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Abstract

This study investigates the potential of independent component analysis (ICA)

to provide a data-driven approach for group level analysis of magnetic reso-

nance (MR) spectra. ICA collectively analyzes data to identify maximally inde-

pendent components, each of which captures covarying resonances, including

those from different metabolic sources. A comparative evaluation of the ICA

approach with the more established LCModel method in analyzing two

different noise-free, artifact-free, simulated data sets of known compositions is

presented. The results from such ideal simulations demonstrate the ability of

data-driven ICA to decompose data and accurately extract components resem-

bling modeled basis spectra from both data sets, whereas the LCModel results

suffer when the underlying model deviates from assumptions, thus highlighting

the sensitivity of model-based approaches to modeling inaccuracies. Analyses

with simulated data show that independent component weights are good

estimates of concentrations, even of metabolites with low intensity singlet peaks,

such as scyllo-inositol. ICA is also applied to single voxel spectra from 193 sub-

jects, without correcting for baseline variations, line-width broadening or noise.

The results provide evidence that, despite the presence of confounding artifacts,

ICA can be used to analyze in vivo spectra and extract resonances of interest.

ICA is a promising technique for decomposing MR spectral data into com-

ponents resembling metabolite resonances, and therefore has the potential

to provide a data-driven alternative to the use of metabolite concentrations

derived from curve-fitting individual spectra in making group comparisons.

Introduction

Proton magnetic resonance spectroscopy (1H-MRS) is a

powerful, noninvasive method that allows in vivo estima-

tion of metabolite concentrations in a tissue volume. It

has enabled extensive investigation and characterization

of biochemical profiles in a variety of healthy and patho-

logical tissues. Many neurological studies have shown the

importance of 1H-MRS in diagnosis, treatment monitor-

ing, and prognosis of major diseases including Alzhei-

mer’s, cancer, dementia, and multiple sclerosis (Jansen

et al. 2006). Significant and sustained research has been

conducted over the years using 1H-MRS in an effort to

fulfill its potential as a clinical tool.

A typical in vivo brain 1H-MRS spectrum consists of

resonances from metabolites of interest along with

features such as residual water signal, baseline fluctua-

tions, and other artifacts not of interest. A common

approach to making meaningful comparisons across sub-

jects, brain regions, or pathologies involves quantifying

metabolites in terms of concentrations. Popular methods

such as LCModel (Provencher 1993), a frequency-domain

approach, or JMRUI, a time-domain approach (Naressi

et al. 2001), fit a model function derived from an in vitro

or simulated set of metabolite profiles to data. Both time-

and frequency-domain quantification approaches employ

a variety of data preprocessing techniques to remove

or model confounding features in order to improve esti-

mation accuracy (Helms 2008) and often allow semi-

automated processing of data to produce consistent

quantitation, without special expertise. While model-

based approaches bring the ability to resolve overlapping
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resonances, the sensitivity of their estimates to modeling

inaccuracies is a serious concern and making an appropri-

ate choice of model spectra is essential (Kreis 2004).

In this article, we present a data-driven approach for

group level analysis of MR spectra based on independent

component analysis (ICA). This approach is applied col-

lectively to all analyzed spectra as a group, and resolves

individual spectra into linear combinations of a set of

components maximally independent of each other. Unlike

model-based approaches, ICA makes no assumptions on

underlying source distributions, and therefore, can be rel-

atively robust when applied to diverse data sets. In addi-

tion, ICA can potentially extract coherent variations

between resonances from the whole spectra, which may

be useful in identifying metabolites that covary. Further-

more, features of the spectra that are generally not of

interest, such as line broadening and baseline fluctuations,

can often be resolved into separate components, allowing

the resonances of interest to be quantified without the

potential confound of these artifacts.

A statistical technique that has been used for multivari-

ate analysis of spectroscopy data is the model-independent

principal component analysis (PCA) (Stoyanova and

Brown 2001). ICA is a conceptually similar technique that

has been widely used in functional magnetic resonance

imaging analysis (Calhoun et al. 2003, 2009) and has been

shown to model individual subject variations well (Allen

et al. 2012). It has also been used in few prior studies to

resolve 1H-MR spectra and extract independent compo-

nents (ICs) that could separate pathologic tissues (Ladroue

et al. 2003; Pulkkinen et al. 2005). Both of those studies

demonstrated, using fast ICA (Hyvarinen 1999), that com-

ponents maximizing independence can group resonances

effectively to classify healthy brain tissue and grades of

tumor tissue. Additionally, a few simulation studies exam-

ining the effects of line broadening and noise on the

extracted components have also been published (Ladroue

et al. 2003; Hao et al. 2009).

However, no previous published study directly com-

pared PCA or ICA results with more established methods,

such as LCModel, which could present a more convincing

case for the use of ICA in MR spectral analysis. In this

article, we present comparative evaluations of ICA and

LCModel in analyzing two simulated data sets, each com-

posed of metabolites typically found in human brain, but

generated using different sets of basis spectra. Though

LCModel has been compared to other model-based meth-

ods (Hofmann et al. 2002; Kanowski et al. 2004), to our

knowledge, the present study is the first to compare the

model-based LCModel with the model-independent ICA.

