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Abstract

Urea is one of the dominant organic nitrogenous compounds in the oligotrophic oceans. Compared to the knowledge of
nitrogen transformation of nitrogen fixation, ammonia oxidization, nitrate and nitrite reduction mediated by sponge-
associated microbes, our knowledge of urea utilization in sponges and the phylogenetic diversity of sponge-associated
microbes with urea utilization potential is very limited. In this study, Marinobacter litoralis isolated from the marine sponge
Xestospongia testudinaria and the slurry of X. testudinaria were found to have urease activity. Subsequently, phylogenetically
diverse bacterial ureC genes were detected in the total genomic DNA and RNA of sponge X. testudinaria, i.e., 19 operative
taxonomic units (OTUs) in genomic DNA library and 8 OTUs in cDNA library at 90% stringency. Particularly, 6 OTUs were
common to both the genomic DNA library and the cDNA library, which suggested that some ureC genes were expressed in
this sponge. BLAST and phylogenetic analysis showed that most of the ureC sequences were similar with the urease alpha
subunit of members from Proteobacteria, which were the predominant component in sponge X. testudinaria, and the
remaining ureC sequences were related to those from Magnetococcus, Cyanobacteria, and Actinobacteria. This study is the
first assessment of the role of sponge bacterial symbionts in the regenerated utilization of urea by the detection of
transcriptional activity of ureC gene, as well as the phylogenetic diversity of ureC gene of sponge bacterial symbionts. The
results suggested the urea utilization by bacterial symbionts in marine sponge X. testudinaria, extending our understanding
of nitrogen cycling mediated by sponge-associated microbiota.
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Introduction Marine sponges (phylum Porifera), the oldest multicellular

) o . ) o animals (metazoans), are one of the main components in coral
Nitrogen can be a limiting nutrient and nitrogen availability in

) ' i ! reefs ecosystem. Sponges are filter feeders, pumping large amounts
the marine environment may therefore be a major factor in

of seawater every day. Their ecological significance has attracted

cont.rolhng bloma.ss production. I\.IOSt nitrogen cycling-related much research interest [17,18,19]. It is known that sponges host
studies focus on nitrate and ammonium as the primary sources of

nitrogen available to coral reefs [1], because they are generally the
preferred forms for assimilation [2,3]. But tropical marine
ecosystems rely heavily on regenerated nitrogen sources [4]. In
low nitrate systems, regenerated nitrogen such as urea or

- 3 - 1 0, 3 Q “ . . ro . . . ~ . .
ammonium can provide up to 75% of the requirements of from incubated sponges provided the first indication of nitrifica-
phytoplankton [5,6].  Urea represents the single dominant tion within these organisms, with estimated rates often far

component of the. dlverse.group of organic nitrogenous. com- exceeding those for other benthic substrata [19]. To date, the
pounds in the oligotrophic oceans [7]. Urea in the oceans

originates from a variety of sources [8—12]. For example toadfish
(Opsanus beta) can excrete over 90% of their waste nitrogen as urea

abundant and diverse symbiotic microorganisms including bacte-
ria, archaea, unicellular algae and fungi [20-32]. In oligotrophic
seawater where the nitrogen level is very low, symbiotic
microorganisms may contribute to the nitrogen budget of sponges
via fixation of atmospheric nitrogen [18]. The release of nitrate

potential of sponge microbial symbionts in nitrogen fixation,
ammonia oxidization and nitrite reduction have been suggested by

the analysis of nitrogen cycle-related functional genes such as ny/H,

[13]. On the other hand, urea can be used directly by many amoA, niK or nirS [21,33—39]. But, tll now, the regenerated
organisms such as hard corals [3], phytoplankton [5], benthic

macroalgae [14], protozoans and bacteria [15,16]. However, in
total, the role of regenerated utilization of urea in the nitrogen
cycle of marine ecosystem is poorly understood, especially for
marine microbial symbionts.

utilization of urea by sponge bacterial symbionts remains nearly
unknown [38].

