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Mechanism-based tuning of insect
3,4-dihydroxyphenylacetaldehyde synthase
for synthetic bioproduction of benzylisoquinoline
alkaloids
Christopher J. Vavricka1, Takanobu Yoshida1, Yuki Kuriya1, Shunsuke Takahashi 1, Teppei Ogawa2, Fumie Ono3,

Kazuko Agari1, Hiromasa Kiyota4, Jianyong Li5, Jun Ishii 1, Kenji Tsuge1, Hiromichi Minami6, Michihiro Araki1,3,

Tomohisa Hasunuma1,7 & Akihiko Kondo 1,7,8

Previous studies have utilized monoamine oxidase (MAO) and L-3,4-dihydroxyphenylalanine

decarboxylase (DDC) for microbe-based production of tetrahydropapaveroline (THP), a

benzylisoquinoline alkaloid (BIA) precursor to opioid analgesics. In the current study, a

phylogenetically distinct Bombyx mori 3,4-dihydroxyphenylacetaldehyde synthase (DHPAAS)

is identified to bypass MAO and DDC for direct production of 3,4-dihydrox-

yphenylacetaldehyde (DHPAA) from L-3,4-dihydroxyphenylalanine (L-DOPA). Structure-

based enzyme engineering of DHPAAS results in bifunctional switching between aldehyde

synthase and decarboxylase activities. Output of dopamine and DHPAA products is fine-

tuned by engineered DHPAAS variants with Phe79Tyr, Tyr80Phe and Asn192His catalytic

substitutions. Balance of dopamine and DHPAA products enables improved THP biosynthesis

via a symmetrical pathway in Escherichia coli. Rationally engineered insect DHPAAS produces

(R,S)-THP in a single enzyme system directly from L-DOPA both in vitro and in vivo, at higher

yields than that of the wild-type enzyme. However, DHPAAS-mediated downstream BIA

production requires further improvement.
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Recent progress in synthetic biology and metabolic engi-
neering offers potential to optimize the bioproduction of
virtually any compound1–5. Engineered metabolic systems

are now being designed for production of biofuels, polymers, bulk
chemicals, and pharmaceuticals1,2. Computational methods to
select the best metabolic pathways from thousands of possibilities
have been demonstrated for production of 1,4-butanediol4. The
combination of metabolic engineering with enzyme engineering
can even be used to construct artificial biosynthetic pathways to
compounds including 2,4-dihydroxybutyric acid5.

With the goal of further developing enzyme engineering as a
practical approach that can expand the scope of bioproduction
targets, benzylisoquinoline alkaloid (BIA) biosynthesis is pre-
sented as an example for synthetic enzyme development. Opioid
analgesics are derived from BIAs and are essential medicines for
pain and palliative care as defined by the World Health Orga-
nization6. Microbial production of pharmaceutical alkaloids
offers advantages in terms of cost efficiency, environmental sus-
tainability, and process control7. Recently, bioproduction of
opioid alkaloids has been achieved in yeast via a norcoclaurine
(higenamine) containing pathway8,9 and in Escherichia coli via a
tetrahydropapaveroline (THP, norlaudanosoline) containing
pathway10,11. The THP pathway requires one less enzymatic step
and has afforded the highest BIA titer of 1 mM THP (287 mg/L).
However, current THP bioproduction relies upon monoamine
oxidase (MAO), a membrane bound flavoenzyme that is active
towards many monoamines in addition to dopamine12,13. It is
therefore desirable to engineer a soluble enzyme to improve
production of THP, and downstream alkaloids including the-
baine, which has been recently reported with microbial titers
lower than 10 mg per litre11.

Utilizing BIA bioproduction as a model pathway, the current
system aims to search for alternative enzyme engineering targets

and learn alternative biosynthetic pathways. This synthetic
biology workflow includes enzyme selection and learning
for synthetic pathway design via the recently developed M-
path prediction software14. Specifically, a 3,4-dihydrox-
yphenylacetaldehyde synthase (DHPAAS) is identified from
Bombyx mori and engineered to switch between two distinct
activities for the direct production of THP in a symmetrical
pathway. Existing reports have applied substrate specificity engi-
neering to metabolic engineering5. In contrast, the current study
applies functional enzyme engineering to the assembly of an
alternative bioproduction pathway.

Results
Pathway design and enzyme selection. In 2014, the M-path
computational platform was developed to predict putative metabolic
pathways and enzymes that might catalyze new reactions14. M-path
uses an iterative random algorithm to score chemical similarities and
can be operated as a web-based tool. In contrast to searching known
enzyme networks, M-path is advantageous in that it can predict
unknown enzymatic reactions based upon substrate and product
similarities. Furthermore, M-path can find reactions and pathways
from a wide range of search space and easily expand the search
space14. To explore alternative BIA production pathways from aro-
matic amino acids, the M-path search algorithm was tested. A
combined database of updated enzyme entries from BRENDA
(BRaunschweig ENzyme DAtabase)15 and Kyoto Encyclopedia of
Genes and Genomes (KEGG)16 was used to increase enzyme targets.
Aromatic aldehyde synthase (AAS) and DHPAAS were identified as
putative shortcuts for production of 4-hydroxyphenylacetaldehyde
(4-HPAA or 4-HPA) from L-tyrosine (Tyr), and 3,4-dihydrox-
yphenylacetaldehyde (DHPAA, DHPA or DOPAL) from L-3,4-
dihydroxyphenylalanine (L-DOPA) (Fig. 1, Supplementary Table 1).
Although authors were aware of the function of DHPAAS, this
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Fig. 1 Design of a symmetrical THP pathway for reticuline bioproduction. a M-path enzyme (E) search identified phenylacetaldehyde synthase (PAAS), 4-
HPAA Synthase (4-HPAAS), and DHPAAS as putative enzymes to directly produce 4-hydroxyphenylacetaldehyde (4-HPAA) from tyrosine or DHPAA
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system (green split arrows). (S)-norcoclaurine can be produced from 4-hydroxyphenylacetaldehyde (4-HPAA) and dopamine via the enzyme (S)-
norcoclaurine synthase (NCS, EC 4.2.1.78). Dopamine and DHPAA undergo spontaneous Pictet-Spengler condensation to form THP (3-hydroxy-
norcoclaurine), or this reaction can also be catalyzed by NCS. THP is converted to reticuline via norcoclaurine 6-O-methyltransferase (6-OMT), coclaurine
N-methyltransferase (CNMT) and 3-hydroxy-N-methylcoclaurine 4-O-methyltransferase (4-OMT). An additional enzyme, N-methylcoclaurine 3-
hydroxylase (NMCH), is necessary to produce reticuline from norcoclaurine. The 4-HPAA containing pathways are shown in grey as the current study
focuses on the DHPAA containing pathway. All structures were drawn with ChemDraw
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example of enzyme selection illustrates the importance of updating
enzyme databases for prediction of recently characterized enzymes, as
new functions are continuously discovered from nature and enzyme
engineering17. The pairing of DHPAAS or AAS enzymes with 3,4-
dihydroxyphenylalanine decarboxylase (DDC) results in symmetrical
BIA bioproduction pathways that are distinct from the reported
MAO-mediated pathways (Fig. 1b).

