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Aquaporin water channels: unanswered questions and 

unresolved controversies 
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The long-standing biophysical question of how water crosses plasma 

membranes has been answered by the recent discovery of the aquaporins. 

Identification of this large family of membrane water-transport proteins 

has generated new questions about the physiological functions, tissue 

distributions, and regulatory mechanisms of individual aquaporins. The fast 

pace of developments in this field has also resulted in major discrepancies in 

published reports which warrant resolution. 
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Introduction 

Discovery of the aquaporins (membrane water-transport 
proteins) has unleashed a large number of studies in many 
laboratories, and the mechanism by which water crosses 
plasma membranes is now becoming understood at a 
molecular level. Extensive progress has been made in 
both basic and clinical arenas, and much of this has been 
reviewed recently [1,2]. The purpose of this review is 
to identify areas in mammalian biology where the next 
advances may be expected, and to highlight significant 
areas of ongoing controversy. To this end, we have 
liberally interpreted the charge to interject Opinion in 
the hope of sparking curiosity among the readers. 

Nomenclature 

What’s in a name? That which we call a rose 
By any other name would smell as sweet. 
(William Shakespeare, Romeo and Juliet 11:2) 

Despite the admonition of the Bard, the current 
explosion of biological information is proving that 
nomenclature is essential for communication among sci- 
entists. Therefore ‘aquaporin’ was proposed as the family 
name by which these genetically related membrane 
water transporters may be recognized [3]. Although 
logical, the descriptive name ‘water channel family’ 
was not proposed, as it implies that all undiscovered 
water channels must also contain related amino acid 
sequences. Moreover, although aquaporins are indeed 
‘water channels’, so are irrigation ditches, and this 
ambiguity was creatively exploited by the organizers 

of a recent international symposium on biomembrane 
water transporters who success&lly applied for funding 
from their municipality’s Bureau of Sewers and Water! 

‘Aquaporin’ (abbreviated to AQP) is now the official 
designation of the Human Genome Nomenclature 
Committee; however, the use of multiple common 
names continues and is potentially perplexing to 
scientists outside of the field (Table 1). Confusion 
may occur because of pre-existing common names; for 
example, ‘MIP’ (major intrinsic protein of lens; [4]) is 
also the acronym for macrophage inflammatory protein 
and other unrelated proteins. Some homologs do not 
transport water; for example, ‘GlpF’ facilitates transport 
of glycerol in bacteria [5]. Thus the name aquaporin is 
applied to only those sequence-related proteins shown 
to transport water. 

Several aquaporins are referred to by multiple names. 
AQPl was originally named CHIP28 for ‘channel- 
forming integral protein of 28 kDa’ of human red 
cells and renal tubules [6], and ‘DER2’ refers to the 
mouse homolog which was identified among growth 
factor induced delayed early response elements [7]. 
After the discovery that CHIP28 is a water transporter 
[8], a number of groups reported the cloning of 
species homologs with somewhat different names. 
Although proposed as novel kidney and ciliary isoforms, 
‘CHIP28k’ [9] and ‘CHIP29’ [lo] are the rat [ll] and 
bovine homologs of CHIP281AQPl. 

The cDNAs corresponding to unique but related 
genes have also been isolated by homology cloning. 
AQP2, the vasopressin-sensitive water transporter of 
kidney collecting duct, was first known as ‘WCH-CD’ 
[12]. AQP3 is the water transporter in basolateral 
membranes of kidney collecting ducts [13*,14’], but 

Abbreviations 
AQP-aquaporin; cRNA--complementary RNA; MIP-major intrinsic protein of lens; PCR-polymerase chain reaction. 
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rable 1. The mammalian aquaporins. 

Functional features, 

Xficial name Common names mutant phenotypes 

MIP IAQW MIP26 

AQPl CHIP28, 

DER2, 

CHIP, 

CHIP28k, 

CHIP29 

AQP2 WCHZ, 

WCH-CD, 

AQP-CD 

AQP3 CUP, 

BLIP? 

AQP4 MIWC 

AQP5 

Lower water permeability - other 

function? 

