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Multidrug resistance (MDR), which is a significant impediment to the success of

cancer chemotherapy, is attributable to various defensive mechanisms in cancer. Initially,

overexpression of ATP-binding cassette (ABC) transporters such as P-glycoprotein

(P-gp) was considered the most important mechanism for drug resistance; hence, many

investigators for a long time focused on the development of specific ABC transporter

inhibitors. However, to date their efforts have failed to develop a clinically applicable

drug, leaving only a number of problems. The concept of cancer stem cells (CSCs)

has provided new directions for both cancer and MDR research. MDR is known to be

one of the most important features of CSCs and thus plays a crucial role in cancer

recurrence and exacerbation. Therefore, in recent years, research targeting CSCs has

been increasing rapidly in search of an effective cancer treatment. Here, we review the

drugs that have been studied and developed to overcome MDR and CSCs, and discuss

the limitations and future perspectives.
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INTRODUCTION

Chemotherapy is one of the most effective treatments for cancer; however, its success has been
challenged by the acquisition of multidrug resistance (MDR) (1). MDR is caused by sustained
(dose-dependent or time-dependent) administration of chemotherapeutic drugs, resulting in
cross-resistance to a broad spectrum of structurally- and mechanically-distinct chemotherapeutic
drugs (2). There are several mechanisms underlying MDR (3, 4): (i) increased pumping out of the
drug through efflux pumps such as P-glycoprotein (P-gp) encoded by ABCB1 (5); (ii) decreased
uptake of the drug through transporters; (iii) activation of drug-metabolizing enzymes such as
cytochrome P450 and glutathione S-transferase; (iv) activation of DNA repair systems; (v) evasion
of apoptosis. The first three of these processes are conducive to the development of resistance by
preventing the drug from reaching an effective concentration, while the remaining twomechanisms
achieve resistance by detoxifying the action of the drug. Based on the mechanisms described, we
have been trying to establish strategies for overcoming MDR. Before discussing them further, we
need to understand the existence of cancer stem cells (CSCs) and their roles in cancer biology.
CSCs, also known as tumor-initiating cells (TICs), are a small population of cancer cells that have
the ability to self-renew and differentiate similar to normal stem cells (NSCs). However, as CSCs
are tumorigenic, they can contribute to the aggravation and recurrence of cancer (6). According
to a CSC model that explains the relationship between CSC and MDR, increased expression of
ATP-binding cassette (ABC) transporters and other genes contributes to the intrinsic resistance
of CSCs to chemotherapy (7, 8). CSCs have relatively slow cell-cycle kinetics and are therefore
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targeted less by chemotherapeutic drugs compared to rapidly
dividing cells (9). In addition to the well-known ABC
transporters (2, 10), many other drug resistance mechanisms of
CSCs have been identified, for example, aldehyde dehydrogenases
(ALDHs) (11), epithelial-mesenchymal transition (EMT) (12),
epigenetic modifications (13, 14), factors affecting tumor
microenvironment, such as hypoxia (15), and signaling pathways
(16–18). In this review, we provide a brief outline of MDR
mechanisms and focus on the investigated drugs.

