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Abstract

The number of biomarker candidates is often much larger than the number of clinical patient data points available, which
motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a
bioinformatics filtering process to isolate a modest number (,10) of key interacting genes and their associated single
nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to
identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo
or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and
identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we
identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was
used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from
Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further
ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring
function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation
response.
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Introduction

In the ‘omics’ era, the number of biomarker candidates

potentially available for statistical testing is often much larger

than the number of patient data points. This presents a

fundamental problem in biomarker research: the number of

candidate genetic or epigenetic markers often overwhelms the

inherent statistical power available in a clinical dataset, which

usually has tens or hundreds of patient cases available rather than

thousands. This statistical mismatch is typically becoming worse as

more of the intracellular complexity of molecular machinery is

identified. At one extreme, a genome-wide association study

(GWAS) examining the correlations of millions of tag single-

nucleotide polymorphisms (SNPs) to cancer treatment outcome

may require a very high, and biologically unlikely, odds ratio given

the number of multiple comparisons, to reach statistical signifi-

cance. At the other extreme, it is clear that investigators cannot a

priori identify the most important biomarker genes or SNPs for

testing. These unsatisfying extreme cases motivated our search for

a middle strategy that would objectively identify a modest number

of promising SNPs/proteins, etc. as a cohort for testing against a

given dataset. Because clinical datasets for a given endpoint are

commonly of modest size (tens or hundreds, not thousands, of

patients), we searched for key protein interaction networks that

result in less than approximately a hundred candidate SNPs. Our

methodology, of course, could be adopted to throw a wider net if

much larger datasets become available. Our endpoint of interest is

late toxicity following radiation therapy for cancer. Many cancer

patients who receive radiation therapy suffer from acute or late

side effects; the risk for experiencing these side effects is expected

to have a genetic component [1]. Numerous genes participate in a

cascade of events in response to radiation and the resulting DNA

damage in a complex signal transduction network [2].

Recently, many studies have focused on finding radio-respon-

sive genes at the whole genome level with gene expression

microarrays. Rieger and Chu used oligonucleotide microarrays to

develop a genome-wide portrait of transcriptional response to

ionizing radiation (IR) and ultraviolet (UV) radiation in cell lines

collected from 15 healthy individuals [3]. In another study [1]

using samples extracted from cancer patients with acute radiation

toxicity, Rieger et al. showed that toxicity after radiation therapy

(radiotherapy) could be associated with abnormal transcriptional

responses to DNA. Jen and Cheung [2] assessed transcriptional

levels of genes in lymphoblastoid cells at various time points with

3 Gy and 10 Gy of ex vivo IR exposure. Following 10 Gy of IR

exposure, more genes were induced, suggesting that a higher

radiation dose causes a more complex response. A high percentage

of significant genes were involved in cell cycle, cell death, DNA

repair, DNA metabolism, and RNA processing. Eschrich et al. [4]

analyzed microarray gene expression data derived from 48 human

cancer cell lines and generated an interaction network using
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MetaCore software (GeneGo, Encinitas, CA) with the top 500

genes identified by linear regression analysis. Subsequently, based

on 10 hub genes obtained from the network, they modeled

radiosensitivity (survival fraction at 2 Gy) using a linear regression

method.

Normal tissue toxicity after radiotherapy may partially be

attributable to specific genetic mutations. In an effort to identify

candidate polymorphisms at the SNP level involved in the cellular

response to irradiation in breast and prostate cancers, Popanda

et al. [5] surveyed many published studies that show associations of

SNPs in candidate genes with acute or late side effects of

radiotherapy. Andreassen and Alsner [6] summarized studies

published on genetic variation in normal tissue toxicity and

proposed a model of allelic architecture that illustrates relative risk

for genetic variants associated with normal tissue radiosensitivity.

In this study, we attempted to define an objective method for

identifying key radiosensitivity genes likely to have a significant

impact on clinical outcome following radiotherapy. We elected to

construct a staged filter. The first step was a comprehensive

literature review of radiosensitivity-related genes. These genes

were then further delimited to genes responding to IR in an

analysis of publicly available microarray gene expression datasets.

We further focused the search on interacting networks, based on

the hypothesis that good biomarkers are likely to be embedded in

important pathways or networks involving multiple genes known

to be important to the endpoint in question [7]. This last step may

potentially add new, previously unreported targets, based on

curated pathway libraries.