Mutant mice - congenital cataracts 

Widely distributed, constitutively 

active 

Human mutants - subclinical 

Renal collecting duct, regulated by 

vasopressin 

Human mutants - nephrogenic 

diabetes insipidus 

Basolateral membranes 

Constitutively active outflow 

channel 

Predominantly found in brain, 

mercury-insensitive 

Spinal fluid reabsorption, 

osmoreception 

Neurohormonal regulation? 

Secretion of tears, saliva and sputum 

the same sequence was published as ‘GLIP,’ a putative 
glycerol-selective transporter [15*]. Moreover, AQP3 
may also be the membrane component referred to as 
‘BLIP’ [16] because of staining of basolateral membranes 
by cross-reacting antibodies. Likewise, AQP4, the major 
homolog found in brain [17*] is referred to by some 
investigators as ‘MIWC’ for mercury-insensitive water 
channel [18*] (h owever, others refer to MIWC in jest as 
‘mostly-inactive water channel’ because of an apparent 
sequencing error in a functionally important site). 
Thus, it is worthwhile that an aquaporin nomenclature 
committee be composed to field nominations to the 
Genome Committee. 

Structural understandings 

Little controversy surrounds the higher-order structure 
of aquaporins, which has been reviewed recently in 
detail in Current Opinion in Structural Biology [19]. 
Hydrodynamic studies of MIP (AQPO) and AQPl 
similarly predicted that both proteins are homotetramers 
120,211. The tetrameric organization has been visualized 
by freeze fracture of AQPl in proteoliposomes [22] and 
negative staining of highly purified AQPl protein [23*]. 
The tetrameric organization of AQPl was demonstrated 

by high resolution (-15 A) electron microscopy of recon- 
stituted two-dimensional membrane crystals containing 
biologically active AQPl protein [24] and confirmed by 
other investigators [25]. A three-dimensional projection 
has been achieved by cryoelectron microscopy of tilted 
specimens [23*]. It remains to be established where the 
aqueous pores reside within the subunits and what 
mechanisms are responsible for the existence of these 
proteins exclusively as tetramers within the bilayer, rather 
than as an equilibrium of monomers and higher-order 
oligomers. Higher resolution electron crystallography 
and atomic force microscopy should provide still greater 
understanding of the structure of AQPl. 

Workers in the water-transport field also agree about 
several structural features of the aquaporin subunits. 
Hydrophobicity analysis of MIP [4] predicted the 
existence of six transmembrane segments separated by 
five connecting loops (see Fig. la). The results of 
analyses of all known mammalian, plant, and microbial 
homologs are very similar, and the deduced amino 
acid sequences are 20-40% identical when their amino 
termini are aligned [26]. An internal homology was 
noted in which the amino- and carboxy-terminal halves 
of the protein are approximately 20% identical, and 
certain domains have been retained among all known 
homologs; most distinctive is the three residue motif 
asparagineprolinealanine (NPA; single-letter code for 
amino acids) within connecting loops B and E (Fig. la). 
Circular dichroism measurements of lens protein MIP 
revealed -50% a-helix and -20% p-structure [27], 
and studies of AQPl f?om red cells confirmed this 
composition [28]. 

Several topological landmarks have been established 
unambiguously. Biochemical studies and immunoelec- 
tron microscopy demonstrated the cytoplasmic loca- 
tion of the amino and carboxyl termini of AQPl 
[21,29,30’]. Recent discovery of the Colton blood 
group polymorphism at residue 45 in loop A of 
AQPl (Ala451Va145; Fig. la) demonstrated the extra- 
cellular location of this loop [31,32**]. Moreover, the 
N-glycosylation consensus site is in loop A of AQPl 
[6]; however, the only N-glycosylation sites in AQP2, 
AQP3, AQP4, and AQP5 reside in loop C, thereby 
establishing the extracellular orientation of this domain 
[12,13*-150,16,17*,18*,19,33*]. 