AAS and DHPAAS are recently established bifunctional
enzymes, which catalyze the simultaneous decarboxylation and
amino group oxidation of aromatic amino acids. Two enzymes
discovered in plants, phenylacetaldehyde synthase (PAAS, EC
4.1.1.109)18 and 4-hydroxyphenylacetaldehyde synthase (4-HPAAS,
EC 4.1.1.108)19, have been referred to as AAS. A more recently
discovered enzyme from insects, DHPAAS (EC 4.1.1.107), catalyzes
the oxidative decarboxylation of L-DOPA to produce DHPAA20,
and this enzyme might therefore be considered as an AAS related
protein. Phylogenetic analysis suggests that AAS and DHPAAS
diverged from aromatic amino acid decarboxylase (AAAD, EC
4.1.1.28). Accordingly AAS, DHPAAS and AAAD are structurally
similar and are all dependent upon pyridoxal 5′-phosphate (PLP)
cofactor. Although AAS and DHPAAS were first assigned as EC
4.1.1.- by KEGG, many questions still remain about these recently
characterized enzymes, which are not straightforward to classify
due to bifunctional activities. Accordingly, EC 4.1.1.107–109 were
only recently added to comprehensive enzymes databases like
BRENDA, and rules for the selection of AAS or DHPAAS for
bioproduction applications should be clearly established.

The construction of symmetrical AAS- and DHPAAS-mediated
BIA production pathways may offer some advantages over
the corresponding nonsymmetrical MAO-mediated pathways
(Fig. 1). This includes increased specificity of soluble DHPAAS
for L-DOPA relative to the specificity of MAO for dopamine.
Mathematical models and numerical simulations were employed

to compare the production of THP via the nonsymmetrical and
symmetrical pathways (Supplementary Figures 1–3, Supplemen-
tary Table 2). Monte–Carlo simulation was performed with
randomly generated values for parameters lacking reported data as
described in Supplementary Methods and Supplementary Table 2.
Later in vitro and in vivo tests suggested that highly reactive
DHPAA may be depleted by chemical or enzymatic side-reactions.
Including the carbon loss of DHPAA as ‘drain’ in dynamic models
resulted in slightly lower THP yields (Fig. 2), indicating a better
match to experimental levels. However, many diverse variables,
including growth medium composition, pH, temperature, poten-
tial inhibitors, cofactor recycling, genetic regulation, and metabolic
flux, should also be considered as learning data for the
improvement of THP production. When factoring in product
feedback inhibition21 together with DHPAA drain, symmetrical
DDC-DHPAAS pathways produced higher predicted yields of
THP than those of MAO-mediated pathways (Fig. 2, Supplemen-
tary Figure 3). These models suggest that DHPAAS-mediated
pathways might offer clues to produce THP at levels higher than
the best reported MAO-mediated THP benchmark of 1 mM (287
mg/L)10. Moreover, the improved performance of the feedback
inhibition models emphasizes that the balance of dopamine and
DHPAA is critical for optimal THP production. Therefore tuning
the production of both DHPAA and dopamine by DHPAAS was
pursued further.

Enzyme design and structure-based engineering of DHPAAS.
Comparison of putative plant AAS and insect DHPAAS struc-
tures was performed to rationally select optimal enzyme
sequences for BIA production. Dimeric homology models of
putative AAS and DHPAAS in complex with aromatic amino
acid substrate covalently linked to PLP cofactor were generated

T
H

P
 Y

ie
ld

 (
%

)

L-DOPADHPAA Dopamine

THP THP

VMAO

Vspon Vspon

Vcons Vcons

VDDC

VDDC VDHPAAS 

Vfed

VfedAmines
L-DOPA

Dopamine DHPAA
Vdrain

Vdrain

71.0969.31

62.34

100

80

60

40

20

0

30.06
20.91

13.62

62.94 60.15

53.90

23.67
31.28

23.97

DDC + MAO
– drain

+ inhibition

DDC + MAO
+ drain

– inhibition

DDC + DHPAAS
– drain

+ inhibition

DDC + DHPAAS
+ drain

+ inhibition

DDC + DHPAAS
+ drain

– inhibition

DDC + MAO
+ drain

+ inhibition

Fig. 2 Predicted THP yields from DHPAAS- and MAO-mediated pathways. Conversion of L-DOPA to THP was simulated with and without DHPAA drain
(green arrows), and also with and without product feedback inhibition (red flat-headed curves). The blue flat-headed line shows MAO inhibition by amines
included in all MAO models. Green center lines show the median values (fiftieth percentile or second quartile), and the blue boxes contain the twenty-fifth
percentile (first quartile) to seventy-fifth percentile (third quartile) of each dataset. The black whiskers show minimum and maximum values of each
dataset. Median predicted THP yields are listed in green and mean predicted THP yields are listed in black within each box. All statistics were derived from
n= 10,000 independent Monte–Carlo simulations

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09610-2 ARTICLE

NATURE COMMUNICATIONS | (2019) 10:2015 | https://doi.org/10.1038/s41467-019-09610-2 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


with MODELLER22 operated within Chimera23 using default
settings, followed by structure refinement with MOE (Fig. 3).