Urease 13 one of the important enzymes in nitrogen cycle [40].
Most organisms that use urea as a source of nitrogen rely on a
urease such as urea amidohydrolase (EC 3.5.1.5), that can catalyze
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the hydrolysis of urea to yield ammonia and carbamate [41—44].
Bacterial urease is a trimer of three subunits (encoded by ureA,
ureB, and ureC) and requires up to four accessory proteins for
activation and Ni* incorporation (most commonly encoded by
ureD, ureE,, ureF and wreG) [45]. The urease peptides have highly
conserved active sites and Ni' binding residues [44]. According to
the single-cell genomics analysis of Poribacteria in sponge Aplysina
aerophoba, a 10 ORF containing urease gene cluster including three
urease subunits ureA, ureB, ureC was identified, suggesting that the
Porbacteria are capable of using urea to cover their nitrogen needs
[38]. However, we don’t know whether urease genes are active in
sponges and what is the phylogenetic diversity of urease genes of
microbial community in sponges.

The ureC gene was chosen as the target gene for urease analysis
because it is the largest of the genes encoding urease functional
subunits and contains several highly conserved regions that are
suitable as PCR priming sites [46]. In this study, using ureC gene as
marker, the phylogenetically diverse weC genes and their
expression in the marine sponge X. ftestudinaria were investigated
for the first time, suggesting an important role of phylogenetically
diverse sponge bacterial symbionts in the regenerated utilization of
urea for sponge host.

Methods

Ethics Statement: N/A

This study and the collection of sponges were approved by the
ethics committee for scientific study at Shanghai Jiao Tong
University.

No legislation was required for the sampling of sponges around
Yongxing island (112°20'E, 16°50'N). The government of China
permits the sampling of sponge samples around the Yongxing
Island in the South China Sea for scientific research, and no
specific permissions were required for these locations/activities,
the location is not privately-owned or protected in any way, the
field studies did not involve endangered or protected species. The
sponges were collected by us.

Sample Collection

Specimens of the marine sponge X. lestudinaria were collected by
scuba diving at a depth of ca. 20 m from Yongxing Island (latitude
112°20’E, longitude 16°50'N) in the South China Sea, in 2010.
Sponge samples were transferred directly to plastic bags to avoid
the contact of sponge tissue with air and immediately stored at
—80°C.. Sponge samples for RNA extraction were immediately
stored in RNA later (Qiagen, Valencia, CA, USA).

Urease Activity Assay

Sponge samples were washed with sterile artificial seawater
(1.1 g CaCly, 10.2 g MgCly-6H,O, 31.6 g NaCl, 0.75 g KCI,
1.0 g NaySOy, 2.4 g Tris-HCI, 0.02 g NaHCO3, 1 L distilled
water, pH 7.6) to remove the contaminants from sea water or
sediment. Three sponge cubes (~1 cm?) from different parts of the
sponge were grounded into slurry using a mortar and pestle. The
sponge slurry and bacterial isolates from the sponge were tested for
urease activity using a colorimetric urea agar method at 28°C: [47].
The medium contains 1 g peptone, 1 g glucose, 2 g KHyPO,,
0.012 g phenolsulfonphthalein, 20 g agar, 1L artificial seawater
(ASW). The medium was supplemented with 40% (w/v) urea
solution [47]. Cultures were scored positive for urease activity if
the agar color changed from pale orange (pH 6.9) to pink or
fuchsia (pH 7.6 or higher). The color change is because of
ammonia formation resulting from ureolysis [46]. The uninocu-

lated control should be still blank.
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Total Genomic DNA and RNA Extraction

Three cubes (~1cm?) from different parts of the sponge were
dissociated in sterilized CMFSW (31.6 g NaCl, 0.75 g KCL, 1.0 g
NaoSOy, 2.4 g Tris-HCIL, 0.02 g NaHCO3, 7.2 ¢ EDTA, 1L
distilled water, pH 7.6) and grinded into slurry using a mortar and
pestle. Sponge slurry was centrifuged at 100xg for 15 min to
separate and discard the skeletal components. The supernatants
were freeze-dried and grinded into powder, which was washed
twice with 1 ml TE and centrifuged at 12,000 xg for 1 min. Total
DNA and RNA were extracted by AllPrep DNA/RNA Mini Kit
(Qiagen, Germany) simultaneously; RNA extraction were treated
with amplification grade DNase I (Invitrogen) according to the
manufacturer’s protocol to remove any residual DNA prior to
reverse transcription for cDNA synthesis. The amount and purity
of DNA or RNA were determined by NanoDrop Spectropho-
tometer ND-1000 (Thermo Fisher Scientific, Wilmington, USA),
based on the 260 nm absorption and the 260/280 ratio,
respectively.