Materials and Methods

In summary, we used a multi-component filtering process: (1)

genes associated with radiation response in the literature and (2)

genes associated with radiation response in two microarray mRNA

datasets. Overlapping genes from these three sources were fed into

a curated protein interaction network system (MetaCore) to

identify key interacting networks. The most important network

was taken as our target set.

Literature Review of Radiosensitivity-related Genes
We attempted a complete literature review of all genes

implicated in radiation response. Published papers were searched

by using PubMed and Scopus search engines in 2010 and by

following citations within the identified papers. The search

strategy was based on a combination of the following search

keywords: ‘‘SNPs, polymorphisms, or microsatellites’’ and ‘‘irra-

diation, radiation, or radiotherapy’’ and ‘‘morbidity, radiosensi-

tivity, normal tissue, toxicity, or complications’’ and ‘‘siRNA,

knockdown, or knockout’’. Papers referred to in the original search

returns, or referring to the original papers at a later date were also

reviewed. This resulted in an in-depth review of around 200

published papers, and a list of 221 genes implicated in radiation

response.

Microarray Gene Expression Datasets
To identify significant radio-responsive genes based on micro-

array gene expression profiling, we searched for all relevant,

publically available microarray datasets, resulting in locating two

datasets. We analyzed GSE1977 and GSE23393, downloaded

from the publicly available Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/geo/). In GSE1977, lym-

phoblastoid cell lines obtained from 15 healthy individuals were

established by immortalization of peripheral blood B-lymphocytes

[3]. The response of numerous genes was measured by mock

treatment, UV, and X-ray exposures. Cells were exposed to 5 Gy

radiation doses and harvested for RNA 4 hours later. In our work,

the differential between mock and X-ray cases was used. In

contrast, in GSE23393 [8], blood was gathered from eight

radiotherapy patients (at our institution): eight samples were

collected immediately before irradiation and another eight samples

were collected at 4 hours after total body irradiation with 1.25 Gy

X-rays.

Preprocessing for Identification of Significant Genes
Before the microarray datasets were analyzed, gene expression

values were log-base-2 transformed, followed by quantile normal-

ization across all samples [9]. Microarray gene expression values

from two different conditions (before and after exposure) were

compared using a two-tailed t-test to identify differentially

expressed genes (radio-responsive genes). To estimate the likeli-

hood of identifying significant genes by chance, we computed

permutation-based p-values using 10,000 permutations. Then,

using Storey’s method, the false discovery rate (FDR) and q-value

for each gene were calculated [10]. Significance Analysis of

Microarrays (SAM) and t-test are widely used for indentifying

differentially expressed genes in the analysis of microarray data

[11]. We chose a permutation t-test with an assumption that the

permutation t-test and SAM could yield a set of similar significant

genes, as recommended by Chen et al. [11]. In this analysis, we did

not use a fold change cutoff in order to avoid losing some

important genes, a problem described by Larsson et al. [12].

Pathway and Process Analysis
Significant genes were identified both in the literature review

and the analysis of two microarray datasets (GSE1977 and

GSE23393). These genes were then entered into a manually

curated pathway analysis database (MetaCoreTM, GeneGo, Inc.,

Carlsbad, California). The commercial pathway analysis system,

MetaCore, computes p-values for overrepresented pathways and

processes. MetaCore is based on a comprehensive manually

curated attempt to capture protein interactions as networks. We

used MetaCore to attempt to find the most probable interaction

pathways among a set of genes uploaded by the user. Several

algorithms are available to do this; we used the ‘‘Analyze network’’

option. If necessary, MetaCore adds appropriate genes to

complete a network.

Gene Ontology Analysis
A further analysis of the resulting significant genes was

performed using the Gene Ontology (GO) database (www.

geneontology.org), in which genes are annotated with known

molecular functions, biological processes, and cellular component

locations.

Gene Ranking
In our previous work to identify blood-based protein biomarkers

to predict radiation-induced pneumonitis [7], we proposed a

graph-based scoring function to rank proteins in a protein–protein

interaction network. The network consisted of candidate proteins

we identified in mass spectrometry analysis and four previously

identified (‘regularization’) biomarker proteins. Using the pro-

posed method, we attempted to measure a ‘functional distance’

between each candidate protein and the four regularization

proteins, based on the hypothesis that some proteins relevant to a

specific disease exist in close proximity, in a network sense. In the

current study, we modified that algorithm such that within a given

protein–protein interaction network for a biological process, we

Identification of Radiation Response Biomarkers
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Table 1. Radio-responsive biomarkers identified by literature review and their biological processes.