Simulation results highlight the sensitivities of model-

based approaches to modeling inaccuracies and the

advantages of a data-driven approach in this respect.

Further, we demonstrate that the components extracted

based on independence criterion alone are good approxi-

mations of the underlying basis spectra and that the com-

ponent weights can be used instead of concentration

estimates as parameters in comparing spectra. Finally, we

also apply ICA analysis to an in vivo single voxel data set

of 193 spectra and compare components and component

weights to the basis spectra and concentration estimates

from LCModel analyses. We show that ICA component

weights and LCModel results correlate to different degrees

depending on the metabolite. ICA is also able to capture

low intensity singlet peak signals such as those that may

arise from scyllo-inositol (s-Ins). Overall, our results show

that the data-driven ICA could be a valuable tool for

group analysis of MR spectra.

Materials and Methods

ICA is a linear time-invariant method that decomposes a

set of observations into a linear combination of basis

signals. It may be seen as a higher order generalization

(Comon 1994) of PCA, often employed for dimension

reduction prior to ICA. Unlike PCA, which imposes inde-

pendence up to second order and defines orthogonal

directions, ICA minimizes statistical dependence between

its components, and is uniquely defined when at most

one component is Gaussian (Bell and Sejnowski 1995). As

MR spectra are made of contributions from individual

metabolite spectra that can vary independently, estimated

ICs are expected to characterize well any independently

varying signals from metabolites.

The linear construct in equation (2) expresses a com-

posite spectrum or observation xn, as a linear combina-

tion of a set of k components or sources si, weighted by

mixing coefficients ai.

Xn ¼ an1s1 þ an2s2 þ � � � þ anksk ¼
Xk

i¼1

an1si ) X ¼ AS

(1)

ICA estimates the matrix W that demixes multivariate data

X to extract estimates Y of sources S, such that Y = WX

are mutually independent. If the sources are mutually

independent, then Y is close to S and W is the pseudo-

inverse of A. A variety of algorithms implementing the

iterative learning and estimations of W exist. They con-

struct unmixing matrix W such that negentropy, or dis-

tance from normality, of Y is maximized. As negentropy is

difficult to compute, many algorithms rely on kurtosis as

its estimate. In our implementation, we use the infomax

algorithm (Bell and Sejnowski 1995) on the real part of

input spectral data from our simulation experiment or in

vivo and demonstrate ICA’s ability to resolve spectra and

extract resonances having different statistical properties.
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Data simulation

The design objective of our simulation experiment was to

assess how well ICA extracts underlying components and

ground truth-mixing coefficients from simulated data

resembling in vivo human brain MR spectra; and to

explore how ICA results compare to LCModel results

from the same data. Data simulated with two different

sets of modeled resonances, with no added noise or arti-

facts, provided a means to compare ICA approach with

LCModel analysis, as well as to establish upper bounds of

ICA’s ability in MR spectral applications.

The composition of our basis set of metabolites was

based on a list of metabolites typically included in a

LCModel basis set with analysis window of 1.8–4.2 ppm,

the analysis window used in a prior report on these data

(Yeo et al. 2013). The basis set was composed of 12

metabolites: aspartate (Asp), creatine (Cr), c-amino buty-

ric acid (GABA), glucose (Glc), glutamine (Gln), gluta-

mate (Glu), N-acetyl aspartate (NAA), the N-acetyl peak

of N-acetylaspartylglutamate (NAAG), the trimethyl

amine group of phosphocholine (PCh), taurine (Tau),

and myo-inositol (m-Ins) and its isomer scyllo-inositol

(s-Ins).

For each of the metabolites in our basis set, we

obtained two sets of modeled resonances with matching

experimental parameters: a point resolved spectroscopy

(PRESS) sequence acquired at 3T with a 40-msec echo

time and 1600-Hz bandwidth. The first set of spectra,

called here LCModel basis, was generated from the

LCModel basis set provided by the developer of LCModel.

The spectra in this basis set were resampled to match the

resolution and bandwidth of in vivo spectra and saved in

a matrix of length 512. The second set of spectra, called

here GAVA basis, was simulated using a predefined

library of pulse sequences in GAVA (Soher et al. 2007), a

user friendly front end for the GAMMA MRS simulation

libraries; the 1024 data point timed-domain model data

were converted into spectral domain using the discrete

fast fourier transform (FFT) and saved in a matrix of the

same dimensions as LCModel basis. We omitted Glc from

GAVA basis set, but replaced it with Glycine (Gly), which

was not part of the LCModel basis set we used to analyze

the data.