Structural controversies 

Although the cDNAs encoding six mammalian aqua- 
porins have been isolated, multiple variations in the 
coding sequences suggest that numerous errors exist in 
the reported sequences and warrant correction. Given 
that natural polymorphisms and naturally occurring 
mutations are now being discovered, it is essen- 
tial that investigators pursue their homology cloning 
with standard methods, including isolation of intact 
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Fig. 1. Hourglass model of a single AQPl subunit. (a) Six bilayer- 
spanning domains configured into two repeats each comprising 
three bilayer spans arranged in obverse symmetry. Represented 
are the synthetic (A731 and native (Cl 89) mercury-sensitive sites, 
the NPA motifs in loops 6 and E, and the Colton blood group poly- 
morphism (A45/v45). Arrows indicate the predicted folding of loops 
B and E into the bilayer. (b) Arrows indicate the predicted folding of 
the two repeats back upon each other. (c) Loops B and E juxtaposed 
to form a single aqueous pore (the ‘hourglass’). AQPl subunits as- 
semble into a tetramer with the four sets of B and E loops constitut- 
ing four central water pores. Reprinted with permission from Jung 
et al. [43**1. 

recombinants fi-om cDNA libraries (not just by PCR 
amplification), sequencing of both strands of the cDNAs, 
and resolution of sequencing artifacts before publication. 
For example, the amino-terminal sequence reported for 

the rat homolog CHIP28k [9] surprisingly contains the 
nucleotide and deduced amino amino acid sequences 
corresponding to the human homolog, apparently 
because of the inclusion of sequence derived from the 
PCR primers designed on the basis of the human cDNA 
sequence [6]. The sequence of the kidney collecting duct 
homolog, AQP2, cloned from a Japanese individual 
[34] contained several differences from that obtained 
fi-om a European [35**], suggesting a possible racial 
difference in the cDNAs; however, the discrepancies 
were subsequently found to be artifactual [34]. Two 
groups reported nearly identical sequences: MIWC 
cloned from rat lung [lg’] corresponds to AQP4 cloned 
from rat brain [17*]. MIWC contains a proline at 
position 201 which probably represents a sequencing 
error, as this residue is a histidine in AQP4 and most 
other aquaporins; site-directed mutagenesis of AQP4 
His201+Pro (MIWC) virtually abolished the osmotic 
water permeability assayed in Xenopus oocytes [17*]. 
As investigators have not agreed about the primary 
sequences, it is not surprising that three different 
laboratories have generated three different membrane 
topology models, outlined below. 

Algorithm-generated p-barrels: the restricted pore model 
Fischbarg et al. [36*] analyzed the deduced primary 
amino acid sequences of multiple aquaporins using 
several different computer-based algorithms. These 
investigators believed that the hydrophobic stretches 
may be too short to conform to known a-helical 
transmembrane spans, and they observed sequences 
with turn propensities at frequent intervals. They 
concluded that the subunit may be comprised mostly of 
p-structure [36*]. Although no biological experiments 
were performed, the investigators proposed a structure 
likened to a ‘restricted pore’ similar to bacterial porins 
and comprising a 16-stranded antiparallel p-barrel, a 
structure which they believe may be relevant to several 
other transport proteins. Although very interesting, their 
model is inconsistent with experimental evidence of 
others, as it predicts an absence of a-helical structure and 
projects a known N-glycosylation site to an intracellular 
location. 

Site-directed mutilation: the four bilayer span model 

Lingappa and colleagues [37] developed a method for 
establishing protein topology by truncating cDNAs 
encoding membrane proteins with multiple bilayer-span- 
ning domains at potential extracellular and intracellular 
locations; DNA sequence encoding a 15 kDa epitope 
Ii-am bovine pmlactin protein is spliced at the truncation 
site and the recombinants are expressed in micmsomal 
membranes using rabbit reticulocyte lysate. Antibodies 
directed against the pro&tin epitope are then used 
to map its disposition in the chimeric protein. This 
approach was used to map the topology of the 
MDR (multidrug resistance) protein but resulted in the 
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generation of an ‘alternative model’ in which several 
expected transmembrane domains failed to cross the 
bilayer [37]. As the truncation-prolactin recombinants 
contain only part of the polytopic integral membrane 
protein, no functional assessment is possible, and the 
relevance to the topology of the native protein is entirely 
uncertain. In contrast, other investigators demonstrated 
using functionally active recombinants that MDR 
exhibited the expected membrane topologies [38]. 