M-path identified 4-HPAAS as an enzyme to produce 4-
HPAA, a key intermediate in plant BIA synthesis. Accordingly,
we hypothesized that P. somniferum might utilize AAS activity
for natural 4-HPAA bioproduction and explored P. somniferum
sequences as potential AAS enzymes. Interestingly, P. somniferum
tyrosine decarboxylase 1 (TyDC1), which was modeled based on
the structure of Sus Scrofa DDC in complex with carbidopa (PDB
ID: 1JS3)24, contains a leucine residue at the position correspond-
ing to AAAD active site His192 (Fig. 3d, e), bringing attention
to the 192 position as an important catalytic residue. However,
aside from the unique TyDC1 Leu205, all P. somniferum TyDC
sequences highly resemble that of canonical AAAD. In contrast,
additional active site differences are observed when comparing
putative insect DHPAAS sequences (Fig. 3). Therefore, focus was
shifted towards insect DHPAAS for the selection of an optimal
BIA bioproduction enzyme.

Many questions still remain about the evolution of insect
DHPAAS, and its oxidative decarboxylation mechanism includ-
ing the elucidation of all essential catalytic residues. In order to
help clarify these questions and gain insight into mechanism-
based engineering of DHPAAS, phylogenetic classification was
carried out in combination with structural analysis. Phylogenetic

analysis of 738 insect AAAD-related sequences resulted in the
identification of 247 putative DHPAAS sequences and five
distinct DHPAAS groups (Fig. 4, Supplementary Table 3).

Uncharacterized Lepidoptera DHPAAS comprises the central
phylogenetic group (Fig. 4), and was selected as a candidate for
DHPAAS mechanism studies. When analyzing insect DHPAAS,
the unique region formed by residues Gly353 to Arg324 could not
be well modeled using the structure of D. melanogaster DDC
(PDB ID: 3K40)25 as the template. The structure of this 320–350-
loop region, which participates in cross-dimer active site
formation and substrate binding, improved when using a
template of human histidine decarboxylase in complex with
histidine methyl ester (PDB ID: 4E1O)26.

Comparison of DDC and DHPAAS active sites indicates that
residue 192 (B. mori and D. melanogaster DHPAAS numbering)
determines catalytic activity as that of a decarboxylase or
aldehyde synthase (Fig. 3 and Supplementary Table 3). This
192 residue can form a hydrogen bond with the PLP-aromatic
amino acid external aldimine, which undergoes oxidation in the
DHPAAS mechanism. Aedes aegypti and D. melanogaster
DHPAAS have been reported with Asn192 residues20,27. How-
ever, during the course of the current study, Asn192 was
independently identified and verified as the key catalytic residue
via structural and functional analysis.
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Careful comparison of DDC and DHPAAS structures suggests
that DHPAAS residues Phe79 and Tyr80 play an additional role in
distinguishing DHPAAS activity from DDC activity (Figs 3 and 4,
Supplementary Table 3). Tyr79-Phe80 is conserved in insect DDC,
however this 79–80 motif is commonly reversed as Phe79-Tyr80
in insect DHPAAS, and these residues also surround the external
aldimine of the PLP-substrate complex (Fig. 3). Therefore we
hypothesized that these aromatic residues may also be involved in
the DHPAAS catalytic mechanism and should be useful for the
classification of DHPAAS. Within the five identified DHPAAS
groups, Phe79-Tyr80 is conserved in Apis and mosquito. In
Drosophila DHPAAS sequences annotated as isoform X1, Phe79-
Tyr80 is conserved, whereas in those annotated as isoform X2
(includes NP_476592.127), Tyr79-Tyr80 is conserved. Lepidoptera
and formicidae DHPAAS groups contain a mixture of Phe79-
Tyr80, Tyr79-Tyr80 and Tyr79-Phe80.

In this study, the B. mori sequence XM_004930959.2 was
selected as a distinct DHPAAS sequence containing all three
identified DHPAAS specific residues Phe79, Tyr80 and Asn192,
as well as Gly353, which is reported to increase substrate
specificity to L-DOPA26. In addition, Phe79Tyr, Tyr80Phe and
Asn192His DHPAAS catalytic variants were designed to explore
tuning the bifunctional production of dopamine and DHPAA.

Switching the mechanism of DHPAAS. The native sequence
of wild-type B. mori XM_004930959.2 was synthesized and
cloned into the E. coli expression vector pE-SUMO. DHPAAS
was purified by metal affinity chromatography according to the
methods section. DHPAAS activity was screened by separation
of substrates and products using thin-layer chromatography
(TLC). Enzymatic products were verified by LC-MS operated
in multiple reaction monitoring (MRM) mode.

The recombinant B. mori XM_004930959.2 protein produced
DHPAA as the major product of L-DOPA, as indicated by the
identification of negative ion m/z 151.10 and lack of major
dopamine ions. The identification B. mori DHPAAS indicates
that the above analysis of DHPAAS phylogenetic groups is
accurate. Structural analysis supports a hypothesis that the
Phe79Tyr-Tyr80Phe-Asn192His triple variant would have DDC-
like activity, while Asn192His and Phe79Tyr-Ty80Phe variants
would result in a mixture of DHPAAS and DDC activities. To test
this hypothesis, and gain insight into a more comprehensive
DHPAAS mechanism, the enzymatic activities of Phe79Tyr,
Tyr80Phe, and Asn192His DHPAAS variants were evaluated
(Figs 5 and 6).