Gene Symbol
Entrez
Gene ID DNA repair

Cell
proliferation Cell cycle Apoptosis

Response to
stress Reference

ABCA1 19 [14]

ABL1 25 v v v v [4]

ACTA2 59 [15]

AEN 64782 v v [16]

AKR1B1 231 v [17]

AKT1 207 v v v [18]

ALAD 210 [19,20]

ANXA1 301 v v v v [21]

APEX1 328 v v [22–26]

APOE 348 v v v [27]

AR 367 v [4]

ATF3 467 v [28]

ATM 472 v v v v v [25,26,29–43]

BAD 572 v v [44]

BAK1 578 v [45]

BAX 581 v [37,44–47]

BAZ1B 9031 v v [17]

BBC3 27113 v [16,48–50]

BCL2 596 v v v v [37,44,46,51,52]

BCL2L1 598 v v v [51]

BIRC5 332 v v [53]

BRCA1 672 v v v v v [54–59]

BRCA2 675 v v v v v [54–57,59,60]

BTG2 7832 v v v v [61]

CAT 847 v v [62]

CAV1 857 v v [63]

CCNB1 891 v v v [48]

CCND1 595 v v v [46]

CCNE1 898 v [61]

CCNG1 900 v v v [49]

CD24 100133941 v v v [21]

CD40 958 v v [64]

CD68 968 [20]

CD69 969 [16]

CD70 970 v v [65]

CD83 9308 v [21]

CDC20 991 v v [66]

CDC6 990 v v [61]

CDH2 1000 [21]

CDK1 983 v v v v [4,61]

CDK2 1017 v v [61]

CDKN1A 1026 v v v v [15,16,37,47–50,61,67,68]

CDKN2A 1029 v v v v [69]

CHEK1 1111 v v v v [70,71]

CLIC1 1192 [72]

CRYAB 1410 v v [21]

CSNK2A2 1459 v [73]

CXCR4 7852 v v [15]

CYP2D6 1565 [74]

Identification of Radiation Response Biomarkers
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Table 1. Cont.

Gene Symbol
Entrez
Gene ID DNA repair

Cell
proliferation Cell cycle Apoptosis

Response to
stress Reference

DCN 1634 v [21]

DDB2 1643 v v [15,21]

DDR1 780 [15]

DDR2 4921 v [15]

DDX17 10521 [17]

DRAP1 10589 [17]

DUSP8 1850 [16]

EGFR 1956 v v v v [46]

EGR1 1958 v [16]

EGR4 1961 v [16]

EI24 9538 v [47]

EIF2AK3 9451 v v [75]

EPDR1 54749 [20]

ERBB2 2064 v v v [46,76–78]

ERCC1 2067 v v [52]

ERCC2 2068 v v v v v [36,74]

ERCC4 2072 v v v [52,79]

ERCC5 2073 v v v [52]

FAS 355 v [47,80]

FASLG 356 v v v [80]

FDXR 2232 [49,50,68]

FGF1 2246 v v [81]

FGF2 2247 v v v v [81]

GADD45A 1647 v v v v [15,16,48,49,61,67]

GBP1 2633 [21]

GDF15 9518 [15,82]

GFER 2671 v [83]

GRAP 10750 [16]

GSTA1 2938 [62]

GSTM1 2944 [62,84]

GSTP1 2950 v [36,62,85,86]

GSTT1 2952 [62,84]

H2AFX 3014 v v v [41,87,88]

HDAC1 3065 v v v [4,89]

HERC2 8924 v v v [90]

HSP90AB1 3326 v [91]

HSP90B1 7184 v v [82]

HSPB1 3315 v v [91,92]

HUS1 3364 v v v [93]

ICAM2 3384 [94]

ID3 3399 v v v [20]

IER5 51278 [95]

IFNG 3458 v v v v [16]

IGF1R 3480 v v [46,96]

IGFBP3 3486 v v [21]

IL12RB2 3595 v [14]

IL17A 3605 v v [97]

ILK 3611 v v v [98]

IRF1 3659 [4]

Identification of Radiation Response Biomarkers
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Table 1. Cont.