Reverse Transcription and cDNA Synthesis

RNA was reverse-transcribed into cDNA using the SuperScript
IIT First Strand Synthesis System (Invitrogen). Reverse transcrip-
tion was carried out with random hexamer primers in 25 ul
reaction system containing 100 ng template RNA, 500 nmol of
reverse primer, 1.5 ul dNTPs, HyO was added to reach 12.5 pl.
After incubation at 65°C for 5 min, the 25 pl reaction mixture was
placed on ice for 1 min, added 12.5 pl ¢cDNA Synthesis Mix
(10xRT Buffer 2.5 ul, 25 mM MgCl, 5 pl, 0.1 M DTT 2.5 pl,
RNaseOUT 1.25 pl, SuperScript III RT 1.25 pl), incubated at
50°C for 50 min and the reaction was terminated at 85°C for
5 min [48]. The ¢cDNA obtained was stored at —20°C until
further use.

PCR Amplification of Urease (ureC) Genes from Genomic
DNA and cDNA

Bacterial urease (ur¢C) genes were amplified with the primer set
LoF (5-ATHGGYAARGCNGGN AAYCC-3') and LoR (5'-
GTBSHNCCCCARTCYTCRTG-3") [46] from genomic DNA
and cDNA. Reactions were performed in Mastercycler personal
(Eppendorf). The PCR mixture (20 pl) contained 100 ng template
DNA, 500 nmol of each primer, 10 pl 2xPCR Mix, 0.5 ul DNA
polymerase and HyO was added to reach 20 pl. PCR amplifica-
tion began with a 5 min denaturing step at 94°C, followed by 30
cycles at 94°C for 1 min, 57°C for 1.5 min, and 72°C for 2 min.
Extension was achieved at 72°C for 10 min. PCR products
(390 bp) were purified by electrophoresis on a 2% (wt/vol) agarose
gel and recovered using a gel purification kit (Takara, Dalian,
China).

PCR Amplification of 16S rRNA Gene from Genomic DNA

Bacterial 165 rRNA genes were amplified using the domain
bacteria-specific primer 27F (5'-GAGTTTGATCCTGGCT-
CAG-3') and universal primer 1500R (5'-AGAAAGGAGGT-
GATCCA GCC-3') [49]. PCR Kit (Takara, Dalian, China) was
used in the PCR amplification. The PCR mixture (20 pl)
contained 100 ng template DNA, 500 nM of each primer, 10 ul
2xPCR Mix, 0.5 ul DNA polymerase and HyO was added to
reach 20 pl. Cycling conditions were as follows: initial denatur-
ation at 94°C for 3 min, 30 cycles of 94°C for 1 min, 54°C for
I min, and 72°C for 2 min, and a final extension of 10 min at
72°C [50]. PCR products of 1500 bp were purified by electro-
phoresis on a 1% (wt/vol) agarose gel and recovered using a gel
purification kit (Takara, Dalian, China).
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Clone Library Construction and Sequencing

The libraries of ureC (from genomic DNA and cDNA) and 16S
rRINA genes were separately constructed using the pMDI18-T
Cloning kit (Takara, Dalian, China) following the manufacturer’s
mstructions. Transformants were inoculated into LB broth (with
100 pg/ml ampicillin) and incubated overnight at 37°C. The
positive recombinants were screened on X-Gal (5-bromo-4-chloro-
3-indoly-b-D-Galactopyrano-side) -IPTG (isopropyl- b-D- thioga-
lactopyranoside)-ampicillin-tetracycline indicator plates by color-
based recombinant selection. Positive clones were identified by
PCR amplification with pMD18-T vector primer pairs: M13F (5'-
TGTAAAACGACGGCCAGT-3') and MI13R (5'-CAGGAAA-
CAGCTATGACC-3'), using the same program as the PCR
amplification of ureC gene or 16S rRNA gene.