CURRENT STRATEGIES TO OVERCOME
MDR

Targeting ABC Transporters
ABC transporters including ABCB1, ABCC1, and ABCG2 are
expressed in cancer stem/progenitor cells. These transporters
have broad drug specificity and pump out a wide range of
structurally- and mechanically-unrelated compounds, thereby
lowering the intracellular accumulation of these compounds
and consequently diminishing their biological efficacies (19).
Several chemotherapeutic agents in clinical use are susceptible to
ABC transporter-mediated efflux, such as microtubule-targeting
taxanes (e.g., docetaxel and paclitaxel) and vinca alkaloids
(vinblastine and vincristine), DNA-damaging anthracyclines
(daunorubicin and doxorubicin), topoisomerase inhibitors
(etoposide and topotecan), and tyrosine kinase inhibitors
(dasatinib and gefitinib) (20). Therefore, developing strategies
to target ABC transporters is an important area of cancer
research, and many studies have been conducted accordingly
(21). There are three approaches: (i) regulating the function
of ABC transporters using competitive or allosteric inhibitors
(Table 1) as well as the antibodies that target ABC transporters,
such as UIC2 and MRK16 (86); (ii) regulating gene expression
of ABC transporters at the transcriptional or translational level
because, as with trabectedin, it is an attractive strategy to control
ABC transporters at the transcriptional level by affecting the
MDR enhanceosome (87–89); (iii) using anticancer drugs that
are poor substrates of P-gp, such as ixabepilone (Table 1). Until
ixabepilone was launched, efforts to develop drugs targeting ABC
transporters had been a driving force in the development of first-,
second-, and third-generation P-gp inhibitors (90, 91). However,
it has been reported that first-generation inhibitors have low
potency and high toxicity, and second-generation inhibitors have
frequent drug-drug interactions (92). With the third-generation
inhibitors, there have been many improvements with regard
to the drawbacks of the previous generations, but clinical trial
data are still insufficient. In effect, most clinical trials have been
discontinued. Because NSCs, including hematopoietic stem cells,
unrestricted somatic stem cells, and mesenchymal stem cells, also
express ABC transporters to protect themselves from cytotoxic
agents (93), inhibiting ABC transporters may cause serious side
effects such as hematopoietic disorders due to bone marrow
dysfunction. Therefore, the emergence of ixabepilone was
inevitable and has been well-received. Like taxanes, ixabepilone
leads to G2/M phase arrest by stabilizing microtubules and
promoting tubulin polymerization. However, ixabepilone has a

very important feature (not found in taxanes) effective against
cancer cells that acquire MDR following repeated chemotherapy,
as this drug is not pumped out through P-gp. Now, developing
drugs that are not substrates of P-gp has become a trend for
overcoming MDR cancer. In light of ixabepilone, chemical
modifications of paclitaxel and vinblastine have also been
attempted in succession, producing cabazitaxel and ortataxel,
and vinflunine, respectively (Table 1). After these modifications,
increased cytotoxic effects were observed in P-gp-overexpressing
cell lines (43).

Targeting Aldehyde Dehydrogenases
ALDH plays an important role in the differentiation of stem cells
by converting retinol into retinoic acid, as well as detoxifying
the cells by converting aldehyde into carboxylic acid, and thus
ALDH is considered a biomarker for stem cells (11, 94). Several
studies have shown that ALDH-1 is correlated with CSCs.
Gefitinib, an EGFR inhibitor, is used for breast-, lung-, and
other cancers. However, it has been confirmed that ALDH1A1-
positive CSCs are more resistant to gefitinib than ALDH1A1-
negative CSCs (95). ALDH-1 expression is mediated by high
expression of Snail, which regulates metastasis as a transcription
factor and subsequently causes CSCs to develop resistance to
chemotherapy (96). To solve this problem, ALDH inhibitors,
such as diethylaminobenzaldehyde, disulfiram, and tretinoin,
have been proposed (Table 1). Bromodomain and extra-terminal
(BET) inhibitors such as JQ1 have also been proposed due to their
ability to suppress ALDH1A1 expression (97).

Targeting Epithelial-Mesenchymal
Transition
EMT is a process by which epithelial cells become mesenchymal
stem cells. In this process, epithelial cells lose cell polarity
and cell-cell adhesion function but gain migratory and invasive
functions (98, 99). In other words, EMT causes cancer cells
to exhibit stem-like features such as tumorigenicity. EMT
also promotes metastasis that occurs mainly due to reduced
expression of E-cadherin, which itself is directly repressed by
Snail (100). Because EMT plays a crucial role in chemoresistance
of CSCs, strategies to inhibit this process can be effective. Some
studies have shown that AMP-activated kinase (AMPK) induces
apoptosis of cancer cells, inhibits TGF-β-induced EMT and,
consequently, can reverse drug resistance (101). AMPK activators
that have been proposed include metformin and thalidezine
(Table 1). Although the data are still insufficient, these activators
seem to have enough potential to overcome chemoresistance.
It has also been proposed that histone deacetylase (HDAC)
inhibitors suppress EMT and attenuate chemoresistance (102).