Gene Symbol
Entrez
Gene ID DNA repair

Cell
proliferation Cell cycle Apoptosis

Response to
stress Reference

JUN 3725 v v v v [4,16]

KRAS 3845 [99]

LIG1 3978 v v v [20]

LIG3 3980 v v v [19,20]

LIG4 3981 v v v v v [35,60,74,100]

LOX 4015 v [21]

LSM7 51690 [17]

MAD2L2 10459 v [19]

MAP3K7 6885 v v [19,20]

MC1R 4157 v v v [101]

MCL1 4170 v [102]

MCM2 4171 v [61]

MDC1 9656 v v v [35]

MDM2 4193 v v v [16,49,52,103]

MGMT 4255 v v v [20]

MLH1 4292 v v v v [46,74]

MMP2 4313 v [104]

MMP9 4318 v [105]

MPO 4353 v v [62,106]

MR1 3140 [15]

MRE11A 4361 v v v [29]

MRPL23 6150 [17]

MSH2 4436 v v v v [46]

MTHFR 4524 [107]

MTOR 2475 v v [45]

MYC 4609 v v v [108]

NBN 4683 v v v v [29,109]

NEIL1 79661 v v [110]

NEK2 4751 v [111]

NFKB1 4790 v v [112]

NNMT 4837 [91]

NONO 4841 v v [113]

NOS3 4846 v v v [62,106]

NOX4 50507 v v [114]

NUDT1 4521 v v [17]

OGG1 4968 v v [115]

PAH 5053 [20]

PAK6 56924 [116]

PARP1 142 v v [70,117]

PCNA 5111 v v v [16,118]

PER3 8863 [20]

PHLPP2 23035 [119]

PHPT1 29085 [50]

PIK3CA 5290 v [120]

PIM2 11040 v v v [52]

PLK2 10769 v [16]

PLK3 1263 [61]

PMS2 5395 v v v [46]

POLB 5423 v v v [121]

Identification of Radiation Response Biomarkers
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Table 1. Cont.

Gene Symbol
Entrez
Gene ID DNA repair

Cell
proliferation Cell cycle Apoptosis

Response to
stress Reference

POLQ 10721 v v [60]

PPA1 5464 [111,119]

PPM1D 8493 v v [15,122]

PRDX1 5052 v v v [116]

PRDX4 10549 [123]

PRKCB 5579 v [4]

PRKCZ 5590 v v [52]

PRKDC 5591 v v v [124–126]

PROCR 10544 v [21]

PROM1 8842 [127]

PSMB4 5692 v v [17]

PSMD1 5707 v [17]

PTCH1 5727 v [128]

PTEN 5728 v v v [129]

PTGS2 5743 v v v v [46]

PTTG1 9232 v v v [19,130]

RAD21 5885 v v v v [30,31,43,131]

RAD23B 5887 v v [17]

RAD50 10111 v v v [29,132]

RAD51 5888 v v v [133]

RAD54L 8438 v v v [134]

RAD9A 5883 v v v v [19,52]

RALBP1 10928 [135,136]

RELA 5970 v v v [4,112]

RND1 27289 [16]

RRM2 6241 [137]

RRM2B 50484 v v v [138]

S100A11 6282 v [15]

SAG 6295 [139]

SART1 9092 v v [20]

SEC22B 9554 [17]

SEPHS1 22929 [140]

SERPINA3 12 v [20]

SERPINE1 5054 v v v [141]

SESN1 27244 v v v [49,50]

SIRT1 23411 v v v v [142]

SMPD1 6609 v [81]

SOD1 6647 v v v [143]

SOD2 6648 v v v [25,26,30,31,36,62,144,145]

SRC 6714 [146]

SRF 6722 v [17]

STAT1 6772 v v v [4,147]

STAT3 6774 v [148,149]

SUMO1 7341 v v [4]

TGFB1 7040 v v v v [25,26,30,36,43,145,150–154]

TNF 7124 v v v v [155]

TNFRSF10B 8795 v [47]

TNFRSF1A 7132 v v [112]

TNFSF10 8743 v [156]
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estimate the functional distance between each protein and all the

remaining proteins in the network, since all the proteins in the

network are more likely to be related to one another and act

together in the biological process.

To rank biomarkers, we modelled each protein–protein

interaction network as a directed graph, G = (V, E), where V

consists of a set of nodes (proteins) and E is the set of possible edges

(protein–protein interactions) between pairs of nodes. Let A and B

be two proteins in a network. We assume that there are two

concepts of distance between A and B: a geometrical distance that

is defined in terms of the number of nodes in the shortest path

between A and B, as well as a virtual distance that is defined in

terms of the number of publications that verify the interactions

along the shortest path. Intuitively, as the number of intermediate

nodes between A and B increases, the geometrical distance

increases and the two proteins are less likely to be correlated. In

contrast, considering virtual distance, we expect that as the

number of references demonstrating a relationship between two

proteins increases, they are more likely to be related. In other

words, the number of references is proportional to relatedness

while the number of nodes is inversely proportional.