Species Richness Estimation and Phylogenetic Analysis

Operational taxonomic unit (OTU) was defined at the 97%
similarity (3% difference) for 16S rRNA gene and 90% similarity
(10% difference) for ureC gene, respectively. Chimera checking was
carried out using the program Bellerophon v3.0 from the
Greengenes website to check the bacterial 16S rRNA genes
[51]. Meanwhile Abundance-based coverage estimator (ACE),
Chaol, Shannon, Simpson and rarefaction analysis were per-
formed using DOTUR [52]. One representative clone was
selected from each OTU for further phylogenetic analysis. The
nearest relatives of each sequence were obtained from the
GenBank database using the blastn tool (http://blast.ncbi.nlm.
nih.gov/). The 16S rRNA gene sequence was used for the BLAST
analysis of bacterial diversity and the deduced amino acid
sequence was used for the BLAST analysis of weC gene. The
unrooted phylogenetic tree was constructed using Clustal X 2.0
and Mega 5.0. At the same time, all 16S rRNA gene sequences
were classified using the Ribosomal Database Project (RDP)
(http://rdp.cme.msu.edu/index.jsp) classifier with a confidence
threshold of 70%.

Nucleotide Sequence Accession Numbers

The gene sequences were deposited in the GenBank database
under the accession numbers: JQ359624-JQ359642 (ureC gene in
genomic DNA library), KC152840-KC152847 (ureC gene in
cDNA library), JQO359612-JQ359623 (165 rRNA gene library),
KC763777 (16S rRNA gene of Marinobacter litoralis).

Results

The Urea Utilization by Sponge X. testudinaria

In the urea utilization test of sponge X. testudinaria, the color of
the agar plate which was coated with sponge slurry changed from
yellowish to pink within several hours (Figure 1A), the color of the
negative control didn’t change (Figure 1B). Apparently, the
homogenates of the sponge contained urease which might be
produced by sponge itself or its associated microorganisms. In the
former study, a bacterium Marinobacter litoralis, which was isolated
from the sponge X. testudinaria, showed similar color change in the
agar plate (Figure 1C). M. ltoralis was also tested to be urease-
positive by Yoon et al. [53]. Thus, it is suggested that sponge-
assoclated bacteria may participate in the urea hydrolysis. In order
to reveal the diversity of ureC gene of the bacterial symbionts in X.
testudinaria, the bacterial ureC gene was analyzed.
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The Detection of ureC Gene and its Expression in Sponge
X. testudinaria

After the ureC gene was successfully amplified from the total
genomic DNA and cDNA, two clone libraries of ureC genes were
constructed, respectively named wreC-D library (genomic DNA
library) and ureC-R library (cDNA library). The coverage ratios of
ureC-D and wreC-R libraries were 84.61% and 88.16%, respec-
tively (Figure 2), suggesting that the sequencing of clones was
nearly saturated.

A total of sixty five positive clones were randomly selected from
the weC-D library for sequencing. Finally, 19 OTUs were
obtained at the 10% dissimilarity level. BLAST analysis using
deduced amino acid sequence and phylogenetic analysis showed
that the most similar reference sequences were from Proteobacteria,
Cyanobacteria, and Actinobacteria (Figure 3).

In the weC-R library, a total of forty five positive clones were
randomly selected for sequencing, resulting in 8 OTUs. In
particular, six OTUs were common to both the genomic DNA
library and the cDNA library: ureC-D6(3) and ureC-R6(3), ureC-
D7(13) and ureC-R3(2), wreC-D10(2) and ureC-R4(1), ureC-D17(7)
and ureC-R5(1), ureC-D18(2) and ureC-R7(32), ureC-D19(2) and
ureC-R2(1)). Therefore, RT-PCR results showed that some of the
sponge-associated ureC genes were metabolically active. BLAST
analysis showed that these active weC genes were of diverse
microbial origin, suggesting various groups of sponge-associated
microbes might participate in the urea transformation for sponge
host. The finding of phylogenetically diverse bacterial urease genes
and their expression strongly suggested the bacterial role in the
urea utilization of sponge X. testudinarna.