Dopamine, which can be easily observed using TLC with
ninhydrin staining, was identified as the major product of the

Phe79Tyr-Tyr80Phe-Asn192His DHPAAS variant, supporting
the above hypothesis (Supplementary Figure 4). After longer
incubation times, THP was detected as the highest intensity
positive ion of Phe79Tyr-Tyr80Phe-Asn192His DHPAAS reac-
tion with L-DOPA (Fig. 5b). Comparison of DHPAAS activities
via H2O2 product quantification indicates that the Asn192 residue
is most important for maintaining DHPAAS activity, while Phe79
and Tyr80 residues also contribute to the DHPAAS mechanism
(Fig. 6, Table 1). Characterization of aromatic products from all
four DHPAAS variants was then performed in vitro.

Direct production of THP via engineered DHPAAS. After
confirming that THP could be directly produced by Phe79Tyr-
Tyr80Phe-Asn192His DHPAAS, in vitro production was quan-
tified using all four designed B. mori DHPAAS variants. Dopa-
mine, DHPAA and THP were monitored using LC-MS operated
in MRM mode (Fig. 7a–c). THP was highly sensitive to oxidation,
as indicated by the detection of ion m/z 284.10, which corre-
sponds to THP-quinone ([THP-3H]+= 284.0917).

In vitro THP production improved significantly after supple-
mentation with ascorbate to overcome product degradation via
H2O2 mediated oxidation. After supplementation with 2.5 mM
sodium ascorbate, conversion of L-DOPA to THP increased to
23% (219 µM) using Phe79Tyr-Tyr80Phe-Asn192His DHPAAS.
This surpasses the highest bioconversion of dopamine to THP
reported at 15.9%10. Ascorbic acid did not inhibit DHPAA
production by DHPAAS indicating that DHPAA is a direct
enzymatic product of L-DOPA, rather than a secondary product
of dopamine oxidation by H2O2.

As predicted, overall DHPAA production was highest with
wild-type DHPAAS and the Phe79Tyr-Tyr80Phe variant, and
lowest with the Asn192His and Phe79Tyr-Tyr80Phe-Asn192His
variants (Fig. 7a–c, Table 1). The expected opposite trend was
observed for dopamine production, which was highest with the
Phe79Tyr-Tyr80Phe-Asn192His variant and lowest with wild-
type DHPAAS, while dopamine production by the Asn192His
variant was higher than that of the Phe79Tyr-Tyr80Phe variant.
Therefore, the in vitro results support the above structure-based
hypothesis about the effect of Phe79, Tyr80 and Asn192 on
DHPAAS mechanism switching (Table 1, Fig. 8). Additional
testing was performed to further optimize DHPAAS-mediated
THP bioproduction in vivo.

Tuning DHPAA-mediated BIA bioproduction. Initial attempts
at bioproduction using E. coli grown in lysogeny broth (LB)
medium resulted in low THP titers, with higher amounts
produced by the Phe79Tyr-Tyr80Phe variant, followed by
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that of wild-type DHPAAS. After changing the growth medium
from LB to M9 minimal medium, THP production increased
(Fig. 7d–f).

In vivo bioproduction of dopamine and DHPAA further
supported the DHPAAS engineering model involving substitution
of Phe79, Tyr80, and Asn192 (Fig. 7d–f, Supplementary Figure 5).

In contrast to the in vitro results, the Phe79Tyr-Tyr80Phe variant
was the best relative in vivo THP producer of this study,
with titers exceeding 1 µM (0.287 mg/L). Wild-type DHPAAS
produced the next highest amounts of in vivo THP, followed
by Phe79Tyr-Tyr80Phe-Asn192His DHPAAS as the third-best
THP producer. The Asn192His variant produced the lowest
in vivo THP titers when including ascorbate. A diastereomeric
mixure of (R,S)-THP was produced by DHPAAS in vivo as
demonstrated by chiral LC-MS analysis (Supplementary Figure 6).
After addition of Coptis japonica 6-OMT, CNMT and 4-OMT
genes (Fig. 1) to DHPAAS expressing E. coli, THP and reticuline
production followed similar trends. The Asn192His and
Phe79Tyr-Tyr80Phe-Asn192His DHPAAS variants resulted in
higher reticuline titers than THP titers suggesting high conver-
sion of THP to reticuline. However, reticuline titers were limited
to approximately 0.2 µM using all four DHPAAS variants, which
indicates that there is a bottleneck in the conversion of (R,S)-THP
to reticuline under the conditions tested (Fig. 7g, h).

To improve the limited reticuline titers, additional DHPAAS,
DDC, 6-OMT, and CNMT genes were tested. Addition of a
bacterial DDC resulted in an increase in THP titers to above 2 µM
(0.57 mg/L), accompanied by a huge increase in dopamine levels.
However, reticuline titers did not simply increase dependent on
THP concentration, with the bottleneck appearing strongest at
the 6-OMT and 4-OMT steps. Expression of DHPAAS-
Phe79Tyr-Tyr80Phe-Asn192His together with wild-type
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Fig. 7 DHPAAS-mediated production of dopamine, DHPAA, THP and reticuline. a–c, In vitro DHPAAS reactions with 1.875mM L-DOPA and 2.5 mM
sodium ascorbate were incubated at 23–24 °C for 8 h, after which the reactions were moved to 4 °C. Dopamine (a), DHPAA (b), and (R,S)-THP (c) were
quantified at 9min., 1 h, 3 h, 8 h, 24 h, and 33 h after starting DHPAAS reactions. Three independent samples were measured for each in vitro point (n= 3).
d–f, In vivo DHPAAS-mediated production of dopamine (d), DHPAA (e), and (R,S)-THP (f). After the addition of L-DOPA (4.92mM, t= 0), cultures were
incubated at 25 °C for initial production. 12.9 h after L-DOPA addition culture temperature was changed to 16 °C, and 22.7 h after L-DOPA addition cultures
were moved to 4 °C. Products were quantified at 1.4 h, 5.4 h, 10.6 h, 22.5 h, and 49.8 h after substrate addition. Production of DHPAA was measured
immediately with single measurements, as unstable DHPAA levels rapidly decreased even after freezing. Triplicate measurements were later taken for all
three products after longer storage at −30 °C (n= 3 independent measurements). Data for in vivo triplicate measurements of DHPAA are shown in
Supplementary Figure 5. g, h, Observation of an in vivo THP (g) to reticuline (h) bottleneck. M9 growth medium was supplemented with 450 µM L-DOPA
for reticuline production mediated by E. coli containing DHPAAS, 6-OMT, CNMT, and 4-OMT at 25 °C. For the first time point 1 or 2 independent
measurements were taken (n= 1 for Phe79Tyr-Tyr80Phe and Phe79Tyr-Tyr80Phe-Asn192His DHPAAS, n= 2 for WT and Asn192His DHPAAS). For the
last three time points 2 or 4 independent measurements were taken (n= 2 for Phe79Tyr-Tyr80Phe and Phe79Tyr-Tyr80Phe-Asn192His DHPAAS, n= 4
for WT and Asn192His DHPAAS). All graphs were generated using Prism 7 with error bars representing standard deviation. Source data are provided in a
Source Data file