Targeting Epigenetic Modifications
Histone acetylation, one of the most common post-translational
modifications, is closely associated with CSC chemoresistance.
This process, in which lysine residues are acetylated, is
tightly regulated by histone acetyltransferases (HATs) and
HDACs. Bromodomains (BRD) of the BET family proteins
read acetyl-lysine (Kac) residues on histones and regulate
gene expression. BET family proteins recruit the positive
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TABLE 1 | Drugs that reverse chemoresistance via various mechanisms.

Drugs MOA Clinical trial References

ABC transporter inhibitors

Cyclosporine 1st generation

ABCB1 competitive inhibitors

– (22)

Nicardipine (23)

Quinine (24)

Tamoxifen (25)

Verapamil (26)

Cinchonine 2nd generation

ABCB1 competitive inhibitors

– (27)

Dexverapamil (28)

Toremifene (29)

Valspodar

(PSC-833)

(30)

Biricodar

(VX-710)

2nd generation

ABCB1 and ABCC1

competitive inhibitors

– (31)

Dofequidar

(MS-209)

(32)

Laniquidar

(R101933)

3rd generation

ABCB1 competitive inhibitors

– (33)

Lonafarnib

(SCH66336)

(34)

Zosuquidar

(LY335979)

(35)

Elacridar

(GF120918)

3rd generation

ABCB1 and ABCG2

competitive inhibitors

– (36)

Tariquidar

(XR9576)

(37)

Fumitremorgin C ABCG2 competitive inhibitor – (38)

Flupentixol ABCB1 allosteric modulators – (39)

Non-substrates of P-gp

Ixabepilone Microtubule inhibitor FDA approval (40)

Cabazitaxel (41)

Ortataxel Phase 2 (42)

Vinflunine Phase 3 (43)

ALDH1 inhibitors

Disulfiram Copper-dependent

proteasome inhibitor

Phase 2 (44, 45)

Tretinoin – – (46)

AMPK activators

Metformin – Phase 2/3 (47, 48)

Thalidezine Autophagic cell death inducer – (49)

VEGF inhibitor

Bevacizumab Anti-VEGF antibody FDA approval (50)

RTK inhibitor

Sorafenib Multikinase inhibitor FDA approval (51)

Vascular disrupting agents

Combretastatin

A4

Tubulin-binding agents Phase 1/2 (52)

Plocabulin (53)

BET inhibitors

TEN-010 (JQ2) – Phase 1 (54)

CC-90010 BRD2 inhibitor Phase 1 (54)

(Continued)

TABLE 1 | Continued

Drugs MOA Clinical trial References

ABBV-744 BRD4 inhibitors Phase 1 (55)

CPI-0610 (56)

I-BET151 BRD2 and BRD4 inhibitor Phase 1 (57)

OTX015 BRD2, BRD3, and BRD4

inhibitor

Phase 1 (58, 59)

ABBV-075 BRD2, BRD3, BRD4, and

BRDT inhibitors

Phase 1 (60)

FT-1101 (54)

I-BET762 Phase 1/2 (61)

HDAC inhibitors

Vorinostat Pan-HDAC inhibitors FDA approval (62, 63)

Panobinostat (64)

KDM1 inhibitors

Tranylcypromine Non-selective irreversible

inhibitor

Phase 1/2 (65)

GSK-2879552 Selective irreversible inhibitors Phase 1 (66)

IMG-7289

(Bomedemstat)

Phase 1/2 (67)

INCB-059872 (68)

ORY-1001

(Iadademstat)

(69)

CC-90011 Selective reversible inhibitors Phase 1 (70)

SP−2577

(Seclidemstat)

Phase 1/2 (71)

Notch signaling inhibitors

DAPT γ-secretase inhibitors – (72, 73)

RO4929097 Phase 2 (74)

Hh signaling inhibitors

Cyclopamine Smo inhibitors – (75, 76)

Sonidegib FDA approval (77)

Vismodegib (77)