Using a power law, we calculate two scores from A to B: a

reference score (rs) and a node score (ns) as follows:

rs(A?B)~log10 (0:5|rz1), ð1Þ

ns(A?B)~
1

log10 (nz1)
ð2Þ

where r and n are the total number of references and nodes in the

shortest path from A to B. We suppose that the influence of the

number of nodes is greater than that of the number of references.

Therefore, as the number of intermediate nodes between any two

given nodes increases, the relationship between the two nodes

becomes much less likely. The score capturing the path from A to

B is defined as the summation of two different scores:

Table 1. Cont.

Gene Symbol
Entrez
Gene ID DNA repair

Cell
proliferation Cell cycle Apoptosis

Response to
stress Reference

TNFSF9 8744 v v [16]

TOB1 10140 v [157]

TOP2A 7153 v v v [158]

TOR1AIP1 26092 [16]

TP53 7157 v v v v v [37,41,46,48]

TP63 8626 v v v v [159]

TPP2 7174 [160]

TRAF2 7186 v v [161]

TRAF4 9618 v v [16]

TXN 7295 v [162]

TXNRD1 7296 v [163]

UBB 7314 v v [17]

UHRF1 29128 v v v v [164]

UIMC1 51720 v v v [165]

VEGFA 7422 v v v [46,166]

WRN 7486 v v v [110]

WT1 7490 v v [167]

XIAP 331 v v [49,168,169]

XPC 7508 v v v [124,170]

XRCC1 7515 v v [22,23,25,26,30,31,36,43,115,

144,145,150,154,171–175]

XRCC2 7516 v v v v [109]

XRCC3 7517 v v [25,26,30,31,74,109,115,134,

144,145,172,174–176]

XRCC4 7518 v v v v [164]

XRCC5 7520 v v v v [52,60,172,177–179]

XRCC6 2547 v v [20,176,178,180,181]

DNA-PK [52,182]

HSP70 [183]

MRN(95) [184]

RAS [185]

doi:10.1371/journal.pone.0038870.t001

Identification of Radiation Response Biomarkers

PLoS ONE | www.plosone.org 7 June 2012 | Volume 7 | Issue 6 | e38870



s(A?B)~rs(A?B)zns(A?B): ð3Þ

Likewise, we also estimate a score from B to A, s(B?A): Then,

the final score, s(A<B) between A and B, is defined as the

maximal value among s(A?B) and s(B?A):

s(A<B)~ maxfs(A?B), s(B?A)g: ð4Þ

We suppose that the final score of a protein is computed by the

summation of all scores between the protein and all the remaining

proteins in the network. Hence, the final score of a protein A is

defined by:

fs(A)~
X

B[V-A

s(A<B): ð5Þ

To estimate the number of references and nodes, we employed

two methods. For the number of references, we used a function in

the MetaCore software that provides the number of references

between two connected proteins in a network. For the number of

nodes, we used the Floyd-Warshall algorithm that was originally

designed to find the shortest paths between all pairs of nodes based

on dynamic programming [13]. To apply this algorithm to our

problem of estimating the number of nodes, we modified the

original Floyd-Warshall algorithm such that an equal weight of 1

was assigned to all connected edges in a network. As a result, the

Table 2. The top ten GeneGo pathways/processes and GO processes resulting from genes identified via literature review.

Ranking GeneGo Pathways

1 DNA damage_Role of Brca1 and Brca2 in DNA repair

2 DNA damage_ATM/ATR regulation of G1/S checkpoint

3 DNA damage_NHEJ mechanisms of DSBs repair

4 DNA damage_Brca1 as a transcription regulator

5 Signal transduction_AKT signaling

6 Some pathways of EMT in cancer cells

7 Apoptosis and survival_Ceramides signaling pathway

8 Signal transduction_PTEN pathway

9 Transcription_P53 signaling pathway

10 DNA damage_ATM/ATR regulation of G2/M checkpoint

Ranking GeneGo Processes

1 DNA damage_Checkpoint

2 DNA damage_DBS repair

3 Cell cycle_G1-S Growth factor regulation

4 DNA damage_BER-NER repair

5 Cell cycle_Meiosis

6 DNA damage_Core

7 Apoptosis_Apoptotic nucleus

8 Cell cycle_G1-S Interleukin regulation

9 Development_EMT_Regulation of epithelial-to-mesenchymal transition

10 Cell cycle_S phase

Ranking GO Processes

1 Cellular response to stimulus

2 Cellular response to stress

3 Response to stress

4 Regulation of programmed cell death

5 Regulation of cell death

6 Regulation of apoptosis

7 Response to DNA damage stimulus

8 Response to stimulus

9 DNA repair

10 Response to organic substance

doi:10.1371/journal.pone.0038870.t002
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modified algorithm generated a matrix that represents the number

of nodes on the all-pairs shortest-paths in a given protein–protein

interaction network.