Table 1 DHPAAS and DDC parameters of enzyme variants included in this study

B. mori DHPAAS variant DHPAAS Km:
µM L-DOPA

DHPAAS kcat: min−1 DHPAAS Vmax: nmol
H2O2 min−1 mg−1

DDC Vmax: nmol
dopamine min−1 mg−1

Estimated %
DHPAAS activity

WT DHPAAS 41.7 (36.6–47.3) 6.51 (6.27–6.76) 115 5.59 95%
Phe79Tyr-Tyr80Phe 62.3 (49.5–78.5) 4.65 (4.30–5.03) 82.2 41.4 67%
Asn192His 36.5 (32.8–40.5) 1.40 (1.35–1.44) 24.7 87.6 22%
Phe79Tyr-Tyr80Phe- Asn192His 27.6 (17.1–42.8) 0.97 (0.87–1.09) 15.4 247 5.9%

Km, kcat, and Vmax values were calculated with Prism 7 using H2O2 production data from Fig. 6. 95% confidence intervals listed in parenthesis (n≥ 8 independent measurements). DDC activity Vmax is
calculated based on the first in vitro measurements of dopamine product (Fig. 7a, t= 9min.). Estimated % DHPAAS activity is based on the comparison of these two rates.
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DHPAAS, as well as Coptis japonica 6-OMT, CNMT, and 4-
OMT, resulted in a moderate increase in relative THP. Yet, the
bottleneck to reticuline still remained, although it appeared to be
relaxed at the 6-OMT and 4-OMT steps.

Metabolomics analysis suggested that conversion of (R,S)-THP
to reticuline may not be optimal during simultaneous conversion
of L-DOPA to THP due to disruption of pathways relating to SAM
cofactor recycling (Fig. 9a). Therefore a two-step cell production
system was tested as described in the methods section10,11, in an
attempt to balance the two potentially counteracting pathways.
This resulted in a four- to eight-fold increase of (R,S)-THP titer to
9.45 µM (2.71 mg/L) in the first step via wild-type DHPAAS and
DHPAAS-Phe79Tyr-Tyr80Phe-Asn192His. A second addition of
BL21(DE3) containing 4-OMT from C. japonica together with 6-
OMT and CNMT from P. somniferum was then able to relieve the
bottleneck to produce 3.7 μM 3-hydroxycoclaurine (3HC), 1.4 μM
3-hydroxy-N-methylcoclaurine (3HNMC) and 1.5 μM reticuline
after an additional 18.5 h (Fig. 9b, c). This represents a 7.5-fold
increase in reticuline, as well as additional increases in 3HC and
3HNMC, demonstrating scalable titers using the DHPAAS-
mediated system.

Discussion
To scale up THP and reticuline production, improved synthetic
biology design can be driven by two types of learning informa-
tion: enzyme parameters and metabolomics data. Regarding
learning for enzyme improvement, Phe79, Tyr80, and Asn192
were all elucidated as key residues that can tune the DHPAAS
mechanism for optimized THP precursor ratios. Yet questions
still remain about the exact function of these residues, including
their role in O2 activation, which remains a somewhat mysterious
activity of PLP enzymes28. DHPAAS and AAS utilize aromatic
amino acid, O2 and H2O to produce aryl acetaldehyde, CO2,
H2O2, and NH4

+. Similarly, MAO mediates the production of
aldehyde, H2O2 and NH4

+ from monoamine, O2 and H2O via a
flavin adenine dinucleotide (FAD) cofactor29. To investigate the
incorporation of oxygen in the DHPAAS mechanism, DHPAAS
reactions were performed in D2O and H2

18O; however, DHPAAS
activity could not be observed under these conditions. The many
uncertainties about the DHPAAS and AAS mechanisms should
be clarified in future studies.

DHPAAS specificity for L-DOPA was high, with no observed
activity for tyrosine or phenylalanine by the Phe79Tyr-Tyr80Phe-
Asn192His variant. This indicates that competitive inhibition by
aromatic amino acids is not a major consideration for DHPAAS-

mediated biosynthesis. However, preliminary analysis indicates
possible feedback inhibition of DHPAAS by dopamine and
DHPAA, and possible substrate inhibition at high concentrations
of L-DOPA. These factors, together with the low measured Km of
B. mori DHPAAS, may help to explain why L-DOPA was not
consumed during in vivo bioproduction experiments. It is also
possible that DHPAAS is inhibited by unknown growth medium
components. Therefore, substrate concentration, substrate speci-
ficity and inhibition should be comprehensively characterized as
data for enzyme learning.

During in vitro production of THP, high concentration
dopamine was best, as more dopamine can quickly consume
reactive DHPAA while it is being produced. Thus, Asn192His
and Phe79Tyr-Tyr80Phe-Asn192His variants were observed to
produce the highest THP levels in vitro. However, in vivo
environments include many more cellular and chemical compo-
nents that can compete with dopamine for reaction with DHPAA.
Accordingly, the use of minimal medium together with higher
levels of DHPAA produced by wild-type DHPAAS and the
Phe79Tyr-Tyr80Phe variant resulted in better in vivo THP titers.
These results highlight that the optimal dopamine to DHPAA
ratio for THP production depends on the culture conditions.