In order to closely mimic in vivo spectra, we used

concentration estimates from LCModel analysis of in vivo

data as ground truth-mixing coefficients. For Cr, we used

combined estimates of Cr and phosphocreatine (PCr) as

the reference; likewise, we used combined estimates of

PCh and glyco-phosphocholine (GPC) as the reference

for PCh. For Gly in the GAVA basis, which LCModel

does not use, we used concentration estimates of Glc,

present in normal adult human brain at levels comparable

to Gly (~1 mmol/kg) (Govindaraju et al. 2000). We

obtain 193 sets of mixing coefficients from LCModel

analysis of in vivo data.

Each composite spectrum was generated by linearly

mixing a chosen set of basis spectra, weighted by any one

set of mixing coefficients. Using the entire set of mixing

coefficients, two sets of 193 simulated spectral data were

generated: one using LCModel basis and the other using

GAVA basis. Such simulated data can be directly analyzed

by ICA, but for use with LCModel, each composite spec-

trum was converted into 1024 data point complex time-

domain data using inverse FFT and stored in individual

files.

In vivo acquisition

MR data were collected from 141 male, 90 female subjects

(N = 231), aged between 18 and 56, with a median age of

30, enrolled in three substance abuse studies at the Mind

Research Network, conducted in accordance with proto-

cols approved by the human research review committee

of the University of New Mexico. Subjects, none of whom

are controls, provided informed consent prior to their

admission to the studies, and were compensated for their

participation. None of the participants were taking

psychoactive medications, or had any history of a sub-

stance dependence disorder other than alcohol or tobacco

dependence in the 6 months preceding enrollment.

All spectroscopic and image data were acquired on a

Siemens (Erlangen, Germany) TimTrio 3T scanner equipped

with 40 mT/m gradients, body coil, and 12-channel

receive-only phased array head coil. T1-weighted structural

images acquired with a single excitation 5-echo magnetiza-

tion prepared rapid gradient echo sequence with

TE = [1.64, 3.5, 5.36, 7.22, 9.08] msec, TR = 2.53 sec,

T1 = 1.2 sec, flip angle = 7°, slice thickness = 1 mm and

resolution = 256 9 256 mm2 was used to prescribe a sin-

gle 12 cc (20 9 20 9 30 mm3) 1H-MRS voxel in the ante-

rior cingulate region of the brain. Data were collected with

body coil excitation, in conjunction with head matrix coils

in receive mode, using a PRESS sequence with TR/

TE = 1.5 sec/40 msec, 1600-Hz bandwidth and 192 aver-

ages. Scanner preprocessing software corrects zero-order

phase differences before combining individual spectra from

different channels (Natt et al. 2005), averages acquisitions

from multiple scans, and saves acquired data in 1024 com-

plex time-domain data points. For use with LCModel, a

water spectrum with 16 averages was also acquired from

the same voxel.

In the ICA analysis, we used water-suppressed data,

which had been normalized by the scanner software using

a single scan water reference acquisition (Natt et al.

2005). As ICA works collectively on all spectra, data from
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all subjects were read and stored in a matrix. Also, as our

ICA approach requires complex, frequency-domain data,

the acquired complex time-domain data were converted

into spectral domain using FFT.

In vivo spectra were corrected for B0 variation by using

real part of the N-acetyl peak of NAA spectrum from

LCModel basis to align spectra. Following spectral align-

ment, we sought to exclude spectra that could unduly bias

component estimation and extraction. Spectra with sus-

pect LCModel results, such as those with large full-width

half-maximum (FWHM > 0.072 ppm) or poor signal-to-

noise ratio (SNR < 15) or simply a bad fit were excluded.

We also excluded spectra if the associated LCModel con-

centration estimates of any metabolite were more than 3.5

standard deviations from the corresponding mean. Finally,

we applied an objective data-driven quality control that

excluded any spectrum with any data point in the analysis

window more than 3.5 standard deviations from corre-

sponding point in the mean spectrum (generated from all

included spectra). Though arbitrary, such a choice allowed

us to exclude very few poor quality spectra and realize an

in vivo data set with no variance outliers (N = 193).

ICA analysis

ICA was performed over the same analysis window used

in the LCModel analysis (1.8–4.2 ppm), using the real

part of the spectra. Such an approach is suitable for the

linear unmixing problem in ICA and also suits the info-

max algorithm, which works well with real valued data.

Without any further preprocessing, the spectra were mean

centered (demeaned) and factorized using singular value

decomposition to perform PCA. The number of retained

principal components was determined using minimum

description length criteria (Rissanen 1983; Ojanen et al.

2004) along with a priori information on the data matrix,

and the expected number of biochemically interpretable

components. We carried out multiple (10) ICA runs to

check for spurious or false convergences and observed

that, in each run, ICA converged in 1–2 min to a consis-

tent set of components, suggesting a single run was

enough. All the components were normalized and sign

corrected if necessary, to resolve a permutation ambiguity

that arises with ICA. The components from different runs

were then clustered into groups based on correlation dis-

tances and cluster centroids were used as ICs in further

analysis; corresponding component weights were extracted

by projecting the components onto the data. In contrast

to the LCModel estimates, which are quantifications of

concentrations of individual metabolites in the basis set,

ICA estimates are the weights associated with the inde-

pendent resonances, which may correspond to metabolite

resonances and can capture ground-truth concentrations

accurately. Hereafter, the terms ICA estimates and

component weights will be used interchangeably.