Results

Identification of Significant Biomarkers via Literature
Review

Based on the literature review, several types of biomarkers,

including genes, proteins, kinases, ligands, and protein complexes

were identified. To unify the biomarker terms differently used

across studies, we converted all the biomarkers into their

corresponding gene symbols. As a result, 221 unique genes and

4 protein complexes (DNA-PK, HSP70, MRN(95), RAS) were

identified from around 200 papers that studied radiation response-

related biomarkers [4,14–185]. Table 1 displays the 221 unique

genes and their corresponding GO processes, including DNA

repair, cell proliferation/cycle, apoptosis, RNA processing, and

response to stress. It is well known that ionizing radiation causes

DNA damage that activates the p53 pathway through ATM [186].

Genes that are involved in cell cycle, such as CDKN1A,

GADD45A, MDM2, and CCNG1, are known to be dependent

on p53 [2]. Also, other cell cycle-related genes including CCNB1

and CDC20 were identified. Among cell cycle or proliferation

genes, TOB1, BTG2, and CDKN1A are anti-proliferative/check-

point related [3]. Several genes (XPC, DDB2, PCNA, ERCC4,

and NBN) are involved in DNA repair. Two major pathways to

repair IR-induced DNA double-strand breaks are homologous

recombination (HR; genes include XRCC2, XRCC3, MRE11A,

RAD50, NBN, BRCA1, and BRCA2) and non-homologous end

Figure 1. Direct protein-protein interaction network. A network representation that illustrates the complexity of direct connections among
genes identified via literature review.
doi:10.1371/journal.pone.0038870.g001
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joining (NHEJ; genes include LIG4, XRCC4, XRCC5, XRCC6,

and DNA-PK) [3]. Some genes, including FAS, BBC3, and TNF,

are involved in apoptosis [187]. BCL2 and DDR1 are anti-

apoptotic.

For biological process and pathway analysis, the 221 unique

genes were uploaded into the MetaCore. Figure 1 illustrates a

direct interaction network generated with these genes. As shown,

numerous genes are strongly connected to one another, suggesting

Figure 2. A normal quantile plot of t-scores for GSE1977.
Significant genes have red circles.
doi:10.1371/journal.pone.0038870.g002

Figure 3. Significant gene detection. A volcano plot that depicts the –log10 of q-values against log2 of fold changes for all genes in GSE1977.
doi:10.1371/journal.pone.0038870.g003

Figure 4. Comparison of significant genes among three
sources. A Venn diagram depicting the number of shared and unique
genes among a set of genes identified by literature review and two sets
of genes identified in the analysis of two gene microarray datasets.
doi:10.1371/journal.pone.0038870.g004
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that interacting genes are more likely to play related roles. Table 2
shows the top ten GeneGo pathways, GeneGo processes, and GO

processes. As can be seen in the table, the most highly ranked

pathways and processes are associated with DNA damage and

repair, cell cycle, and apoptosis.

Identification of Significant Genes via Microarray Dataset
Analysis

To identify significant changes in gene expression values

between the two groups (before and after irradiation) in two

microarray datasets, a t-test with 10,000 permutations was

performed. To estimate p-values, we counted the number of

permutations for each gene whose t-scores are greater than or

equal to the t-score calculated with observed values. Then, the

number of permutations passed the criterion was divided by the

total number of permutations [188]. With an FDR of 20%, 631

probes (corresponding to 550 unique genes) were significantly

identified for GSE1977. Figure 2 shows a normal quantile plot

of t-scores for GSE1977. Data points of genes that are farther

away from the black diagonal line are considered to be

differentially expressed. Figure 3 displays a volcano plot that

depicts the –log10 of q-values against log2 of fold changes for all

genes. The majority of genes with an FDR of 20% changed 1.2-

fold or higher. For GSE23393, with an FDR of 20%, 224 probes

(corresponding to 184 unique genes) were identified (Figure S1
and Figure S2).