Wnt/β-catenin signaling inhibitors

Ipafricept FZD8-Fc Phase 1 (78)

Rosmantuzumab Anti-RSPO antibody (79)

Vantictumab Anti-FZD1, 2, 5, 7, and 8

antibody

(79, 80)

Foxy-5 Wnt5a-mimicking peptide Phase 2 (81)

ETC-159 Porcupine inhibitors Phase 1 (82)

LGK974 Phase 2 (83)

CWP232291 β-catenin inhibitors Phase 1 (84)

PRI-724 (85)

transcriptional elongation factor (P-TEFb), resulting in a
transcriptional cascade of oncogenes (54). Thus, inhibition of
BET binding to acetylated histones suppresses cell proliferation
and induces apoptosis. JQ1 is a potent, highly specific, and
Kac competitive inhibitor for BET family proteins (97). Because
JQ1 has a short half-life, its derivatives and structurally similar
forms are undergoing clinical trials (Table 1). On the other hand,
HDACs, which are epigenetic erasers, induce stem-like features
by promoting EMT. HDACs also affect hypoxia-inducible factors
(HIFs) and NF-κB related to apoptosis (103, 104), which are

Frontiers in Oncology | www.frontiersin.org 3 June 2020 | Volume 10 | Article 764

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cho and Kim Multidrug Resistance in Cancer Treatment

components of the tumor microenvironment. HDAC inhibitors,
including vorinostat (SAHA) and panobinostat, suppress EGFR
expression and reverse EMT (Table 1). In addition, these
drugs have been successfully used in combination with BET
inhibitors. Such epigenetic combination therapy improves
clinical efficacy by reducing Myc expression. Lysine-specific
demethylase 1 (KDM1, also known as LSD1) modulates histone
methylation, and demethylation of H3K9me2, H3K4me3, and
H3K36me3 contributes to KDM1-mediated chemoresistance
(105). Inhibition of KDM1 activity was initially observed in
monoamine oxidase (MAO) inhibitors such as tranylcypromine,
which was accompanied by suppression of the stem cell
properties of CSCs in vivo (106). Based on their structure, several
selective KDM1 inhibitors have been developed (Table 1). In
addition, the activity of KDM1 can be regulated by HDAC
inhibitors, as crosstalk exists between KDM1 and HDAC. KDM1
and HDAC1/2 form the CoREST complex, which is associated
with silencing gene expression. As a result, combination therapy
with KDM1 inhibitors and HDAC inhibitors has been expected
to have synergistic effects and has often been evaluated. Recently,
KDM1-HDAC dual inhibitors such as corin have been reported
(107). BMI1 and EZH2, which induce epigenetic silencing as
polycomb group (PcG) members, have been reported to be
associated with chemoresistance (108, 109). Besides, tumor
suppressor genes are silenced by hypermethylation of promoter
regions of DNA, and thus, chemotherapy loses its efficacy against
many cancers (110).

Targeting Microenvironment
The cellular microenvironment plays an important role in
determining cellular behavior. NSCs and CSCs are generated,
maintained, and regulated within this microenvironment. The
tumor microenvironment (TME) creates a niche for itself that
influences not only the proliferation and differentiation of CSCs
but also the response to drugs (111). Although cancer-associated
fibroblasts (CAFs) as well as inflammation and immune cells
are components of the TME, we have to discuss the crucial
role of hypoxia in the TME. Hypoxia signaling contributes to
chemoresistance of CSCs by increasing the expression of ABC
transporters and ALDH (8, 112, 113). In solid tumors, hypoxic
regions are necessarily present and lead to angiogenesis through
HIF1A and VEGF (114, 115). However, tumor angiogenesis is
sloppy; hence, drugs do not reach effective concentrations in
hypoxic cells. Thus, VEGF inhibitors such as bevacizumab and
receptor tyrosine kinase (RTK) inhibitors such as sorafenib can
enhance chemosensitivity. Vascular disrupting agents (VDAs),
including tubulin-binding agents such as combretastatin A4 and
plocabulin, also enhance chemosensitivity by increasing vessel
permeability (Table 1). Of course, we should be careful not to
inject these agents prior to chemotherapy because it could impair
the delivery of chemotherapeutic drugs by reducing blood supply.