Phylogenetic Diversity of Bacteria in Sponges

Fifty nine clones from thel6S rRNA gene library were
sequenced successfully. At the 3% dissimilarity level, these
sequences could be divided into 12 OTUs. Rarefaction analysis
indicated that the bacterial library well represented the microbial
communities because the rarefaction curve was approaching
plateaus. The Chaol and ACE richness estimators predicted
16.03 and 12.58 OTUs at the species level for sponge X.
lestudinaria. The Shannon and 1/Simpson diversity indicated at the
species level were 2.07 and 6.87. BLAST analysis of 16S rRNA
gene indicated that, 9/12 bacterial representatives, except for
clones bac4(1), bac6(1) and bac8(2), were closely related to the
uncultured relatives from marine sponge X. testudinaria in the
Pacific Ocean [54] (Figure 4), which indicated that X. testudinaria-
derived 16S rRNA gene sequences were more closely related to
each other than to 16S rRNA gene sequences derived from other
samples. Meanwhile, nearly one half sequences had a very low
similarity (=94%) with related sequences in GenBank indicating
the novelty of bacteria in the sponge X. testudinaria from the South
China Sea. All bacterial sequences were classified using the RDP
classifier with a confidence threshold of 70%. The most
predominant bacterial phylum observed in sponge X. ftestudinaria
was Proteobacteria, including Alphaproteobacteria (28%), Deltaproteobac-
teria (68%), and Gammaproteobacteria (4%). The second abundant
phylum was Gemmatimonadetes (27%). The remaining belonged to
Acidobacteria (14%), Actinobacteria (3%), Chloroflexi (10%), Nitrospira
(2%) and Lentisphaerae (2%) (Figure 5).

Discussion

Marine sponge X. testudinaria and M. litoralis which was isolated
from the sponge can transfer urea into ammonia, which suggests
the potential for urea utilization by sponge symbionts. This
suggestion was supported by the detection of bacterial ureC gene
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A B

Figure 1. Urease activity of marine sponge X. testudinaria. A: negative control; B: activity of sponge slurry; C: Marinobacter litoralis (bacterium

isolated from the sponge).
doi:10.1371/journal.pone.0064848.g001

and its expression in this sponge. Among the observed 19 OTUs of
ureC. genes observed in the weC-D library, only 6 OTUs were
detected in the weC-R library, suggesting that not all the wreC
genes were active. In contrast, two OTUs, ureC-R1 which was
closely related to Staphylococcus epidermidis VCUO71, and ureC-R8
which was closely related to Mycobacterum tusciae JS617, were
unique in cDNA library. It was probably due to the incomplete
sequencing of clones in the two libraries. Unexpectedly, in ureC-D
library, we also acquired one ureC gene which was most similar to
Cenarchaeum symbiwosum A. Previous study showed that Thaumarch-
aeota from arctic deep waters had high abundance of urease genes
[55]. This finding indicated that archaea might also play an
important part in urea utilization.

Montalvo et al. [54] analyzed the bacterial diversity of X.
lestudinaria from the Manado Bay using gene library-based method,

and found that Chloroflexi, Acidobacteria, Actinobacteria and Deltapro-
teobacteria were dominant in the bacterial community. Using 454
pyrosequencing, Lee etal. [30] revealed that Profeobacteria,
Firmicutes and Chloroflexi were predominant bacterial phyla in X.
lestudinaria from the Red Sea. In this study, the bacterial
community in X. testudinaria from the South China Sea was found
to be composed of Proteobacteria (42%), Gemmatimonadetes (27 %),
Acidobacteria (14%), Chloroflexi (10%), Actinobacteria (3%), Nitrospira
(2%) and Lentisphaerae (2%). As Montalvo et al. [54], dominant
Deltaproteobacteria (68%), Chloroflexi, Acidobacteria and Actinobacteria
were observed in X. testudinaria, and meanwhile as Lee et al. [30],
Proteobacteria  and  Chlorgflexi were detected. Previous studies
concluded that uniform microbial community occurred in sponges
from different oceans [56—59]. According to the comparison
above, though the sponge X. testudinaria species were collected from