Using the truncation-prolactin method, Skach, Verk- 
man, and colleagues [39**] attempted to map the 
topology of AQPl and concluded that the protein has 
only four bilayer spans with the second hydrophobic 
domain residing entirely in the extracellular space. 
Also in contrast to the expected topology, their model 
predicts that the fourth hydrophobic domain and loop 
C both reside entirely in the cytoplasm, and the 
model lacks symmetry. It is notable that the mass of 
the prolactin epitope (15 kDa) dwarfed the mass of 
the AQPl polypeptide in most of their constructs, 
so no functional assessment of water permeability was 
possible. Although thought-provoking, the authors have 
subsequently backed off this model and now argue 
that it may exist only in the endoplasmic reticulum 
(W Skach, personal communication), although other 
investigators feel this model represents the protein 
in a twisted, non-functional conformation (hence 
‘site-directed mutilation’). 

Back to the future: the hourglass model 

The original report of MIP [4] contained a membrane 
topological model with six bilayer-spanning domains 
(Fig. la). Preston and colleagues [40*] sought to 
determine the topology of AQPl by inserting a 31 
residue El epitope horn avian coronavirus at separate 
points in the molecule corresponding to the amino and 
carboxyl termini, loops B, C, D, and E. Importantly, the 
capacity of each mutant to transport water was measured 
after expression in Xenopus oocytes. The sites of the 
epitope tags were established using antibody labeling 
or vectorial proteolysis [40*] and predicted a membrane 
topology consistent with the six bilayer-spanning model 
originally proposed by Gorin and colleagues [4], thus 
advancing the field back to where it was in 1984. 

Several observations have suggested a modification to the 
six bilayer span topology. Although initially proposed as 
residing at intracellular and extracellular locations, loops 
B and E both exhibit significant hydrophobic character. 
Moreover loops B and E are highly related, each 
containing the signature motif NPA, and introduction 
of the El epitopes at these sites led to loss of 
biological function [40*]. The site of inhibition of 
AQPl by mercury has been demonstrated to be Cys189, 
adjacent to the NPA motif in loop E [41,42]. A 
series of site-directed mutations at this site showed that 
residues of greater mass obstructed osmotic water flow, 
whereas smaller residues did not, indicating that this 
site may correspond to a narrowing of the aqueous 

pore which is critical to proper protein folding and 
transit through the Golgi [41]. When a cysteine was 
introduced at residue 73, the corresponding position 
in loop B, mercury-sensitivity was again noted, and 
substitution by residues of greater mass abrogated the 
water permeability [43**]. Although loops B and E 
are at opposite ends of the polypeptide, they both 
appear to reside at critical narrowings of the aqueous 
pathway. To explain these observations, the ‘hourglass’ 
model was proposed by Jung et al. [43**], in which 
the amino- and carboxy-terminal halves of the molecule 
exist in an obversely symmetric orientation with loops 
B and E dipping into the membrane from opposite sides 
of the bilayer (Fig. lb). The overlap of loops B and 
E would comprise a single, narrow aqueous channel 
with adjacent mercury-sensitive sites at inner and outer 
locations (residues 73 and 189; Fig. lc). 

The analysis of site-directed mutant forms of AQPl 
also led to the conclusion that individual subunits each 
contain their own aqueous pore. Creation of tandem 
dimeric molecules with and without mercury-sensitive 
residues showed that subunits behaved independently, 
even when two subunits are expressed as a single 
polypeptide [43**,44*]. The importance of oligomeriza- 
tion was revealed by functional complementation studies 
in Xenopus oocytes. High water permeability resulted 
when cRNAs encoding recombinants with mutations 
in or adjacent to the NPA mot& were co-injected with 
a cRNA encoding a truncated polypeptide lacking the 
carboxy-terminal membrane-targeting domain; expres- 
sion of the individual subunits produced no increase in 
water permeability [43**]. 

Although the osmotic water permeabilities of AQPl, 
AQP2, and AQP5 are inhibited by mercury, the 
structures of some homologs do not fit this simple 
paradigm. AQP3 [13*,14*] and the plant homolog 
y-TIP [5] are reversibly inhibited by mercury even 
though they lack cysteines at the mercury-senstitive 
site. Also, the water permeabilities of AQP4 and MIP 
are insensitive to mercury even when a cysteine is 
substituted into their structures at sites adjacent to the 
second NPA [17*, 18.,45*]. The structural explanations 
for these variations in mercury-sensitivity warrant 
additional study 

Biophysical features 

Studies from multiple laboratories have confirmed that 
AQPl and several homologous proteins are freely 
permeated by water but not ions or other small 
uncharged molecules (reviewed in [l]). Nevertheless, 
several biophysical issues remain unresolved. 