Targeting Signaling Pathways
Signaling pathways control cell responses, particularly the self-
renewal, differentiation, and survival of CSCs. Among them, the
Notch, Hedgehog (Hh), and Wnt/β-catenin signaling pathways
are responsible for drug resistance (116). Notch induces the

expression of survivin, which is an anti-apoptotic gene that
inhibits apoptosis. This signaling is suppressed by γ-secretase
inhibitors (GSIs) such as DAPT and RO4929097, which block
the second cleavage of Notch receptors and release of the Notch-
IC fragment from the cell membrane (Table 1). Hh signaling is
critical in embryogenesis and has been found in many cancers
(75, 117). This signaling induces the activation of Smo and
Gli1, which are involved in the drug resistance caused by
overexpression of P-gp and BCRP (118). Thus, Smo inhibitors
such as cyclopamine, vismodegib, and sonidegib can suppress
chemoresistance (Table 1). Wnt/β-catenin signaling activated by
Frizzleds (FZDs) is also associated with drug resistance due to
overexpression of P-gp, BCRP, and MRP (119). Besides, this
pathway promotes cell cycling, inhibits apoptosis, and mediates
DNA repair processes. Although it has been suggested that the
Wnt/β-catenin signaling pathway is undruggable, strategies to
target it have been explored because of their various therapeutic
potential. Indeed, there has been an effort to develop drugs that
inhibit Wnt/β-catenin signaling (Table 1).

FUTURE PERSPECTIVES

To date, many chemotherapeutic drugs have been developed
and many studies conducted to overcome MDR. The newer
strategies that we have covered above have limitations, however,
and so more work is needed with different approaches being
explored to find effective and lasting treatment. Any strategy
for overcoming MDR should not affect NCSs, but only CSCs.
There are a few things to pay attention to for selective targeting
of CSCs: (i) encapsulation of anticancer drugs in liposomes,
micelles, and nanoparticles, i.e., nanotechnology-based drug
delivery (120). The improvement of pharmacokinetic properties,
tumor-specific delivery due to the enhanced permeability and
retention (EPR) effect, and resistance to efflux pumps because
of the size-exclusion effect are representative advantages of
nanomaterials (NMs) (121–123). Thus, NMs are expected to
increase the therapeutic effect and reduce unwanted side effects
of anticancer drugs. Moreover, dual drug-loaded NMs can
lead to better therapeutic effects (124). For example, pluronics,
which are amphiphilic polymers and form nano-sized micellar
structures, have been increasingly regarded as CSC modulators
(125, 126). Pluronics are not just drug delivery carriers; rather,
they inhibit metastasis and activate apoptosis by mediating the
release of cytochrome c and apoptosis inducing factor (AIF).
In addition, they can alter the microenvironment and suppress
CSCs effectively. At present, only SP1049C (doxorubicin with
pluronics L61 and F127 micelles) is in phase 3 trials (127), but
there are reasons to be optimistic. (ii) Targeting microRNAs
(miRNAs), which mediate translational repression and mRNA
degradation mainly by binding to the 3′ UTR. Previous studies
have shown that miRNAs regulate ABC transporters in CSCs
(128, 129); for instance, miR-212, miR-328, miR-451, and
so on. Some miRNAs, including miR-21 and miR-222, are
oncogenic and up-regulated in cancer cells, while other miRNAs,
including miR-15 and miR-181, are tumor suppressive and
down-regulated in cancer cells (29, 130). (iii) Targeting MDR
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mRNA (131, 132), through which antisense oligonucleotides
(aODNs) are used to down-regulate the expression of specific
genes. Small interfering RNAs (siRNAs) also silence specific
genes because they are artificial double-stranded RNA (dsRNA)
molecules with functions similar to those of miRNA. If they
selectively target tumorigenic genes, cancer cells will become
chemosensitive. There are no clinical data yet to suggest that
MDR can be completely reversed using this RNA interference
(RNAi) technology, but it is likely that drugs related to RNAi
will be developed in the near future. (iv) Transferring MDR

