and methionine was considered to be oxidized. One missed cleav-
age was allowed.
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