MIP is most abundant membrane protein of lens; 
although it was the first member of the aquaporin 
family to be identified [4], its biophysical specificity 
remains uncertain. Although often referred to as an 
‘ion channel,’ membrane conductance has only been 
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measured when MIP was reconstituted into black lipid 
membranes [46], with no increase in conductance noted 
when MIP was expressed in oocytes ([45*,47]; J Hall, 
personal communication). This behavior was also shown 
for the root protein NOD26 [48] and may apply to other 
homologous proteins. It has been demonstrated recently 
that MIP expressed in oocytes confers osmotic water 
permeability which is thermodynamically similar to that 
of the other aquaporins although the capacity is much 
less ([45*,47]; J Hall personal communication). 

The selectivity of aquaporins for water is also an 
area of significant interest. Although pore size may 
explain the inability of AQPl to transport urea, it 
does not explain its failure to conduct ions or protons 
[30*], as the latter exist in solution as H30+. The 
low activation energy for aquaporin-mediated water 
transport indicates that water crosses the bilayer as a 
single-file column, so it is reasonable to expect that the 
orientation of charged residues within the aqueous pore 
may restrict permeability to ions. This specificity may be 
physiologically essential for normal renal concentration 
of water during the excretion of acid. Although creation 
of a site-directed mutant protein which is permeable to 
water and protons may be feasible, such a recombinant 
has not yet been reported. 

The long-standing controversy over whether water 
and urea permeate the same pathway was resolved 
by identification of urea carriers which exhibit large 
capacity for urea but not water [49.5@]. As predicted 
by Macey and Youssef [51], separate water and urea 
transporters exist in both red cells and renal medulla. 
The inability of aquaporins to conduct urea may be 
explained by the restricted size of the pore; however 
recent studies have demonstrated a small degree of 
permeation of AQP3 by urea and glycerol [13*,14*]. 
A major exception to the selectivity rule has been 
demonstrated for the homologous bacterial protein, 
GlpF (glycerol facilitator) which transports glycerol but 
not water [5,52]. GLIP, a protein from rat kidney, was 
reported to be a stilbene-inhibitable glycerol transporter 
which is not permeated by water [15*]. Unfortunately 
a major controversy erupted when it was found that 
the sequence of GLIP is virtually identical to that of 
AQP3, whose water permeability had been established 
by two independent laboratories [ 13’,14*]. Moreover, 
the Northern hybridization analysis documenting the 
size of the transcript and tissue distribution of GLIP 
(5.5 kb, major site of expression in brain) is incompatible 
with the studies of AQP3 (1.8 kb, major site is kidney 
with no expression in brain). Thus much remedial work 
is now necessary to resolve these discrepancies. 

Tissue distributions and physiological roles 

Aquaporin-1 
Although AQPl is thought to be a simple, con- 
stitutively activated membrane water pore, its tissue 
distributions and developmental expression patterns are 

complex (Table 2a). Initial studies by Denker ef al. 
[53] and detailed immunolocalization studies using 
affinity-purified antibodies to the amino and carboxyl 
termini of AQPl [29] or immune serum [54] revealed 
expression in the proximal tubule and in the descending 
thin limb in the kidney, where it is believed to contribute 
to the countercurrent multiplier mechanism responsible 
for water conservation by the proximal nephron (Fig. 2). 
AQPl is not expressed in other nephron segments or in 
the collecting duct [29], but studies with immune serum 
suggested its presence in descending vasa recta (part of 
the medullary blood supply) [54], a site where recent 
studies have documented partial inhibition of water flux 
with mercurials and defined the presence of AQPl with 
affinity-purified antibodies [55]. AQPl has recently been 
quantitated in nephron segments by ELISA [56*]. AQPl 
is also abundantly expressed in multiple extrarenal sites 
[57], indicating a major role in transepithelial water 
transport within multiple organs and suggesting a role 
in secretion of spinal fluid, reproductive fluids, aqueous 
humor [58], and bile [59]. AQPl expression is not 
restricted to secretory or absorptive epithelium and it 
is abundant in capillary endothelium where it may 
contribute to vascular permeability [57]. A strong in 
situ hybridization signal was noted in the mesenchyme 
surrounding maturing bone [60], and immunolabeling 
of fibrocytes of inner ear [61] and of smooth muscle cells 
surrounding unlabeled epididymis epithelium [62] have 
been reported. Labeling of smooth muscle cells appeared 
not to be a general phenomenon as it was absent from 
the thick layer of smooth muscle cells surrounding the 
vas deferens [62]. 