The best reported THP titer of 1 mM (287 mg/L) was produced
from 12.6 mM dopamine using MAO expressing cells10. MAO-
mediated conversion of dopamine to THP was 15.9%, without
reported metrics for conversion of L-DOPA to dopamine10. In the
current study, DHPAAS expressing cells produced 9.45 μM THP
(2.71 mg/L) with a yield of 1.89% from 1mM L-DOPA. The lower
titer and yield may be explained by the 12.6-fold lower substrate
concentration and the additional decarboxylation step from L-
DOPA. Moreover, a majority of 1 mM L-DOPA remained
unconsumed in the culture medium, suggesting low substrate
permeability and possibly higher intracellular yields.

L-DOPA utilization by DHPAAS is much better in vitro, with
23% conversion of L-DOPA to 219 µM THP. In the MAO-mediated
system, a THP titer of 99.2 µM resulted in the highest reticuline
titers11. Therefore, in vitro results suggest that DHPAAS-mediated
THP production is capable of reaching optimal levels for down-
stream BIA production. However, DHPAAS-mediated in vivo
production needs to be improved to reach the 1mM THP bench-
mark and computational yields greater than 50%.

The DHPAAS-mediated pathway also requires improvements
in downstream BIA production. After the establishment of proof-
of-principle bioproducers, it usually requires more than five years
of optimization to reach industrial demands30. Indeed, the
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complete pathway is now assembled into a single E. coli cell to
produce high titer reticuline from glucose31, 10 years after the
development of the first MAO-mediated reticuline producing
system32. To better match this benchmark, a complete DHPAAS-
mediated pathway from glucose to (S)-reticuline is now under
development. Metabolomics-directed learning data should
include flux from toxic intermediates DHPAA20 and THP10

towards less-toxic reticuline. Addition of NCS can increase
conversion of DHPAA to selectively produce (S)-THP, leading
to better substrate conversion by SAM dependent BIA
methyltranferases31,33. A related OMT bottleneck with impaired
SAM cofactor recycling was reported for vanillin biosynthesis in
E. coli grown on M9 minimal medium34. This supports balancing
of SAM recycling pathways as another strategy to improve reti-
culine production (Fig. 9). Quenching of H2O2 by antioxidant
enzymes including catalase II (katE) should also be pursued to
increase BIA titers.

Additional M-path analysis was performed to search alter-
native bioproduction pathways that might be improved using
DHPAAS or AAS, linking the learning process of enzyme data-
base improvement to new cycles of pathway design. For example,
M-path identified EC 4.2.1.107–109 as enzymes to mediate bio-
synthesis of 2’-norberbamunine35, homovanillic acid, imidazole-
4-acetaldehyde, and 4-amino-phenylacetaldehyde. In conclusion,
this study demonstrates that functional enzyme engineering can
be effectively applied to high value bioproduction pathways. Most
importantly, further development of the DHPAAS-mediated
pathway is required to improve downstream BIA production in
future studies.

Methods
M-path prediction of enzymes and pathways. Enzyme searches were performed
using the M-path web-based version according to the methods of Araki et al.14.
M-path scores are calculated as a Tanimoto co-efficient. The 2016 version of the
M-path database was updated using the most recent substrate, product, and enzyme
information from KEGG and BRENDA. Curated mode was used to search for
enzymes to mediate tyrosine (PubChem CID: 6057) to THP (CID: 18519), tyrosine
to 4-HPAA (CID: 440113), L-DOPA (CID: 6047) to THP, L-DOPA to DHPAA
(CID: 119219), tyrosine to 2′-norberbamunine (CID: 441063), histidine (CID: 6274)
to imidazole-4-acetaldehyde (CID: 150841), and 4-aminophenylalanine (CID:
151001) to 4-aminophenylacetaldehyde (CID: 20440863). For conversion of tyrosine
to homovanillic acid (CID: 1738), M-path search was performed in original mode.

Computational prediction of enzyme-mediated THP production. Mathematical
models were constructed for the nonsymmetrical (DDC-MAO) and symmetrical
(DDC-DHPAAS) pathways. For the nonsymmetrical pathway, since MAO
recognizes a variety of amines, competitive inhibition was introduced into the
MAO reaction velocity VMAO

12,13. Models were constructed with and without
product feedback inhibition factored into the reaction velocities of MAO
(VMAO), DDC (VDDC) and DHPAAS (VDHPAAS). Drain of DHPAA was
later included in some models. Possible ranges of parameter values were surveyed
and collected from literature and BRENDA15. In order to predict the performance
of each pathway, parameter values were randomly generated within the set ranges,
and Monte–Carlo simulation was carried out according to Supplementary Meth-
ods. The iteration number was 10,000, and simulation time was 0–50 h. L-DOPA
was fed as a constant term based on randomly generated parameters. When the
maximum amount of 100 mM L-DOPA was reached, substrate feeding to the
system was stopped. A homemade program was implemented in Python 3.0 using
scipy.integrate.odeint as the solver for numerical simulations. More detailed
computational methods are described in Supplementary Methods, Supplementary
Figures 2–3, and Supplementary Table 2.

Homology modeling and phylogenetic analysis. Dimeric homology models of
B. mori DHPAAS and P. somniferum TyDC1 were generated with MODELLER22

operated within Chimera23. Crystal structures of D. melanogaster DDC (PDB ID:
3K40)25 and histidine decarboxylase (4E1O)26 were used as templates for B. mori
DHPAAS modeling. The structure of Sus Scrofa DDC in complex with carbidopa
(PDB ID: 1JS3)24 was used as a template for TyDC1. Binding of PLP covalently linked
to aromatic amino acid substrate, and structure refinement were performed with
Molecular Operating Environment (MOE). Completed structures were analyzed
in PyMOL.