20 1
18 A
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-
o

—+—ureC-D
—+—ureC-R

—+—bac

0 10 20 30 40
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Figure 2. Rarefaction curves of ureC and 16S rRNA gene sequences. (Clusterization stringency at 90% and 97% for ureC and 16S rRNA gene,

respectively.).
doi:10.1371/journal.pone.0064848.9g002
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Figure 3. Unrooted phylogenetic tree based on urease alpha subunit (130aa) of sponge X. testudinaria using Neighbour-joining
method. The scale bar represents 0.05 substitutions per amino acids position. Bootstrap values (1,000 replicates) higher than 50% are shown. Omark
and ureC-D mean the OTU in genomic DNA library, and @mark and ureC-R mean the OTU in cDNA library. The number inside the parenthesis means
the number of sequences within each OTU.
doi:10.1371/journal.pone.0064848.g003
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Figure 4. Unrooted phylogenetic tree based on bacterial 16S rRNA gene sequences (ca.1,400bp) of sponge X. testudinaria using
Neighbour-joining method. The scale bar represents 0.05 substitutions per nucleotide position. Bootstrap values (1,000 replicates) higher than
50% are shown. The number in brackets shows the number of sequences in each OTU. @mark means sequences from sponge X. testudinaria.
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Figure 5. Pie charts illustrating the bacterial community based on 16S rRNA gene libraries of sponge X. testudinaria. Sequences in
libraries were classified using the Classifier Tool provided by the Ribosomal Database Project. Hierarchical taxa assignment was based on RDP naive
Bayesian rRNA Classifier. Percentage represented specific value between the number of clones in each taxon and the number of all clones in 16S

rRNA gene library.
doi:10.1371/journal.pone.0064848.g005

different ocean areas, it had similar predominant bacterial groups,
ve. Proteobacteria, Chloroflexi, Acidobacteria and Actinobacteria might
represent its core bacterial community. This is supported by
Figure 4, where X. testudinaria-derived 16S rRINA gene sequences
were clustered together suggesting some bacteria are X. testudinaria
specific. Besides, this study, together with that of Lee et al. [30],
Montalvo et al. [54], and Schmitt et al. [31], suggested the sponge
species-specific bacterial components which might come from the
different marine environment, since sponge microbial symbionts
might be acquired by both horizontal transfer and vertical
transmission approaches [26,28].

The phylogenetic tree based on wreC genes indicated that
Proteobacteria, Cyanobacteria, Actinobacteria and  Cenarchaeum might
produce urease in the sponge X. festudinaria. However, according
to the phylogenetic analysis of 16S rRNA genes, the dominant
bacterial phyla existing in the sponge X. (festudinaria were
Proteobacteria, Gemmatimonadetes, Acidobacteria and Chloroflexi. Appar-
ently, 16S rRNA-based phylogeny showed partial congruence to
the ureC-based phylogeny. Probably, the discrepancy may be due
to events of horizontal transfer of ureC among ureolytic bacterial
species. Investigating the 16S rRINA gene can reveal comprehen-
sive community structure of sponge-associated bacteria, but is not
a good approach for ecological investigation of ureolytic bacterial
species, while the ueC gene can provide a better estimation of
bacteria with urea utilization potential. So, integrated approach

PLOS ONE | www.plosone.org

combining the 16S rRNA gene (phylogenetic marker) and ureC
gene (functional marker), should be more accurate in the analysis
of ureolytic bacteria.

Most of the marine sponges live in coral reefs ecological system,
where it is generally limited by nitrogen. The nickel metalloen-
zyme urease catalyses the hydrolysis of urea to ammonia and
carbamate, and thus generates the preferred nitrogen source of
many organisms. Urease can be produced by diverse bacterial
species [60]. Urea in sponges may come from the sponge host
excretion, seawater, bacterial degradation of nucleic and amino
acids, and is therefore a possible product to be encountered in the
sponge mesohyl. Only the potential of sponge-associated bacteria
in urea utilization was suggested by genome analysis before this
study [38]. In this study, the plate assay and phylogenetic analysis
suggested the function of sponge bacterial symbionts in urea
utilization. This study provided the first insight into the bacterial
potential in urea utilization by detecting the transcriptional activity
of ureC gene as well as the phylogentic diversity of bacteria with
ureC gene.
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