The extracted ICs were compared with the underlying

basis spectra, to identify and associate components with

modeled resonances. Each component was automatically

paired with a basis spectrum based on their similarity, as

measured by the Pearson product-moment correlation

coefficient (r), called spectral correlation of the matched

pair. We also calculated a weights correlation, measured

by Pearson correlation coefficient of the component

weights with the ground truth-mixing coefficients. For in

vivo data, due the absence of absolute references, we used

LCModel basis to match and identify components, and

used LCModel concentration estimates as a form of

ground-truth reference.

LCModel analysis

LCModel analysis was carried out with no explicit eddy-

current compensation within a 1.8–4.2 ppm analysis win-

dow, which results in automatic exclusion of alanine,

macromolecules, and lipids from the basis set. LCModel

fits each individual spectrum using the remaining reso-

nances in the window. For in vivo analysis, we use all

those resonances, but for both simulation analyses, we

omitted negative creatine CH2 singlet (-CrCH2) and gua-

nidinoacetate (Gua) from the basis. This ensures LCMod-

el is posed the simpler problem of fitting the data with

the known composition. Also, while our in vivo analysis

used the acquired water spectrum as internal water refer-

ence to estimate absolute concentrations, our simulated

data estimates were normalized by the Cr + PCr intensity.

Additional analyses

We closely examined how ICA resolves our basis set con-

taining a mix of weak and strong metabolites having a

wide array of resonances, all of which are not necessarily

mutually independent. In particular, we investigated the

effect of setting the number of extracted ICs to a number

different than the number of basis spectra underlying our

simulated data. As previously, the real part of the GAVA-

simulated spectra within the analysis window was

demeaned and dimension reduced. Though the simulated

data were generated with 12 GAVA basis spectra, the num-

ber of components retained successively varied from six to

18 and each time ICA was performed as previously and the

extracted ICs were matched with basis spectra; spectral and

weights correlations were also estimated each time.

We also carried out some analysis to examine how well

the ICA estimates could capture a certain relationship

between ground truth and an attribute of interest

(phenotype). Toward this effort, we generated a set of
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pseudorandom vectors, each correlating with ground

truth, with a preset correlation score (r = 0.5). Each vec-

tor mimics a neurological, physiological, or physical attri-

bute correlated with ground truth. We then computed

how those vectors correlated with the ICA estimates. By

generating multiple (N = 100) realizations of such vec-

tors, and computing their correlations with the ICA esti-

mates each time, we observed how accurately could the

ICA estimates capture the relationship between “pheno-

types” and ground truth.

As the ICs from in vivo analysis do not have a ground

truth, we sought to show that the select ICs indeed origi-

nated from metabolic sources, and not from confounds or

nuisance artifacts associated with real data. To this end,

we examined how the fractional tissue volumes in the

spectroscopic voxel correlated with LCModel estimates or

component weights. As cerebrospinal fluid (CSF) is mostly

void of observable metabolites (Gasparovic et al. 2006),

when the fractional tissue volume is high, more metabo-

lites exist in the spectroscopic voxel and therefore both

the estimates are expected to correlate positively with the

fractional tissue volume. However, this effect is expected

to disappear when the estimates are normalized with a ref-

erence metabolite estimate from within the voxel. The

fractional tissue volumes in the spectroscopic voxel were

estimated by segmenting high-resolution T1-weighted

images into gray matter, white matter, and CSF using the

unified segmentation approach available in SPM5 (Ash-

burner and Friston 2005) and averaging fractional tissue

volumes of the T1-pixels within the spectroscopic voxel.

Results

The location of the spectroscopic voxel in vivo experi-

ments, in the anterior cingulate region of the brain, is

shown in Figure 1. Also shown is the LCModel output that

Cr

m-Ins

PCh

Cr

NAA

Glu+Gln
(Glx)

Chemical Shift (ppm)
4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8

Glx

NAAGm-Ins
GABA

Asp+
NAA

Figure 1. Location of the voxel and typical MR spectra: 12 cc spectroscopic voxel is positioned in the anterior cingulate region. LCModel plot of

a typical in vivo metabolite spectrum in 1.8–4.2 ppm analysis window shows the real part of the referenced and phase-corrected spectrum in

faint grey line; smooth red line is the LCModel fit, and the blue line is the estimated baseline. Some resonances are identified with associated

metabolites (Glx refers to Glu + Gln). MR, magnetic resonance; Glu, glutamate; Gln, glutamine.
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presents a typical metabolite spectrum and LCModel’s fit

to the spectrum; some key resonances are labeled and the

estimated spectral baseline is also shown.