Several discrepancies in AQPl distribution have been 
reported, including its location within lung and air- 
ways, gut, and exocrine glands (Table 2b). Use of 
affinity-purified antibodies revealed prominent labeling 
of AQPl in a subset of capillaries surrounding bronchii 
and bronchioles, whereas less prominent labeling was 
confined to respiratory sections and no labeling was 
observed of bronchial epithelium [57]. Expression in 
lung was further studied by Folkesson ef al. [63] 
who described inhibition of lung water permeability 
by mercurials; however, concern for the toxicity of 
this agent in lung is being raised. Hasegawa et al. 
[64] reported expression of AQPl in tracheal and 
bronchial epithelium, colonic epithelial crypt cells, apical 
and basolateral membranes of pancreatic acinus cells, 
salivary gland epithelium, basolateral membranes of 
sweat glands and duct cells, but these findings conflict 
with previous and newer findings using thin cryosections 
and affinity purified antibodies. Also unexplained is 
the transient expression of AQPl in some tissues such 
as fibroblasts where AQPl was found among delayed 
early response genes [7]. Some of these discrepancies 
are probably due to methodological differences. Future 
studies should be pursued only with affinity-purified 
antibodies raised against highly purified antigen and 
with documentation of the presence of the protein in 
question both by immunoblotting and immunocyto- 
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able 2. Tissue distribution of mammalian aquaporins. 

hquaporin (a) Sites where expression is established 

4IP (AQPO) Lens fiber cells 

iQP 1 Red cells 

Kidney 

proximal tubule, descending thin tubule (l-111), 

descending vasa recta 

Eye 
comeal endothelium 

iris, ciliary and lens epithelia 

Choroid plexus (apical membrane only) 

Male reproductive tract 

Hepatobiliary duct and gall bladder 

Capillary and venule endothelia 

Lacteals and lymphatics 

‘,QP2 Kidney collecting duct principal cells 

(intracellular vesicles and apical membranes) 

tQP3 Kidney collecting duct principal cells 

(basolateral membrane) 

iQP4 Brain 

hypothalamus (paraventricular and 

supraoptic nuclei) 

Purkinje and ependymal cells 

Kidney collecting duct principal cells 

Rwolateral membrane) 

Stomach par&al cells 

4QPS Salivary and lachrimal glands (apical membrane) 

Comeal epithelium 

Lung 

(b) Sites where expression is disputed 

4QPl Sweat glands 

Large airway epithelium 

Colon epithelium 

Pancreas secretory epithelium 

Uterus (cellular localization unknown) 

chemistry. This is highlighted by the fact that some 
immune sera raised against CHIP28/AQPl reacted with 
MIP and other proteins [65]. Thin cryosections for 
immunocytochemistry allow a high degree of resolution 
and may provide detailed information about cellular and 
subcell&r expression (see Fig. 3), which may be more 
difficult to obtain by procedures using thicker sections. 

Although investigators readily attributed a large variety 
of tissue water movements to AQPl, the importance of 
this protein has been questioned after the surprising 
finding that rare patients who lack the Colton blood 
group antigens have ‘knockout’ mutations in AQPl, yet 
suffer no obvious clinical defect [32.*]. Red cells from 
these individuals exhibit a marked delay in osmotic 

water permeability. It is not presently known why the 
patients fail to exhibit any apparent pathophysiological 
consequences in kidney, brain, eye, or other organ sys- 
tems, and three hypothesis can be proposed: redundant 
expression of multiple aquaporins may confer complete 
compensation in many tissues; paracellular pathways of 
water transport or other non-aquaporin mechanisms 
may exist; or the real physiological roles of AQPl are 
not known. 