For phylogenetic analysis, insect AAAD and DHPAAS sequences were collected
from the protein BLAST non-redundant database after searching from insect
sequences NP_476592.1, NP_724162.1, XP_319838.3, EDS39158.1, EAT37246.1,
and EAT37247.1. Duplicate sequences, sequences containing X as an amino acid,
and sequences over 700 amino acids in length were all removed. The resulting
sequences were aligned and a phylogenetic tree was generated using a split value
of 0.12. After removing partial sequences, clusters were identified from a sequence
similarity table generated by MOE.

Preparation of recombinant B. mori DHPAAS. The full length B. mori DHPAAS
native sequence was synthesized by GeneArt (Invitrogen) and cloned into the
pE-SUMO vector with kanamycin resistance (LifeSensors Inc.) via BsaI restriction
sites. Mutations were generated using overlapping PCR with primers shown in
Supplementary Table 4. DHPAAS expression vectors were transformed into BL21
(DE3) maintained in LB supplemented with 50 µg/mL kanamycin, or BL21(DE3)
pLysS maintained in LB supplemented with 50 µg/mL kanamycin and 34 µg/mL
chloramphenicol. Expression of recombinant DHPAAS was induced by the
addition of 0.2–0.45 mM IPTG to E. coli grown aerobically in LB medium.
After induction, culture temperature was lowered to 14–16 °C. After overnight
incubation, cells were pelleted by centrifugation, resuspended in phosphate-
buffered saline (PBS) and lysed by sonication while being cooled over ice. After
centrifugation, clarified lysates were loaded onto HiTrap TALON or HisTrap HP
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columns (GE Life Sciences). After loading, columns were washed with PBS and
10–20 mM imidazole. Recombinant DHPAAS was eluted with 450–1000 mM
imidazole. Buffer was changed to PBS supplemented with PLP using Amicon
Ultra-15 centrifugal filters (Millipore).

TLC analysis of DHPAAS reactions. TLC was performed on aluminum plates
coated with silica gel 60 F254 (Merck Millipore). A mixture of 1-butanol, acetic
acid and H2O at a ratio of 7:2:1 was used as the mobile phase. DHPAAS reaction
components were analyzed under UV light before ninhydrin staining.

Mass analysis of DHPAAS substrates and products. Substrate and products
were identified with Shimadzu LCMS-8050 and LCMS-8060 ESI triple quadrupole
mass spectrometers. Quantitative analysis was performed using the Shimadzu LCMS
systems operated in multiple reaction monitoring (MRM) mode with the following
parameters: ionization, ESI; DL temp., 250 °C; block heater temp., 400 °C; interface
temp., 300 °C; nebulizing gas flow, 3.0 L/min; drying gas flow, 10.0 L/min; heating gas
flow, 10.0 L/min. The ion source was connected to a Shimadzu Nexera X2 UHPLC
system36. Five concentrations of fresh L-DOPA (TCI), dopamine (TCI), DHPAA
(Santa Cruz Biotechnology), THP hydrobromide (Sigma) and reticuline were ana-
lyzed to generate quantitative standard curves. Quantifier MRM transitions of 198.10
> 152.10(+), 154.10 > 91.05(+), 151.30 > 123.15(−), and 288.05 > 164.15(+) were
used for L-DOPA, dopamine, DHPAA and THP, respectively. Qualifier MRM tran-
sitions of 154.10 > 137.05(+), 151.30 > 122.10(−), and 288.05 > 123.15(+ ) were
used for dopamine, DHPAA and THP, respectively. MRM transitions of 330.10 >
192.00(+ ), 330.10 > 137.15(+ ) and 330.10 > 177.20(+) were used for reticuline.
Separation was performed at 0.25mL/min on a Discovery HS F5-3 column (3 µm,
2.1 × 150mm, Sigma–Aldrich) heated to 40 °C, with a mobile phase gradient of 0.1%
formic acid in water to 0.1% formic acid in acetonitrile. Chiral analysis of (R,S)-THP
was performed using the Shimadzu LCMS-8050 system operated in MRM mode,
together with an Astec CYCLOBOND I 2000 column (5 µm, 2.1 × 150mm,
Sigma–Aldrich) heated to 35 °C and a mobile phase gradient of 90% acetonitrile
to 50mM NH4OAc (pH 4.5) flowing at 0.3mL/min.

In vitro quantification of DHPAAS reaction components. For quantification of
aromatic DHPAAS substrates and products, soluble DHPAAS (2–3 µg) in PBS was
mixed with an aqueous solution of L-DOPA to a final volume of 40 µL. A final
concentration of 1.875 mM L-DOPA was used together with 2.5 mM sodium
ascorbate (Wako). Reactions were started at room temperature (23–24 °C) and
transferred to 4 °C after 8 h. At various time points, 2 µL of each reaction was
diluted into 98 uL methanol supplemented with ascorbate and camphor sulfonic
acid standard. Dilutions were performed in triplicate. DHPAAS reaction dilutions
were immediately stored at −30 °C until triplicate LC-MS analysis. In vitro data
were analyzed with Prism 7.

H2O2 production was analyzed in 96 well plates using a fluorometric hydrogen
peroxide assay kit (Sigma). 0.6–0.8 µg soluble DHPAAS in PBS (20 µL) was mixed
with varying concentrations of L-DOPA (10 µL), followed by the addition of 30 µL
peroxidase enzyme and fluorescent substrate mix (Sigma). Fluorescence was
detected with a SpectraMax Paradigm microplate reader (Molecular Devices).
Kinetic data included eight independent conditions for wild-type DHPAAS (one
outlier), Asn192His variant (two outliers), and Phe79Tyr-Tyr80Phe variant, while
15 independent conditions were used for the Phe79Tyr-Tyr80Phe-Asn192His
variant. Kinetic data was analyzed using the kcat function of Prism 7 with outlier
elimination.