Simulation

As the composition of our simulated data is known, we

only extracted as many ICs as the number of sources (12)

underlying the data; ICs were paired with basis spectra,

and corresponding component weights were also esti-

mated. Table 1 presents spectral correlations between the

real parts of LCModel and GAVA model spectra; notice

the correlations are not the same across metabolites. For

each set of simulated data, the table also captures spectral

and weights correlations and the correlations of LCModel

estimates with the ground truth. Note the high spectral

and weights correlations revealing the ability of ICA to

resolve MR spectra and extract ICs substantially resem-

bling underlying basis spectra. Also notice LCModel

results are strongly predicated upon the basis spectra

underlying the simulated data.

The results from analysis of the data generated using

LCModel basis are shown in Figure 2. The figure shows

the real part of the spectra of select metabolites, super-

imposed with matching ICs; spectra are demeaned and

intensity normalized (zero-mean, unit-norm). Shown

below the spectra are the scatter plots of the estimates

from ICA and LCModel plotted against ground truth-

mixing coefficients. The estimates are normalized on a

scale of 0 to 1 and least squares fit lines for the scatters

are also shown. Note the high spectral correlations across

the board and the near-perfect overlaps between the ICs

and basis spectra. Also notice how well LCModel resolves

Glu, Gln from simulated data, which is not common in

the in vivo case. The tight scatter of LCModel estimates

are not surprising, given LCModel’s own basis spectra

were used to generate the data in the first place. This

shows that LCModel estimates are accurate when model-

ing assumptions are valid, and also validates our simula-

tion experiment. Notice that the scatter in ICA estimates

is also comparably small, with high correlation scores.

Figure 3 captures the results from analysis of the data

generated using GAVA basis. The real part of select

LCModel and GAVA basis spectra, all with zero-mean and

unit-norm are shown; extracted ICs closely resembling

GAVA basis are not shown. Although both the models were

simulated with similar sequence parameters and experi-

mental conditions and show great similarities, their spectral

patterns are not identical and the occasional lack of overlap

reveals that differences exist between the models, as

captured by their spectral correlations. Notice the correla-

tions of LCModel estimates against ground truth-mixing

coefficients are considerably weak when the basis spectral

correlations are weak, revealing that LCModel estimates

suffer when the data are not consistent with the modeling

assumptions. In contrast, the ICA estimates are highly

accurate and underscore the robustness of ICA to the

changes in spectral profiles underlying the data. Also note

we could not provide the scatter plot for Gly estimates from

LCModel, as Gly was not part of our LCModel basis set.

Figure 4 shows zero-mean, unit-norm modeled reso-

nances of m-Ins and Gly, which are correlated due to the

peak at 3.56 ppm (r~0.46). Also shown are the two

matching ICs, which are decorrelated, because ICA, as

expected, fully resolves the 3.56-ppm peak separately, as

Gly. Though the missing spectral peak in the m-Ins reso-

nance results in slightly lower spectral correlations (see

Table 1), the weights estimation was not compromised;

in fact, the more accurately extracted Gly resonance has

comparatively larger scatter.

Table 1. Results from 193 spectra simulation experiments: Results from simulated data generated with LCModel and GAVA basis shown. Notice

the spectral correlations between the modeled spectra are not the same across metabolites. Both the LCModel and ICA estimates (weights) corre-

late well with ground truth when analyzing data simulated with LCModel basis spectra. LCModel estimates suffer when analyzing data simulated

with GAVA basis spectra, as the data deviate from the assumed model, whereas ICA results remain strong.

Asp Cr GABA Glc/Gly Gln Glu m-Ins NAA NAAG PCh s-Ins Tau

Gava-LCModel spectral corr. 0.072 0.887 0.907 – 0.792 0.557 0.764 0.732 0.883 0.1 0.801 0.586

Truth-LCModel conc.1 0.999 0.998 0.995 0.999 1 0.999 0.999 0.999 0.999 0.997 0.999 0.998

LCModel-ICA spectral corr.1 0.995 1 0.983 0.947 0.978 0.986 0.99 1 0.999 1 1 0.997

Truth-ICA weights1 0.996 1 0.994 0.982 0.997 0.988 0.999 1 0.997 0.998 0.998 0.929

Truth-LCModel conc.2 0.407 0.994 0.886 – 0.994 0.984 0.869 0.99 0.586 0.343 0.988 0.966

Gava-ICA spectral corr.2 0.999 1 0.989 1 0.989 0.983 0.869 0.999 0.999 1 1 0.994

Truth-ICA weights2 0.999 1 0.971 0.959 0.993 0.996 0.999 1 0.931 0.996 0.993 1

ICA, independent component analysis; Asp, aspartate; Cr, creatine; GABA, c-amino butyric acid; Glc, glucose; Gln, glutamine; Glu, glutamate;

m-Ins, myo-inositol; NAA, N-acetyl aspartate; NAAG, N-acetyl peak of N-acetylaspartylglutamate; PCh, trimethyl amine group of phosphocholine;

s-Ins, isomer scyllo-inositol; Tau, taurine.
1Using LCModel basis set.
2Using GAVA basis set.
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Figure 5 shows spectral and weights correlations when

the number of ICs extracted from data set simulated with

12 GAVA basis spectra is varied from 6 to 18. The illus-

tration combines compact box plot and scatter plots; each

correlation score is a cross line, and medians are marked

by broader lines. Notice the high spectral and weights

correlations, showing little effect of the number of ICs on

the resolved components. When fewer than 12 ICs were

extracted, few components will not get resolved. Some

ICs are more readily resolved than others and the ICs that

do not get resolved or disappear are identified with the

drop-down lines and the adjacent numbers show their

order of disappearance.