Overlapping Genes
To delimit our potential biomarker set, we investigated which

genes are commonly or uniquely found among the set of genes

identified by our literature review and two sets of genes identified

in the analysis of the two gene microarray datasets, as summarized

in Figure 4. The rationale is that those are genes likely to be key

to an active response, but unlikely to be false positives due to the

literature review. Twenty genes were commonly identified among

the three different analyses (literature review and two microarray

datasets), as shown in Table 3. We further analyzed pathways

and biological processes associated with the 20 genes. Table 4
shows the top ten GeneGo pathways generated by the MetaCore

software (Table S1). Not surprisingly, even with the 20 genes,

DNA damage/repair and apoptosis-related pathways were highly

ranked.

Table 3. Twenty genes commonly identified by literature review and analysis of two microarray datasets.

Gene Symbol Entrez ID Gene Name

ACTA2 59 actin, alpha 2, smooth muscle, aorta

BAX 581 BCL2-associated X protein

BBC3 27113 BCL2 binding component 3

BTG2 7832 BTG family, member 2

CCNG1 900 cyclin G1

CD70 970 CD70 molecule

CDKN1A 1026 cyclin-dependent kinase inhibitor 1A (p21, Cip1)

DDB2 1643 damage-specific DNA binding protein 2, 48 kDa

EI24 9538 etoposide induced 2.4 mRNA

FDXR 2232 ferredoxin reductase

GADD45A 1647 growth arrest and DNA-damage-inducible, alpha

MDM2 4193 Mdm2 p53 binding protein homolog (mouse)

MR1 3140 major histocompatibility complex, class I-related

MYC 4609 v-myc myelocytomatosis viral oncogene homolog (avian)

PCNA 5111 proliferating cell nuclear antigen

PLK2 10769 polo-like kinase 2

PLK3 1263 polo-like kinase 3

PPM1D 8493 protein phosphatase, Mg2+/Mn2+ dependent, 1D

TNFRSF10B 8795 tumor necrosis factor receptor superfamily, member 10b

XPC 7508 xeroderma pigmentosum, complementation group C

doi:10.1371/journal.pone.0038870.t003

Table 4. The top ten GeneGo pathways generated by
MetaCore when the 20 overlapping genes were used.

# GeneGo Pathways

1 DNA damage_Brca1 as a transcription regulator

2 DNA damage_ATM/ATR regulation of G1/S checkpoint

3 Signal transduction_AKT signaling

4 Apoptosis and survival_Apoptotic TNF-family pathway

5 DNA damage_ATM/ATR regulation of G2/M checkpoint

6 Apoptosis and survival_p53-dependent apoptosis

7 DNA damage_Role of Brca1 and Brca2 in DNA repair

8 DNA damage_Nucleotide excision repair

9 Transcription_P53 signaling pathway

10 Cytoskeleton remodeling_TGF, WNT and cytoskeletal
remodeling

doi:10.1371/journal.pone.0038870.t004
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Figure 5. The most probable interaction network when 20 genes were entered into MetaCore software. The resulting interacting
network uses only 7 genes. Red, green, and gray lines indicate inhibitory, stimulatory, and unspecified interactions, respectively.
doi:10.1371/journal.pone.0038870.g005

Table 5. The results of the proposed scoring function test applied to the network in Figure 5.

Ranking Protein Gene symbol Score GSE1977 p-value GSE23393 p-value No. of edges

1 c-Myc MYC 113.74 0.02420 0.14898 12

2 GADD45 alpha GADD45A 110.34 8.63E-06 0.00172 9

3 WIP1 PPM1D 108.16 0.00044 0.00310 11

4 PUMA BBC3 102.70 0.07171 0.01019 6

5 p21 CDKN1A 100.13 0.00027 0.00367 3

6 PLK3 (CNK) PLK3 99.70 0.00285 0.08072 4

7 XPC XPC 85.62 0.00068 0.03330 2

doi:10.1371/journal.pone.0038870.t005
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Gene Ranking and Identification of a Core Radio-
response Network

Figure 5 shows the most probable/robust single interaction

network when the 20 overlapping genes were entered into the

MetaCore software. Of the 20 input genes, seven genes

appeared in this core radio-response network. We applied our

graph-based scoring function to this network and the results are

summarized in Table 5. MYC was ranked first with a score of

113.74, which had a high p-value in GSE23393 and a

statistically significant p-value, yet still relatively high compared

to other genes, in GSE1977. As a hub gene, MYC had the

highest number of edges (n = 12) that seem to contribute to the

score. Overall p-values in GSE23393 (in situ IR) are higher than

those of GSE1977 (ex vivo IR). Intuitively, as the number of

edges increases, the score seems to increase. However, it should

be noted that although GADD45A has 9 edges, it obtained a

higher score than PPM1D, which has 11 edges. This is

attributed to the fact that when we calculate the score for a

gene, our scoring function takes into account all network

interactions and the number of references on the interactions in

the network. Interestingly, CDKN1A obtained a relatively high

score of 100.13, considering only 3 edges and substantially low

p-values (0.00027 in GSE1977 and 0.00367 in GSE23393).