Major intrinsic protein (Aquaporin-0) 

In contrast to AQPl, the distribution and physiological 
importance of the other known aquaporins are more 
easily explained. The first identified member of this 
family, MIP, is expressed exclusively in membranes of 
lens fiber cells [4]. The physiological importance of MIP 
in maintenance of lens transparency was demonstrated in 
the CAT mouse, a murine model for congenital cataracts 
resulting from mutations in the Mip gene ([66]; A Shiels, 
personal communication). 

Aquaporin-2 
AQP2 is expressed exclusively in kidney collecting duct 
principal cells. Most AQP2 is localized to apical plasma 
membranes and subapical vesicles [67]; although there 
are some discrepancies in the published membrane 
distribution of AQP2 in collecting ducts, these may 
reflect differences in rat strains and axial variations in 
the polarized distribution of AQP2 along the collecting 
duct. Nevertheless, multiple lines of investigation indi- 
cate that AQP2 is the predominant vasopressin-regulated 
water channel of kidney and is essential for regulation of 
body water balance [12,67]. Its physiological importance 
was dramatically demonstrated by the identification of 
patients suffering fi-om a severe form of nephrogenic 
diabetes insipidus [35**,68] resulting from mutations in 
AQP2 that cause expression of misfolded proteins [69]. 
Brattleboro rats, a vasopressin-deficient strain, exhibit 
central diabetes insipidus and have a marked reduction of 
AQP2 [7@]. Reduced AQP2 levels were also identified 
in the important clinical syndrome of lithium-induced 
nephrogenic diabetes insipidus [71*]. 

The molecular controls for regulation of AQP2 involve 
short-term (minutes) and long-term mechanisms (hours 
to days). Three mechanisms for vasopressin activation of 
membrane water permeability have been postulated: 
targetted exocytosis of intracellular AQP2 vesicles 
to the apical plasma membrane; direct activation of 
AQP2 in the plasma membrane by protein kinase A 
phosphorylation; or both mechanisms acting in parallel. 
The vesicle shuttle hypothesis originally proposed by 
Wade (reviewed in [72]) has been supported by 
multiple recent reports [73,74*,75] which together 
have shown translocation of the AQP2 protein to 
the apical membrane (Fig. 3) and induction of water 
permeability in isolated collecting ducts. Much current 
effort by multiple groups is now devoted to identifying 
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Fig. 2. lmmunolabeling of AQP-1 in kidney. Both apical and basolateral plasma membranes exhibit extensive labeling. (A) Immunofluo- 
rescence microscopy of proximal tubules, adapted from Sabolic et al. 1541. (B) lmmunogold electron microscopy of descending thin limb, 
adapted from Nielsen et a/. [29]. Magnification (A) x500; (B) x48000. BM, basement membrane; L, lumen. 

the cellular machinery involved in membrane vesicle 
trafficking and examining the role of phosphorylation 
in AQP2 function. Important first steps have been the 
identification of synaptobrevin (VAMP2) associated with 
AQP2-containing vesicles (important for vesicle target- 
ing) [76*,77**]; correlation of CAMP-stimulated AQP2 
phosphorylation with increased water permeability of 
intact Xenopus oocytes [7*]; vasopressin-induced redis- 
tribution of AQP2-myc recombinant proteins expressed 
in LLC-PK epithelial cells [79*]; and the observation that 
direct phosphorylation of AQP2 in isolated collecting 
duct vesicles does not change the water permeability 
[80]. Detailed studies are warranted to document the 
roles of these cellular components and phosphorylations 
in the acute and chronic actions of vasopressin, and much 
new information is expected to emerge soon. 

Aquaporins-3 and -4 

Although AQP3 was cloned f?om renal collecting duct 
by three groups [13*-15.1, this homolog is the subject 
of much controversy (described above). Nevertheless, 
immunocytochemistry has shown that, within kidney, 
AQP3 is almost exclusively present in the basolateral 
plasma membranes of collecting duct principal cells 
[81,82]. 