The box plots in Figure 6 show the results from pheno-

types simulation. The boxes represent the middle quartiles

(between 25th and 75th percentiles) of the correlation

scores between ICA weights and phenotypes matrix

realizations. The size of the box corresponds to the

dispersion in the estimation of ICA weights; notice the var-

iability in the scatter plots in Figure 3 directly corresponds

to the size of the corresponding boxes. Except for GABA,

Gly, and NAAG, the correlations are virtually no different

from the ground-truth correlations set at r = 0.5. Even in

the case of the worst performing metabolite, the weights

show a correlation with r ~0.42, only slightly lower.

In vivo application

Similar to the procedure used with simulated data, in

vivo spectral data (N = 193) were demeaned and rank

reduced using singular value decomposition, to 20 com-

ponents, before multirun ICA. The extracted ICs were

automatically paired with LCModel basis and correspond-

ing weights were also estimated. Table 2 lists those select
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Figure 2. Results from simulated data generated with LCModel spectra: Real part of select LCModel basis spectra and the matching ICs, both

zero-mean, unit-norm shown; PPM scale is presented for reference only. Also shown are scatter plots of corresponding estimates, LCModel

concentration and independent component analysis (ICA) weights, both normalized on a zero-to-one scale, plotted against ground-truth mixing

coefficients. Least squares fit lines for the scatters and Pearson correlation scores for the spectra and scatters are also shown. See good overlap

between the basis spectra and matching ICs, across board. The near-perfect LCModel scatter is in line with expectations, because the basis

spectra underlying the data are LCModel’s own; tight scatter of ICA weights shows ICA does comparable job, without assuming underlying basis

distributions.
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pairs with significant spectral correlations, and captures

both spectral and weights correlations. While ICs resem-

bling the m-Ins signal and the singlet resonances of NAA,

NAAG, Cr, PCh, and s-Ins were readily identified, no ICs

resembling resonances from Asp, Glu, Gln, and GABA

were discerned. The table also captures how the ICA and

LCModel estimates relate to the fractional tissue volume

in the spectroscopic voxel. More the tissue fraction, more

signal is detected and the estimates are larger. Therefore,

without normalization, the estimates show similar, posi-

tive correlations with tissue volumes; the correlations are

weak possibly due to the lack of perfect spatial overlap

between metabolite and water volumes. However, when

normalized neither set of estimates correlates with tissue

volumes, as expected.

Figure 7 shows results from ICA analysis of in vivo

data, in the absence any ground truth, plotted against

LCModel references. The components with significant

spectral correlations are overlaid on the matching real

part of the paired LCModel basis spectrum; spectra plot-

ted are demeaned and intensity normalized. Notice the

components substantially overlap paired basis spectra at

the major peaks, with some differences apparent around

the baseline, attributed to covarying resonances; for exam-

ple, the peaks around 2.4 ppm of NAA-like component

seem to arise from Glu, based on Pearson correlation in

the spectral subspace (r = 0.612). Resonances such as

those from Asp, GABA, or Gln are not readily discerned

from in vivo data and therefore not presented. Also

shown below each set of spectra are the scatter plots of
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Figure 3. Results from simulated data generated with GAVA spectra: Real part of select LCModel basis spectra and matching GAVA basis

spectra, both zero-mean, unit-norm shown; extracted ICs that closely resemble GAVA basis, not shown; PPM scale is presented for reference

only. Also shown are scatter plots of LCModel concentration and ICA weights, both normalized on a zero-to-one scale, plotted against ground-

truth mixing coefficients; least squares fit lines and Pearson correlation scores for the scatters are also shown. Non-overlap of the spectra reveal

differences exist between the two models, and poor LCModel scatter is a direct consequence of such modeling differences; also note LCModel

does not include Gly basis or output its estimates. The tight scatter of ICA weights shows that ICA, being data-driven, is robust to the differences

in underlying spectral properties. ICA, independent component analysis; Gly, glycine.
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the ICA estimates (weights), plotted against LCModel

estimates, both expressed as a ratio with NAA; least

squares fit lines for the scatter plots are also shown. As

NAA is the reference metabolite, its scatter plot is not

constructed; instead, we present a scatter plot between the

weights of NAA component and the peak value of the

spectral input to ICA. The strong linearity in that rela-

tionship shows that the peak value of the spectra, deter-

mined by its dominant peak (NAA), linearly relates to the

area under the NAA peak (weight).