Discussion

We have demonstrated an unbiased bioinformatics filtering

methodology to objectively identify a core network of key

interacting genes that are important to radiation response. We

hypothesized that, by combining several different types of datasets,

we are increasingly likely to identify interacting genes that are

particularly important to radiation response. We also hypothesize

that these genes are therefore attractive candidates for biomarker

testing. For example, the 7 key genes contain 89 relevant SNPs in

our radiation therapy cancer dataset and we are in the process of

testing late toxicity with the dataset. We make no claim that the

network shown in Figure 5 dominates radiation response and do

not expect that to be the case. Nevertheless, this network seems to

be highly relevant to radiation response: among the 7 genes, 5 and

4 genes are involved in cell cycle control and apoptosis,

respectively. More detailed information is shown in Table S2.

Five of these genes, including MYC, BBC3, GADD45A,

CDKN1A, and XPC belong to a list of 34 radio-responsive genes

observed by Tusher et al. [187]. Moreover, this network is

consistent with (though slightly different from) the programmed

cell death network reported by Moussay et al. [189].

Figure 4 shows the number of genes commonly or uniquely

identified among three different studies (literature review and

analysis of two microarray datasets). Interestingly, relatively few

genes overlapped among the three analyses. Literature coverage is

expected to be incomplete regarding coverage of radiosensitivity

genes. Microarray analysis is subject to high false positive and false

negative rates [190]. Another possible reason for the small number

of overlapped genes is the widely differing irradiation conditions

and doses. Despite this, the biological processes and pathways

generated from the 20 overlapping genes were similar to those

generated from the whole literature review.

We further analyzed the 20 genes, uploading these genes into

the MetaCore software. In the network of the most probable

biological process shown in Figure 5, only seven out of 20

genes appeared in the network. Additional genes were

automatically added to the network by MetaCore, including

AKT1, RELA, BCL2L1, PTEN, CDK1, and XIAP. Note,

however, that these genes were also members of the list

generated by our radiation response literature review, suggesting

some consistency between these sources. This also suggests a

potential ability to find novel biomarker candidates through the

network mapping/ranking process, though that did not occur in

this case.

The graph-based scoring function proposed in our previous

study [7] was modified and applied to the network shown in

Figure 5. In some studies, researchers tend to regard genes

with high degrees of connectivity (hub genes) as significant in an

interaction network, while neglecting others [4]. While this is

rational, finding hub genes based on edge connectivity considers

only direct interactions between genes whereas our proposed

approach takes into account all interactions in a network (that

is, the entire graph structure) and the number of published

references on the interactions. To measure the closeness

between two proteins (say A and B), we employed two scores;

a node score and a reference score. In a protein interaction

network, it is obvious that as the number of internal nodes

between A and B increases, these two proteins are less likely to

be related with each other. In contrast, the reference score is a

score calculated using the number of papers that studied on an

interaction between two proteins, which can be important

evidence that there is an actual relationship between the two

proteins. As can be seen in Table S3, MYC was first ranked

using a total score. However, BBC3 and PPM1D were first

ranked using a reference score and a node score, respectively.

CDKN1A, PLK3, and XPC obtained somewhat high scores

considering their connectivity, suggesting that they could play

important roles in this core network. We believe that the use of

both scores could be more effective for ranking proteins in a

protein interaction network.

Future work will test SNPs identified in this network against

toxicity resulting from radiation therapy. As the number of

patients available for SNP analyses increases, it may be rational

to expand the number of candidate SNPs to several hundreds

or more. The general methodology may be applied in many

genetic/protein biomarker studies with limited patient data.

Supporting Information

Figure S1 A normal quantile plot of t-scores for
GSE23393 after 10,000 permutations.
(TIF)

Figure S2 Significant gene detection. A volcano plot that

depicts the –log10 of q-values against log2 of fold changes for all

genes in GSE23393.

(TIF)

Table S1 The top ten GeneGo pathways/processes and GO

processes generated by the MetaCore software when 20

overlapped genes were used.

(DOC)

Table S2 Biological processes for the seven genes shown in

Table 5.

(DOC)

Table S3 Scores obtained using the graph-based scoring

function.

(DOC)
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