In vivo DHPAAS-mediated THP bioproduction. DHPAAS sequences were PCR
amplified with primers containing NcoI and XhoI restriction sites (Supplementary
Table 4) for cloning into pTrcHis2B. The resulting untagged expression vectors
were then transformed into BL21(DE3)pLysS. For bioproduction, cells were
grown in M9 medium supplemented with 2% glucose, 15.6 mM sodium ascor-
bate, 100 µg/mL ampicillin, and 34 µg/mL chloramphenicol. Cultures containing
3.5 mL medium were grown at 37 °C with shaking. When culture OD600 reached
0.2–0.4, DHPAAS expression was induced with 0.97 mM IPTG, and the growth
temperature was lowered to 25 °C. At 1 h, 13 min post-induction, 3.4 mg L-DOPA
(0.97 mg/mL, 4.92 mM) was then added to each culture, followed by addition
of PLP to a final concentration of 4.86 µM. Culture temperature was decreased to
16 °C 12.9 h. after the addition of L-DOPA. Culture samples (300–500 µL) for
four time points were filtered through Amicon Ultra 0.5 mL centrifugal filters
(Millipore) with a molecular weight cut-off of 3000 Da. Approximately 4–5 mg
ascorbate was added to each culture 22.7 h. after substrate addition, and cultures
were moved to 4 °C. Finally, 49.8 h. after substrate addition, cultures were cen-
trifuged at 4500 × g, followed by collection and analysis of supernatants. Culture
samples were diluted in methanol with camphor sulfonic acid and ascorbate for
quantification of dopamine, DHPAA and THP. Individual dilutions were analyzed
three times for each condition, and in vivo figures with error bars were generated
using Prism 7.

In vivo DHPAAS-mediated reticuline bioproduction. pTrcHis2B containing
DHPAAS was transformed, together with a pACYC184 derived vector
containing C. japonica 4-OMT, CNMT, and 6-OMT, into BL21(DE3). Resulting

E. coli reticuline bioproducers were selected with 100 µg/mL ampicillin and 34 µg/
mL chloramphenicol. Reticuline production was tested in M9 minimal
medium supplemented with 2% glucose. Cells were grown to an OD600 of 0.2–0.3
before the addition of 0.5 mM IPTG, 450 µM L-DOPA, and 4.54 mM sodium
ascorbate. 17.2 h. after substrate addition PLP was added to 54.8 µM along with
a second addition of an additional 444 µM ascorbate. SAM was added 23.5 h after
substrate addition to a final concentration of 9.7 µM. Reticuline was produced
at 25 °C with shaking. Filtered culture medium was diluted in acetonitrile with
camphor sulfonic acid and ascorbate for quantification of dopamine, DHPAA,
THP, and reticuline. Single cultures of Phe79Tyr-Tyr80Phe and Phe79Tyr-
Tyr80Phe-Asn192His DHPAAS containing E. coli were tested. Duplicate cultures
of wild-type and Asn192His DHPAAS containing E. coli were tested. Each dilution
was measured in duplicate, resulting in duplicate measurements for Phe79Tyr-
Tyr80Phe and Phe79Tyr-Tyr80Phe-Asn192His DHPAAS-mediated reticuline
production, and quadruplicate measurements for wild-type and Asn192His
DHPAAS-mediated reticuline production. In vivo figures with error bars were
generated using Prism 7.

For optimization of reticuline titers, 3HC and 3HNMC (Toronto Research
Chemicals) were analyzed together with DHPAA, THP, reticuline, and 115 central
metabolites on the Shimadzu LCMS-805036.

Two-step cell production of BIA. BL21(DE3) was transformed with wild-type
DHPAAS in pTrcHis2B, DHPAAS-Phe79Tyr-Tyr80Phe-Asn192His in pE-SUMO,
and C. japonica 4-OMT, CNMT and 6-OMT in pACYC184. For the first step of
THP production, this three plasmid system was initially grown at 37 °C in TB with
no glycerol supplemented with 1.5% glucose, 100 µg/mL ampicillin, and 50 µg/mL
kanamycin. After reaching OD600 0.38, IPTG was added to a final concentration of
0.5 mM IPTG. 1.5 h after induction, the temperature was lowered to 25 °C. At 5.5 h
post-induction, cells were collected by centrifugation at 4000 g, stored overnight
at −80 °C, and the pellet from ~43 mL culture was resuspended in M9 with
reduced calcium, 0.2% Triton X-100, 1.5% glucose, 10 μM PLP, 10 mM sodium
ascorbate, and 1 mM L-DOPA, to a final volume of 6.5 mL. After mixing,
cultures were kept at 24–25 °C for 1.5 h and then centrifuged at 5000 × g to assist
condensation of DHPAA with dopamine in the supernatant. Twenty-five hours
after substrate addition, the static culture was centrifuged again at 5000 × g and the
THP containing supernatant was used for the next downstream BIA
production step.

For the second step of increased downstream BIA production, pET23a
containing 4-OMT from C. japonica together with 6-OMT and CNMT from
P. somniferum was transformed into BL21(DE3). This second BIA producer was
also initially grown at 37 °C in TB with no glycerol supplemented with 1.5%
Glucose and 100 µg/mL ampicillin. After reaching OD600 0.78, IPTG was added to
a final concentration of 0.5 mM. 1.5 h after induction, the temperature was lowered
to 25 °C. 5.5 h post-induction, cells were collected by centrifugation at 4000 × g,
stored for 2 nights at −80 °C, and the pellet from ~46 mL culture was resuspended
in the supernatant from the first step. Downstream BIA production was then tested
at 25 °C with shaking. Diluted samples of culture medium were analyzed with three
independent measurements for each condition.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon reasonable request. The source
data underlying Figs. 6, 7, 9b, and 9c, as well as Supplementary Figure 5 are provided as a
Source Data file.

Code availability
The computer code used for metabolomic modeling [https://github.com/yukuriya3/
THP_pro_pathway_select] and numerical simulation [https://github.com/yukuriya3/
THP_pro_pathway_select] are available on GitHub.
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