Figure 8 illustrates the capability of ICA to extract cer-

tain resonances of interest in the presence of confounds,

and toward this, we present three sets of plots in col-

umns. The first plot in each set (top row) is the 193 sub-

jects spectral data input to ICA, the composite spectra

reconstructed from principal components. The second

plot (middle row) is the variability in the data explained

by an individual independent component or group of

ICs. The final plot (bottom row) is the residue or the

variability unexplained by the respective component(s).

For the purposes of this illustration, we selected two indi-

vidual ICs (Cho, NAA), and the whole set of six ICs (Cr,

m-Ins, NAA, NAAG, PCh, and s-Ins) shown in Figure 7.

Discussion

Our simulation results show that ICA unmixes noise-free,

multivariate data and extracts components closely resem-

bling underlying spectra and that the ICA estimates clo-

sely track the ground truth-mixing coefficients. We also

demonstrate that ICA offers superior consistency of

results with simulated data compared to LCModel; while

both results are nearly identical in the ideal case for

LCModel, ICA is much more robust than LCModel in

the nonideal case where the actual ground truth deviates

from the assumed basis set, illustrating the effects of

modeling inaccuracies. A close look at the effects of spec-

tral correlations of the two sets of basis spectra reveals

that the varying degrees of correlations of LCModel esti-

mates in the nonideal case are due to the extent of the

differences of spectral patterns between the models.

A wealth of information can be gleaned from the ICA

results alone, by closely examining ICA’s performance in

extracting modeled resonances having different statistical

properties. The illustration in Figure 4, where the mod-

eled resonances of m-Ins and Gly are compared with their

matching ICs, helps bring out the limitations and advan-

tages of the ICA approach. The modeled spectra are cor-

related to each other, due to their common peak at

~3.56 ppm. However, as the variability associated with

that peak does not covary with other peaks in the mod-

eled m-Ins resonance, ICA resolves the peak at 3.56 ppm

separately and thus provides a clean estimate of Gly. As

ICA minimizes mutual information among the compo-

nents, the 3.56-ppm peak does not appear in the m-Ins

like component, even though modeled spectrum has a

3.56-ppm signal, thus clearly exposing the limitation of

ICA in extracting such resonances. Nevertheless, the
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Figure 4. Effects of Independence on extracted components: Real

part of GAVA basis spectra of Gly and m-Ins, and corresponding ICs

shown; plotted spectra are zero-mean, unit-norm and PPM scale is

presented for reference only. While modeled resonances of both

metabolites have a common peak at ~3.56 ppm, ICA resolves this

peak as Gly singlet; as ICA enforces independence by minimizing

mutual information between ICs, the peak disappears from the m-Ins

like component. Though spectral correlation of m-Ins is slightly lower

(see Table 1), its estimate is accurate and even better than that

of Gly. ICA, independent component analysis; Gly, glycine; m-Ins,

myo-inositol.
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extracted component substantially resembles m-Ins and,

moreover, provides highly accurate estimates of m-Ins.

So, rather than a limitation, it is an opportunity that ICA

provides to extract resonances with singlet peaks, even in

the presence of spectrally colocated strong resonances.

At the same time, resonances with multiple peaks that

tend to be correlated with other (modeled) resonances,

are not likely strictly independent to begin with, and

therefore are difficult to resolve exactly using ICA, as evi-

dent from the slightly lower spectral correlations of such

resonances (Table 1). However, even the lowest spectral

correlation (other than m-Ins), that of Glc due to strong

overlaps with Tau (r ~0.41), is at ~0.95. The low spectral

correlations do not necessarily hurt ICA estimation,

0.8

0.85

0.9

0.95

1

Spectral Correlations

Pe
ar

so
n 

C
or

re
la

tio
n

0.88

0.92

0.96

   1

A
sp

C
r

G
A

B
A

G
ly

G
ln

G
lu

In
s

N
A

A

N
A

A
G

P
C

h

S
cy

llo

Ta
u

Weights Correlations

Pe
ar

so
n 

C
or

re
la

tio
n

4 1 5 3 2 6

Figure 5. Impact of number of ICs on correlation scores: Results from independent component analysis (ICA) analysis of simulated data

generated with 12 components GAVA basis spectra when the number of ICs extracted from were varied from 6 to 18 shown. In these compact

box plots, each cross-line is a correlation score, and the medians are marked by broad lines. High spectral and weights correlations show minimal

impact of the number of components on the extracted ICs. ICs that do not get resolved when fewer than 12 components are extracted are
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Figure 7. Results from 193 spectra in vivo data: Select ICs and matching LCModel spectra shown; all spectra zero-mean, unit-norm. See

resonance peaks of the ICs substantially overlapping matched basis spectra; also notice minor covarying resonances along the baseline. Due to

lack of ground-truths for in vivo, we show scatter plots of the estimates, both NAA-normalized, plotted against each other, along with least

squares fit lines. Given the complexities in the real data and limitations of either approach, the dispersion in the scatters is hardly surprising.

However, note the scatter of ICA estimates (weights) of NAA against the peakheight of the spectral input to ICA is comparatively tighter, as

expected. NAA, N-acetyl aspartate; ICA, independent component analysis.