genes into NSCs, especially bone marrow stem cells (133–135).
Most chemotherapeutic drugs suppress the bone marrow and,
as a result, blood cells such as erythrocytes, leukocytes, and
thrombocytes do not function properly, and the ensuing loss
of oxygen transport, immune response, and bleeding control
functions causes serious adverse effects. To prevent these adverse
effects, gene transfer technology has emerged, making it possible
to administer high doses of chemotherapeutic drugs. In the
transplantation model of CD34-positive peripheral blood stem
cell (PBSC) infection with retroviral vectors containing MDR

FIGURE 1 | Current strategies to overcome multidrug resistance. In addition to the well-known ABC transporters, many drug resistance mechanisms of CSCs have

been identified, including ALDHs, EMT, epigenetic changes, tumor microenvironment, and stemness-related signaling pathways. The drugs that inhibit each pathway

are described: (i) ABC transporter inhibitors and non-substrates; (ii) ALDH inhibitors; (iii) AMPK activators; (iv) BET inhibitors, HDAC inhibitors, and KDM1 inhibitors; (v)

VEGF inhibitors, RTK inhibitors, and vascular disrupting agents; (VI) Notch inhibitors, Smo inhibitors, and Wnt/β-catenin inhibitors. ABC, ATP binding cassette; ALDHs,

aldehyde dehydrogenases; AMPK, AMP-activated kinase; BET, bromodomain and extra-terminal; CSCs, cancer stem cells; EMT, epithelial to mesenchymal transition;

HDAC, histone deacetylase; KDM1, lysine-specific demethylase 1; MDR, multidrug resistance; RTK, receptor tyrosine kinase; VEGF, vascular endothelial growth factor.
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genes, long-term myeloprotection was achieved, demonstrating
the safety of transplantation (136).

CONCLUSION

Over the past few decades there have been many strategies
used to treat cancer, from conventional radiation therapy,
chemotherapy to recent targeted therapy, and immunotherapy.
It is no exaggeration to say that the flow of this change has
been led by the discovery of various factors that cause MDR
acquisition in cancer cells, especially ABC transporters. By
discovering ABC transporters and identifying their functions,
new possibilities have emerged for cancer treatment. Initially,
many studies were focused on the direct inhibition of ABC
transporters such as P-gp inhibitors. However, because they
are less selective and less potent, differ in their in vitro and
in vivo data, and often cause severe adverse effects, so far no
drugs that directly target or inhibit P-gp have been accepted
for clinical use. Although direct inhibition of ABC transporters
may not be effective, the transporters remain attractive targets
because enhanced drug efflux through the transporters is one
of the most important causes of MDR acquisition. Therefore,
rather than directly inhibiting the ABC transporters, it would
be effective to devise alternative strategies to avoid drug
efflux via transporters. The transporter-mediated MDR might
be overcome by developing novel anticancer drugs with P-
gp non-substrates. In addition, we have introduced alternative
approaches for targeting CSCs that focus on ALDHs, EMT,
epigenetic modifications, the microenvironment, and signaling
pathways (Figure 1). We have also discussed the drugs being
developed in each approach: (i) ABC transporter inhibitors and

non-substrates; (ii) ALDH inhibitors; (iii) AMPK activators;

(iv) BET inhibitors, HDAC inhibitors, and KDM1 inhibitors;
(v) VEGF inhibitors, RTK inhibitors, and vascular disrupting
agents; (vi) Notch inhibitors, Smo inhibitors, and Wnt/β-catenin
inhibitors. One of the big obstacles we are facing now is whether
we can selectively influence CSCs only. NSCs and CSCs share the
same characteristics; therefore, solving this problem is a complex
task. Although promising solutions have been proposed, more
research should be conducted to support the arguments relating
to nanotechnology-based drug delivery, RNAi technology, and
gene transfer technology. It is worth noting that these approaches
are directly or indirectly related to ABC transporters. It is hoped
that all of the approaches reviewed here will help devise new
strategies to overcome MDR and to eradicate MDR cancer.
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