RNase protection studies with AQP4 probes revealed 
that brain was the predominant site of expression; in 
situ hybridization identified a strong signal for AQP4 
over several tissues [17*] including the paraventricular 
and supraoptic nuclei in the hypothalamus, which 
project axons to the neurohypophysis and also contain 
osmoreceptors responsive to the release of vasopressin 
[83]. Therefore, AQP4 is very likely to be the 
osmoreceptor through which the central nervous system 
senses the need for antidiuresis. In addition, AQP4 has 
been detected in ependymal cells lining the ventricles 
[17*,18*], in basolateral plasma membranes of kidney 
collecting duct principal cells and in gastric parietal cells 

[82,84]. Although Northern and in situ hybridization 
indicated the presence of AQP4 in multiple tissues, 
including lung, salivary glands and in thin structures 
in kidney inner medulla [18*], the cellular localiza- 
tions await documentation by immunocytochemistry. 
No immunocytochemical labeling was found in thin 
structures in kidney inner medulla where only collecting 
duct principal cells were labeled [82,84]. The marked 
difference in cellular localization between certain studies 
of AQP4 mRNA [18*] and immunocytochemical 
analysis of AQP4 protein warrant hrther investigation. 

As AQP3 and AQP4 are both expressed in the basolat- 
era1 plasma membrane of collecting duct principal cells, 
it appears that multiple aquaporins may be co-localized 
in the same membrane domain, an apparent redundancy 
which remains unexplained.. Axial heterogeneity in the 
expression of AQP3 and AQP4 along the collecting 
duct may be one explanation [81,84]. Thus AQP3 
and AQP4 may function separately in different parts 
of the collecting duct, however, there is substantial 
overlap in the sites of expression. Although AQP3 and 
AQP4 are water-selective channels, they also transport 
other compounds to a limited degree (see above). 
Thus, another explanation may be ascribed to potential 
differences in fimction. No mutant phenotypes are 
yet known for AQP3 or AQP4, so their respective 
physiological functions remain speculative. 

Aquaporin-5 

The cDNA encoding this homolog was recently isolated 
f?om a rat submandibular gland library, and the mRNA 
was identified in salivary and lacrimal glands, corneal 
epithelium, and lung tissues [33’]. Preliminary studies 
indicate that this protein is abundant in the apical 
membranes of these tissues (S Nielsen, unpublished 
data). The presence of a protein kinase A consensus 
phosphorylation site in AQP5 suggests that it also may 
be under neurohormonal regulation, consistent with a 
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Fig. 3. lmmunolabeling of AQP2 in kid- 
ney collecting ducts. Upper panels: im- 
munofluorescence microscopy of inner 
medullary collecting ducts from Brattle- 
boro rats before GAVP) or after t+AVP) 
vasopressin-induced change in AQP2 
localization to the subapical regions, 
adapted from Sabolic et al. (731. Magnifi- 
cation x450. Lower panels: immunogold 
electron microscopy of AQP2 in ultra- 
thin sections (40nm) from isolated, per- 
fused inner medullary collecting ducts 
fixed in absence of vasopressin (pre- 
AVP), after 40min exposure to AVP 
(AVP), and 40min after washout of AVP 
from peritubular bath (post-AVP); adapted 
from Nielsen et al. 174.1. Magnification 
x55000. Arrows point to labeled apical 
plasma membrane and arrowheads to la- 
beled vesicles. Vasopressin treatment re- 
sults in a reversible increase in apical 
plasma membrane labeling of AQP2 in 
parallel with an increase in osmotic water 
permeability. MVB, multivesicular body. 

major role in the secretion of tears, saliva, and sputum. was hypothesized that the presence of an extracellular 
Although no mutant phenotypes are yet known, it antigenic domain may be involved in some forms of 
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Sjogren’s syndrome, an autoimmune disease affecting 
these tissues and causing lack of tear and saliva formation 
[33’]. 

Conclusions 

Taken together, the studies reviewed here provide 
strong support to the hypothesis that members of the 
aquaporin family of membrane proteins play key roles in 
transmembrane water permeability in many mammalian 
tissues. Nevertheless, it should not be assumed that the 
importance of the recognized members of the aquaporin 
family is fully understood, and both critical thinking 
and impeccable experimental technique will be essential 
for further understanding of these fascinating proteins. 
Although efforts are needed to redress several published 
incompatibilities, it is likely that much future effort 
will be required to identify and characterize additional 
members of the aquaporin family and search for their 
involvement in clinical disorders. It is highly likely 
that the existing list of mammalian aquaporins is far 
from complete, and investigators are regularly finding 
numemus cDNAs within mammalian tissues. Thus, the 
molecular, cellular, and clinical characterization of the 
aquaporins may be in its infancy. 
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