Table 2. Results from ICA analysis of 193 spectra in vivo data: Components identified based on spectral correlation with matching LCModel

spectra are shown. The correlations between the LCModel and ICA estimates (weights), both NAA normalized, are appreciable given both are

estimates of some unknown ground truth. Also shown are the correlations of the estimates with the fractional tissue volume in the spectroscopic

voxel; while the estimates correlate positively with the tissue volume without normalization, they are decorrelated when NAA normalized.

Cr m-Ins NAA NAAG PCh s-Ins

Spectral correlations 0.794 0.743 0.949 0.726 0.836 0.731

Weights*: LCModel conc.* 0.826 0.677 – 0.261 0.879 0.632

Weights*: Tissue volume corr. 0.021 0.002 – �0.175 �0.037 0.158

LCModel conc.*: Tissue volume corr. �0.1 0.047 – 0.027 �0.197 �0.199

Weights: Tissue volume corr. 0.531 0.468 0.448 0.292 0.408 �0.009

LCModel conc.: Tissue volume corr. 0.521 0.423 0.522 0.129 0.213 �0.114

ICA, independent component analysis; NAA, N-acetyl aspartate; Cr, creatine; m-Ins, myo-inositol; NAAG, N-acetyl peak of N-acetylaspartyl-

glutamate; PCh, trimethyl amine group of phosphocholine; s-Ins, isomer scyllo-inositol.

*Normalized with NAA estimates.
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especially when the resonances are strong, for an error in

their estimation is acutely felt.

Our in vivo results demonstrate that ICA can resolve

signals of interest from the confounding artifacts and can

group covarying resonances together. The estimates of

identified components resembling Cr, NAA, PCh, and m-

Ins signals, while including other covarying resonances

(Fig. 7), nonetheless demonstrated strong correlations with

the LCModel estimates of the identified metabolites. The

weak correlation involving NAAG may be attributable to

LCModel’s limitation in resolving NAAG from NAA;

though it makes sense to present NAA + NAAG for real

data, we could not present that as our estimates are NAA

normalized. An ICA component associated with the s-Ins

signal is also consistently extracted by ICA, perhaps due to

the lack of overlap with any other signal. Elevated s-Ins in

the current data set may be due to effects of alcohol abuse

(Viola et al. 2004) or aging (Kaiser et al. 2005).

The ICs that are unidentified include baseline and

broadening components and resonances of interest, such

as those from Asp, Glu, Gln, and GABA, indiscernible

from such confounds. We acknowledge the difficulty in

discerning resonances with multiple peaks, such as those

from Glu + Gln, from the in vivo data, which LCModel

estimates with reasonable accuracy. In our future study,

we will provide modifications to ICA, by incorporating

prior information, in the form of constraints in the ICA

algorithm (Lin et al. 2010) to improve the estimations of

such metabolites. Appropriate preprocessing steps to

effectively reduce noise or baseline artifacts may also

improve ICA’s estimation accuracy, as our simulations

indicate. Finally, the ICA approach may benefit from the

use of all available complex time-domain data, rather

than just the real part of the data that we used in this

study, with very good performance. These strategies to

improve ICA performance will also be explored in the

future study.

Clearly ICA, which cannot analyze spectra individually,

cannot replace the curve-fitting methods, such as LCModel,

in individual spectral analysis. However, ICA can be very

useful in the analysis of multiple spectra, and possibly offer

a systemic advantage in such cases, as it makes full use of

the information by collectively analyzing “complete” spec-

tra, rather than just the quantified estimates. The ICA

approach described in this report can be potentially applied

to spectra from multiple voxels in a spectroscopic imaging
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data set from one or more subjects. It can also be applied to

analyze data from two different study populations or tissue

types and discriminate one group from the other. Conceiv-

ably, ICA can also play a complimentary role to model-

based methods by identifying hidden structures underlying

the data and help choose better “model”.

Conclusion

We systematically compare the performances of ICA and

LCModel in analyzing MR spectra and demonstrate, using

noise- and artifacts-free simulations, that the data-driven

ICA approach is more robust to variations in the spectral

profiles underlying the data. Further, we show that

composite spectra can be resolved to extract components

substantially resembling modeled metabolite resonances,

using independence criteria alone and that ICA can

extract components from simple singlet signals, such as

Gly, that overlap with other signals. We discuss the limi-

tations and advantages of ICA in spectral decomposition

in detail, and show that the ICA estimates, which exhibit

a highly linear relationship with ground truth, can be very

useful in analyzing a group of spectra. Furthermore, we

apply ICA to analyze in vivo 1H-MRS spectra and show

that ICA can extract components associated with NAA,

Cho, Cr, and m-Ins in the presence of confounding arti-

facts. Finally, we show that ICA can be very useful, in

extracting certain weak metabolites with singlet reso-

nances, such as s-Ins and can provide visibility of reso-

nances that covary. Together, these results suggest that

ICA could be useful for collective analysis of multiple MR

spectra.
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